Is Malware Detection Needed for Android TV?
<p>Methodologies in our study.</p> "> Figure 2
<p>VirusTotal scan results for a benign TV application.</p> "> Figure 3
<p>VirusTotal scan results for a malicious TV application.</p> "> Figure 4
<p>Average training time of models per application.</p> "> Figure 5
<p>Average testing time of the models per application.</p> "> Figure 6
<p>Confusion charts for classifiers.</p> "> Figure 7
<p>ROC curves of the models.</p> "> Figure 8
<p>Results of the models in testing with respect to the F1-Score.</p> "> Figure 9
<p>Results of the models in testing with respect to the MCC.</p> ">
Abstract
:1. Introduction
- 1.
- What is the malware ratio for Android TV applications in markets and public datasets?
- 2.
- Can a model trained on an Android smartphone malware dataset detect Android TV malware?
- 3.
- How do classifiers perform in detecting Android TV malware?
- 1.
- We collected 1107 Android TV applications from the Androzoo [20] dataset and used web scraping to collect 370 Android TV applications from the APKMirror (https://www.apkmirror.com, accessed on 15 January 2025) application market. Then, we labeled the Android TV applications using antivirus scanners on the VirusTotal (https://www.virustotal.com, accessed on 15 January 2025) website.
- 2.
- We injected a malicious payload into benign applications to create Android TV malware since there are only a few examples of malware on the market for TV devices.
- 3.
- We extracted the 500 most frequently used n-grams from each resource (AndroidManifest.xml) and binary source (classes.dex) file in the Android applications using the TF-IDF method separately. We publicly shared these features and class (benign or malicious) labels of the Android TV applications.
- 4.
- We implemented classification models for malware detection using the extracted XML and DEX features and compared the performance of the models.
2. Related Work
3. Methods
3.1. The Collection of Android TV Application Packages
3.2. Package Analysis for Labeling
3.3. Malicious Payload Injection
3.4. Feature Extraction
3.5. Dataset Description
3.6. Malware Detection
4. Performance Results
4.1. Performance Metrics
4.2. The Performance of the Model Trained Using Mobile Applications on TV Applications
4.3. The Performance of the Model Trained with TV Applications on TV Applications
5. Limitations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stats, S.G. Mobile Operating System Market Share Worldwide | Statcounter Global Stats. 2024. Available online: https://gs.statcounter.com/os-market-share/mobile/worldwide/ (accessed on 15 January 2024).
- Research, V.M. Smart Android TV Market Size, Share, Scope, Growth, & Forecast. 2023. Available online: https://www.verifiedmarketresearch.com/product/smart-android-tv-market/ (accessed on 15 January 2024).
- Ringol, M.A.; Barbour, N. Roku, TiVo Outline Disruptive Tactics in Connected TV Market at CES 2023 | S&P Global Market Intelligence. 2023. Available online: https://www.spglobal.com/marketintelligence/en/news-insights/research/roku-tivo-outline-disruptive-tactics-in-connected-tv-market-at-ces-2023 (accessed on 15 January 2024).
- Karbab, E.B.; Debbabi, M.; Derhab, A.; Mouheb, D. MalDozer: Automatic framework for android malware detection using deep learning. Digit. Investig. 2018, 24, S48–S59. [Google Scholar] [CrossRef]
- Yousefi-Azar, M.; Varadharajan, V.; Hamey, L.; Chen, S. Mutual Information and Feature Importance Gradient Boosting: Automatic byte n-gram feature reranking for Android malware detection. Softw. Pract. Exp. 2021, 51, 1518–1539. [Google Scholar] [CrossRef]
- Ozogur, G.; Erturk, M.A.; Gurkas Aydin, Z.; Aydin, M.A. Android Malware Detection in Bytecode Level Using TF-IDF and XGBoost. Comput. J. 2023, 66, 2317–2328. [Google Scholar] [CrossRef]
- Mariconti, E.; Onwuzurike, L.; Andriotis, P.; De Cristofaro, E.; Ross, G.; Stringhini, G. MAMADROID: Detecting Android Malware by Building Markov Chains of Behavioral Models. In Proceedings of the 24th Network and Distributed System Security Symposium (NDSS 2017), San Diego, CA, USA, 23–26 February 2017. [Google Scholar]
- Fang, W.; He, J.; Li, W.; Lan, X.; Chen, Y.; Li, T.; Huang, J.; Zhang, L. Comprehensive Android Malware Detection Based on Federated Learning Architecture. IEEE Trans. Inf. Forensics Secur. 2023, 18, 3977–3990. [Google Scholar] [CrossRef]
- Halim, M.A.; Abdullah, A.; Ariffin, K.A.Z. Recurrent neural network for malware detection. Int. J. Adv. Soft Compu. Appl. 2019, 11, 43–63. [Google Scholar]
- Garg, S.; Baliyan, N. A novel parallel classifier scheme for vulnerability detection in android. Comput. Electr. Eng. 2019, 77, 12–26. [Google Scholar] [CrossRef]
- Grosse, K.; Papernot, N.; Manoharan, P.; Backes, M.; McDaniel, P. Adversarial Examples for Malware Detection. In Proceedings of the Computer Security—ESORICS 2017, Oslo, Norway, 11–15 September 2017; Foley, S.N., Gollmann, D., Snekkenes, E., Eds.; Springer: Cham, Switzerland, 2017; pp. 62–79. [Google Scholar]
- Zhang, N.; Xue, J.; Ma, Y.; Zhang, R.; Liang, T.; Tan, Y.A. Hybrid sequence-based Android malware detection using natural language processing. Int. J. Intell. Syst. 2021, 36, 5770–5784. [Google Scholar] [CrossRef]
- Arora, A.; Peddoju, S.K.; Conti, M. PermPair: Android Malware Detection Using Permission Pairs. IEEE Trans. Inf. Forensics Secur. 2020, 15, 1968–1982. [Google Scholar] [CrossRef]
- Zhang, J.; Qin, Z.; Zhang, K.; Yin, H.; Zou, J. Dalvik opcode graph based android malware variants detection using global topology features. IEEE Access 2018, 6, 51964–51974. [Google Scholar] [CrossRef]
- Alrabaee, S.; Al-Kfairy, M.; Taha, M.B.; Alfandi, O.; Taher, F.; El Fiky, A.H. Using AI to Detect Android Malware Families. In Proceedings of the 2024 20th International Conference on the Design of Reliable Communication Networks (DRCN), Montreal, QC, Canada, 6–9 May 2024; pp. 1–8. [Google Scholar]
- He, Y.; Kang, X.; Yan, Q.; Li, E. ResNeXt+: Attention Mechanisms Based on ResNeXt for Malware Detection and Classification. IEEE Trans. Inf. Forensics Secur. 2024, 19, 1142–1155. [Google Scholar] [CrossRef]
- Martinelli, F.; Marulli, F.; Mercaldo, F. Evaluating convolutional neural network for effective mobile malware detection. Procedia Comput. Sci. 2017, 112, 2372–2381. [Google Scholar] [CrossRef]
- Narayanan, A.; Mahinthan, C.; Chen, L.; Liu, Y.; Saminathan, S. subgraph2vec: Learning Distributed Representations of Rooted Sub-graphs from Large Graphs. arXiv 2016, arXiv:1606.08928. [Google Scholar]
- Sharma, T.; Rattan, D. Characterization of Android Malwares and their families. ACM Comput. Surv. 2025, 57, 1–31. [Google Scholar] [CrossRef]
- Allix, K.; Bissyandé, T.F.; Klein, J.; Le Traon, Y. Androzoo: Collecting millions of android apps for the research community. In Proceedings of the 2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR), Austin, TX, USA, 14–15 May 2016; pp. 468–471. [Google Scholar]
- Girish, A.; Tapiador, J.; Matic, S.; Vallina-Rodriguez, N. Towards an Extensible Privacy Analysis Framework for Smart Homes. In Proceedings of the 22nd ACM Internet Measurement Conference, New York, NY, USA, Nice, France, 25–27 October 2022; IMC ’22. pp. 754–755. [Google Scholar] [CrossRef]
- Majors, J.D.O.; Barsallo Yi, E.; Maji, A.; Wu, D.; Bagchi, S.; Machiry, A. Security Properties of Virtual Remotes and SPOOKing their violations. In Proceedings of the 2023 ACM Asia Conference on Computer and Communications Security, Melbourne, Australia, 10–14 July 2023; pp. 841–854. [Google Scholar]
- Tileria, M.; Blasco, J. Watch over your TV: A security and privacy analysis of the android TV ecosystem. Proc. Priv. Enhancing Technol. 2022, 3, 692–710. [Google Scholar] [CrossRef]
- Liu, Y.; Li, L.; Kong, P.; Sun, X.; Bissyande, T.F. A First Look at Security Risks of Android TV Apps. In Proceedings of the 2021 36th IEEE/ACM International Conference on Automated Software Engineering Workshops (ASEW), Los Alamitos, CA, USA, 15–19 November 2021; pp. 59–64. [Google Scholar] [CrossRef]
- Riadi, I.; Aprilliansyah, D. Mobile Device Security Evaluation using Reverse TCP Method. Kinet. Game Technol. Inf. Syst. Comput. Netw. Comput. Electron. Control 2022, 7, 289–298. [Google Scholar] [CrossRef]
- Metasploit|Penetration Testing Software, Pen Testing Security. Available online: https://www.metasploit.com (accessed on 14 September 2023).
- Meng, H.; Thing, V.L.; Cheng, Y.; Dai, Z.; Zhang, L. A survey of Android exploits in the wild. Comput. Secur. 2018, 76, 71–91. [Google Scholar] [CrossRef]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef]
- Friedman, J.; Hastie, T.; Tibshirani, R. Additive logistic regression: A statistical view of boosting (with discussion and a rejoinder by the authors). Ann. Stat. 2000, 28, 337–407. [Google Scholar] [CrossRef]
- Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef]
- Seiffert, C.; Khoshgoftaar, T.M.; Van Hulse, J.; Napolitano, A. RUSBoost: Improving classification performance when training data is skewed. In Proceedings of the 2008 19th International Conference on Pattern Recognition, Tampa, FL, USA, 8–11 December 2008; pp. 1–4. [Google Scholar]
Study | Features | Methods | Results |
---|---|---|---|
[4] | Classes, Methods, API Calls | Artificial Neural Network | F1-Score: 0.9922 |
[5] | Manifest, Binary Source Code | N-Gram, Mutual Information, XGBoost | F1-Score: 0.9906 |
[6] | Manifest, Binary Source Code | Term Frequency-Inverse Document Frequency, N-gram, XGBoost | F1-Score: 0.9905 |
[7] | API Calls | Markov Chain, Random Forest, K-Nearest Neighbor | F1-Score: 0.99 |
[8] | Permissions, APIs, Intents, Hardware Components | Genetic Evolution, Deep Learning | F1-Score: 0.9853 |
[9] | Permissions, APIs, Intents, Hardware Components | Convolutional Neural Network, Long Short-Term Memory | Accuracy: 0.9853 |
[10] | Permissions, Libraries, API Calls, System Calls, Battery Temperature, CPU Usage, Memory Usage, Source Code | Pruning Rule-Based Classification Tree, Ripple Down Rule Learner, Support Vector Machines, Multilayer Perceptron | Accuracy: 0.9827 |
[11] | Permissions, APIs, Intents, Hardware Components | Deep Neural Network | Accuracy: 0.98 |
[12] | Opcodes, System Calls | Convolutional Neural Network, Bidirectional Long Short-Term Memory, Attention Mechanism | F1-Score: 0.96 |
[13] | Permissions | Graph Comparison Algorithm | Accuracy: 0.9544 |
[14] | Opcodes | Manhattan Distance Comparison | Accuracy: 0.936 |
[15] | Permissions, Classes, Opcode Calls | Convolutional Neural Network, Random Forest | Accuracy: 0.9255 |
[16] | RGB Images of Binary APKs | Attention Mechanism | Accuracy: 0.9064 |
[17] | System Calls | Convolutional Neural Network, Vector Representations | Accuracy: 0.8 |
[18] | Interprocedural Control Flow Graphs | Support Vector Machines | Accuracy: 0.74 |
Dataset Name | Minimum File Size | Maximum File Size | Average File Size |
---|---|---|---|
Androzoo | 23.5 kB | 145.2 MB | 26.4 MB |
APKMirror | 3.2 kB | 191.1 MB | 28.2 MB |
Dataset | Malicious | Benign | Malware Ratio | ||
---|---|---|---|---|---|
reverse_http | reverse_https | reverse_tcp | |||
Androzoo Payload-Injected | 154 | 154 | 163 | 567 | 45% |
APKMirror Payload-Injected | 67 | 64 | 57 | 182 | 51% |
Predicted Benign (PN) | Predicted Malware (PP) | |
---|---|---|
True Benign (N) | True Negative (TN) | False Positive (FP) |
True Malware (P) | False Negative (FN) | True Positive (TP) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozogur, G.; Gurkas-Aydin, Z.; Erturk, M.A. Is Malware Detection Needed for Android TV? Appl. Sci. 2025, 15, 2802. https://doi.org/10.3390/app15052802
Ozogur G, Gurkas-Aydin Z, Erturk MA. Is Malware Detection Needed for Android TV? Applied Sciences. 2025; 15(5):2802. https://doi.org/10.3390/app15052802
Chicago/Turabian StyleOzogur, Gokhan, Zeynep Gurkas-Aydin, and Mehmet Ali Erturk. 2025. "Is Malware Detection Needed for Android TV?" Applied Sciences 15, no. 5: 2802. https://doi.org/10.3390/app15052802
APA StyleOzogur, G., Gurkas-Aydin, Z., & Erturk, M. A. (2025). Is Malware Detection Needed for Android TV? Applied Sciences, 15(5), 2802. https://doi.org/10.3390/app15052802