Equivalence between Fuzzy PID Controllers and Conventional PID Controllers
<p>Graphical definition of membership functions for fuzzy variables, <math display="inline"> <semantics> <mrow> <mi>e</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math>, <math display="inline"> <semantics> <mrow> <mstyle displaystyle="true"> <mrow> <mo>∫</mo> <mrow> <mi>e</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </mstyle> </mrow> </semantics> </math>, <math display="inline"> <semantics> <mrow> <mover accent="true"> <mi>e</mi> <mo>˙</mo> </mover> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math>, and <math display="inline"> <semantics> <mrow> <mi>u</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math>.</p> "> Figure 2
<p>Sliced cube fuzzy associative memory (FAM) representation of knowledge base.</p> "> Figure 3
<p>The fired eight rules.</p> "> Figure 4
<p>The Proportional-Integral-Derivative (PID)-controlled system in Simulink.</p> "> Figure 5
<p>The (<b>a</b>) step input; (<b>b</b>) error signal; (<b>c</b>) error integral; (<b>d</b>) error derivative; (<b>e</b>) control signal and (<b>f</b>) system output with PID controller, the equivalent fuzzy logic controller (FLC), and the equivalent FLC in discrete form.</p> "> Figure 6
<p>The equivalent FLC-controlled system in Simulink.</p> "> Figure 7
<p>Membership functions for fuzzy variables (<b>a</b>) <math display="inline"> <semantics> <mrow> <mi>e</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math>; (<b>b</b>) <math display="inline"> <semantics> <mrow> <mstyle displaystyle="true"> <mrow> <mo>∫</mo> <mrow> <mi>e</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </mstyle> </mrow> </semantics> </math>; (<b>c</b>) <math display="inline"> <semantics> <mrow> <mover accent="true"> <mi>e</mi> <mo>˙</mo> </mover> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math>; (<b>d</b>) <math display="inline"> <semantics> <mrow> <mi>u</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> in Matlab.</p> "> Figure 8
<p>The control surface view of the equivalent fuzzy PID controller (<math display="inline"> <semantics> <mrow> <mstyle displaystyle="true"> <mrow> <mo>∫</mo> <mrow> <mi>e</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </mstyle> </mrow> </semantics> </math> = 0.36).</p> "> Figure 9
<p>The equivalent FLC-controlled system in discrete form.</p> "> Figure 10
<p>Membership functions adjustment for fuzzy variables (<b>a</b>) <math display="inline"> <semantics> <mrow> <mi>e</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math>; (<b>b</b>) <math display="inline"> <semantics> <mrow> <mstyle displaystyle="true"> <mrow> <mo>∫</mo> <mrow> <mi>e</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </mstyle> </mrow> </semantics> </math>; (<b>c</b>) <math display="inline"> <semantics> <mrow> <mover accent="true"> <mi>e</mi> <mo>˙</mo> </mover> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math>; (<b>d</b>) <math display="inline"> <semantics> <mrow> <mi>u</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> in Matlab.</p> "> Figure 11
<p>The control surface view of the equivalent fuzzy PID controller (<math display="inline"> <semantics> <mrow> <mstyle displaystyle="true"> <mrow> <mo>∫</mo> <mrow> <mi>e</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </mstyle> </mrow> </semantics> </math> = 0.36) under MFs adjustment.</p> "> Figure 12
<p>The (<b>a</b>) step input; (<b>b</b>) error signal; (<b>c</b>) error integral; (<b>d</b>) error derivative; (<b>e</b>) control signal and (<b>f</b>) system output with PID controller, the equivalent FLC, and the equivalent FLC under MFs adjustment.</p> ">
Abstract
:1. Introduction
2. The Equivalent Fuzzy PID Controller Design
3. Simulation Results
- is set as , which is the range for .
- is set as to satisfy .
- is set as to satisfy .
- is set as to satisfy .
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ziegler, J.G.; Nichols, N.B. Optimum settings for automatic controllers. Trans. ASME 1942, 64, 759–768. [Google Scholar] [CrossRef]
- Mamdani, E.H.; Assilian, S. An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man Mach. Stud. 1975, 7, 1–13. [Google Scholar] [CrossRef]
- Sugeno, M. Industrial Applications of Fuzzy Control; Elsevier Science Inc.: New York, NY, USA, 1985. [Google Scholar]
- Mudi, K.R.; Pal, R.N. A self-tuning fuzzy PI controller. Fuzzy Sets Syst. 2000, 115, 327–388. [Google Scholar] [CrossRef]
- Oh, S.K.; Jang, H.J.; Pedrycz, W. Optimized fuzzy PD cascade controller: A comparative analysis and design. Simul. Model. Pract. Theory 2011, 19, 181–195. [Google Scholar] [CrossRef]
- Chao, C.T.; Teng, C.C. A PD-like self-tuning fuzzy controller without steady-state error. Fuzzy Sets Syst. 1997, 87, 141–154. [Google Scholar] [CrossRef]
- Pitalua-Díaz, N.; Herrera-López, E.J.; Valencia-Palomo, G.; González-Angeles, A.; Rodríguez-Carvajal, R.A.; Cazarez-Castro, N.R. Comparative analysis between conventional PI and fuzzy logic PI controllers for indoor Benzene concentrations. Sustainability 2015, 7, 5398–5412. [Google Scholar] [CrossRef]
- Moon, B.S. Equivalence between fuzzy logic controllers and PI controllers for single input systems. Fuzzy Sets Syst. 1995, 69, 105–113. [Google Scholar] [CrossRef]
- Kang, C.S.; Hyun, C.H.; Kim, Y.T.; Baek, J.; Park, M. A design of equivalent PID structure control using Fuzzy gain scheduling. In Proceedings of the 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Jeju, Korea, 30 October–2 November 2013; pp. 354–356. [Google Scholar]
- Mann, G.K.I.; Hu, B.G.; Gosine, R.G. Analysis of direct action fuzzy PID controller structures. IEEE Trans. Syst. Man Cybern. B 1999, 29, 371–388. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.G.; Mann, G.K.I.; Gosine, R.G. A systematic study of fuzzy PID controller-function-based evaluation approach. IEEE Trans. Fuzzy Syst. 2001, 9, 699–712. [Google Scholar]
- Manikandan, R.; Arulprakash, A.; Arulmozhival, R. Design of equivalent fuzzy PID controller from the conventional PID Controller. In Proceedings of the IEEE International Conference on Control, Instrumentation, Communication and Computational Technology (ICCICCT), Thuckalay, India, 18–19 December 2015; pp. 356–362. [Google Scholar]
- Li, H.X.; Philip-Chen, C.L. The equivalence between fuzzy logic systems and feedforward neural networks. IEEE Trans. Neural Netw. 2000, 11, 356–365. [Google Scholar] [PubMed]
- Chiou, J.S.; Tsai, S.H.; Liu, M.T. A PSO-based adaptive fuzzy PID-controllers. Simul. Model. Pract. Theory 2012, 26, 49–59. [Google Scholar] [CrossRef]
- Pelusi, D. PID and intelligent controllers for optimal timing performances of industrial actuators. Int. J. Simul. Syst. Sci. Technol. 2012, 13, 65–71. [Google Scholar]
- Pelusi, D.; Mascella, R. Optimal control algorithms for second order systems. J. Comput. Sci. 2013, 9, 183–197. [Google Scholar] [CrossRef]
- Ogata, K. Modern Control Engineering, 5th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2010; p. 583. [Google Scholar]
Controller | Tr (s) 0.1–0.9 | Ts (s) | P.O. (%) | Ess |
---|---|---|---|---|
PID, FPID | 3.75 | 5.76 | 0 | 0 |
FPID with adjustment | 3.04 | 4.57 | 0.56 | 0 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chao, C.-T.; Sutarna, N.; Chiou, J.-S.; Wang, C.-J. Equivalence between Fuzzy PID Controllers and Conventional PID Controllers. Appl. Sci. 2017, 7, 513. https://doi.org/10.3390/app7060513
Chao C-T, Sutarna N, Chiou J-S, Wang C-J. Equivalence between Fuzzy PID Controllers and Conventional PID Controllers. Applied Sciences. 2017; 7(6):513. https://doi.org/10.3390/app7060513
Chicago/Turabian StyleChao, Chun-Tang, Nana Sutarna, Juing-Shian Chiou, and Chi-Jo Wang. 2017. "Equivalence between Fuzzy PID Controllers and Conventional PID Controllers" Applied Sciences 7, no. 6: 513. https://doi.org/10.3390/app7060513
APA StyleChao, C. -T., Sutarna, N., Chiou, J. -S., & Wang, C. -J. (2017). Equivalence between Fuzzy PID Controllers and Conventional PID Controllers. Applied Sciences, 7(6), 513. https://doi.org/10.3390/app7060513