Integration Between Serious Games and EEG Signals: A Systematic Review
<p>Illustrative workflow of a BCI system with EEG applied to gaming, displaying the process from neural signal acquisition using an EEG cap to signal processing, command mapping, and real-time execution of actions in a gaming environment.</p> "> Figure 2
<p>The PRISMA flow diagram for our systematic literature review examination.</p> ">
Abstract
:1. Introduction
2. Literature Review Process
2.1. Identification Phase
2.2. Screening Phase
2.3. Eligibility Phase
2.4. Inclusion Phase
3. Foundations of Serious Games in EEG-Based BCI Systems
3.1. Serious Game
3.2. Brain–Computer Interfaces (BCI) and Electroencephalography (EEG) Signals
4. A Review of Technological Solutions That Integrate Serious Game and EEG Signals
4.1. Experimental Strategy Based on Evoked Signals
Article | Strategy | Serious Game Development | Processing Software (Version Number Not Reported) | Test Users | Type of Game | Gaming Commands |
---|---|---|---|---|---|---|
[62] | Evoked signal | Symphony C# graphics engine | C# | 6 | Avatar control | Balance control, left and right |
[63] | Unity 3D | Python, Emotiv SDK | 25 | Tower defense | Move up, down, left, right | |
[14] | Unity 3D | Neurosky Mindset SDK, Emotiv EPOC SDK | 62 | History game, Avatar control | Movement control based on mental imagery tasks (e.g., left/right-hand movement). | |
[45] | OpenViBE | OpenViBE, Emotiv SDK | 2 | Target shooting | Navigation and shooting | |
[51] | Spontaneous signal | Visual C++ with SDL and Panda3D | Visual C++ | 10 | Avatar control | Control of robot speed based on mental focus |
[64] | Unity 3D, C# | Emotiv SDK, Matlab | 3 | Avatar control | Control of avatar speed based on mental focus | |
[65] | C# | Matlab | - | Focus | Intensity level | |
[66] | Visual C++ | Emotiv Xavier Control Panel, Matlab | 12 | Puzzle | Cognitive task-driven responses | |
[67] | Unity 3D | CGX, Matlab | 20 | Rocket Navigation | Attention levels influence speed | |
[68] | - | Matlab | 24 | Object identification | Yes/not | |
[69] | - | Matlab | 20 | Motor imagery-based | Mental imagery of left/right hand | |
[18] | Unity 3D | EMOTIV SDK | 4 | Avatar control | Move up, down, left, right | |
[70] | Hybrid signal | BCI2VR | MATLAB BCI to Virtual Reality Toolbox—BCI2VR. | 5 | Navigation | Stop, move, turn |
[71] | Unity 3D | NIA Software | - | Paddle | Left/right | |
[72] | Unity3D, Kinect SDK | Bio-Cirac, Open ViBe. | - | Cognitive balance | Body movements | |
[48] | Unity 3D, C#. | Matlab, Emotiv SDK | 5 | Obstacle evasion | Left, right, start, stop |
4.2. Experimental Strategy Based on Spontaneous Signals
4.3. Experimental Strategy Based on Hybrid Signals
5. Discussion
6. Challenges and Future Research Directions
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Adarve Gómez, C.; Castillo Carvajal, D.A.; Restrepo Zapata, E.J.; Villar-Vega, H. A review of virtual reality videogames for job-training applications. Rev. CINTEX 2019, 24, 64–70. [Google Scholar] [CrossRef]
- Chow, W.; Van Eeden, E. Global Entertainment & Media Outlook 2018–2022. In PwC Global Entertainment & Media Outlook; PwC: New York, NY, USA, 2017; p. 18. [Google Scholar]
- Agudelo, R.A.B.; Montoya, Á.G. Jóvenes y videojuegos: Perspectivas sobre el consumo de videojuegos ambientados en Colombia. Media J. 2024, 24, e4503. [Google Scholar] [CrossRef]
- Bernal Marín, I. Los Videojuegos ya se Han Vuelto una Necesidad Diaria Para 37% de los Colombianos. Diario La República, 26 August 2022; p. 242. [Google Scholar]
- Molano-Tobar, N.J.; Narváez, L.M.C.; Hurtado, A.F.V. El uso del videojuego y su relación en el sobrepeso en universitarios, Popayán, Colombia (The use of the video game and its relation to overweight in university students, Popayan, Colombia). Retos 2023, 48, 138–144. [Google Scholar] [CrossRef]
- Escobar, S.M.R.; Sierra, W.A.A.; Taborda, L.M.A. El rendimiento escolar y el uso de videojuegos en estudiantes de básica secundaria del municipio de La Estrella- Antioquia. Rev. Educ. 2019, 43, 19. [Google Scholar] [CrossRef]
- Bustamante-Barreto, A.; Corredor, J.; Hernandez-Posada, J.D. The association between owning a videogame console and the gender gap in STEM: An instrumental variable approach. J. Comput. Educ. 2024, 11, 51–74. [Google Scholar] [CrossRef]
- Cortes, D.X.P.; Blandón, J.A. Comportamientos tóxicos en videojugadores de LoL latinoamericanos. Aloma Rev. Psicol. Ciènc. L’Educació L’Esport 2023, 41, 27–35. [Google Scholar] [CrossRef]
- Göbel, S. Serious Games Application Examples. In Serious Games; Dörner, R., Göbel, S., Effelsberg, W., Wiemeyer, J., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 319–405. [Google Scholar] [CrossRef]
- Chang, C.C.; Liang, C.; Chou, P.N.; Lin, G.Y. Is game-based learning better in flow experience and various types of cognitive load than non-game-based learning? Perspective from multimedia and media richness. Comput. Hum. Behav. 2017, 71, 218–227. [Google Scholar] [CrossRef]
- Qian, M.; Clark, K.R. Game-based Learning and 21st century skills: A review of recent research. Comput. Hum. Behav. 2016, 63, 50–58. [Google Scholar] [CrossRef]
- Parthasarathy, P.K.; Mittal, A.; Aggarwal, A. Literature Review: Learning Through Game-Based Technology Enhances Cognitive Skills. Int. J. Prof. Bus. Rev. 2023, 8, e01415. [Google Scholar] [CrossRef]
- Cano, S.; Munoz Arteaga, J.; Collazos, C.A.; Gonzalez, C.S.; Zapata, S. Toward a methodology for serious games design for children with auditory impairments. IEEE Lat. Am. Trans. 2016, 14, 2511–2521. [Google Scholar] [CrossRef]
- Liarokapis, F.; Debattista, K.; Vourvopoulos, A.; Petridis, P.; Ene, A. Comparing interaction techniques for serious games through brain–computer interfaces: A user perception evaluation study. Entertain. Comput. 2014, 5, 391–399. [Google Scholar] [CrossRef]
- García-Ramón, R.D.; Rechy-Ramirez, E.J.; Alonso-Valerdi, L.M.; Marin-Hernandez, A. Engagement Analysis Using Electroencephalography Signals in Games for Hand Rehabilitation with Dynamic and Random Difficulty Adjustments. Appl. Sci. 2024, 14, 8464. [Google Scholar] [CrossRef]
- Su, H.; Wang, S.; Huang, M.; Chen, Y.; Lu, A.; Yang, R. VR and Exoskeleton Assisted Lower Limb Rehabilitation based on Motor Imagery BCI. In Proceedings of the 2023 IEEE International Biomedical Instrumentation and Technology Conference (IBITeC), Yogyakarta, Indonesia, 9–10 November 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 74–79. [Google Scholar] [CrossRef]
- Cabañero, L.; Hervás, R.; Bravo, J.; Rodríguez-Benitez, L.; Nugent, C. eeglib: Computational analysis of cognitive performance during the use of video games. J. Ambient Intell. Humaniz. Comput. 2022, 13, 5351–5362. [Google Scholar] [CrossRef]
- Alchalcabi, A.E.; Eddin, A.N.; Shirmohammadi, S. More attention, less deficit: Wearable EEG-based serious game for focus improvement. In Proceedings of the 2017 IEEE 5th International Conference on Serious Games and Applications for Health (SeGAH), Perth, Australia, 2–4 April 2017; pp. 1–8. [Google Scholar] [CrossRef]
- Sourina, O.; Liu, Y. EEG-Based Serious Games. In Subconscious Learning via Games and Social Media; Series Title: Gaming Media and Social Effects; Sourina, O., Wortley, D., Kim, S., Eds.; Springer: Singapore, 2015; pp. 135–152. [Google Scholar] [CrossRef]
- Marshall, D.; Coyle, D.; Wilson, S.; Callaghan, M. Games, Gameplay, and BCI: The State of the Art. IEEE Trans. Comput. Intell. AI Games 2013, 5, 82–99. [Google Scholar] [CrossRef]
- Ninaus, M.; Kober, S.E.; Friedrich, E.V.; Dunwell, I.; Freitas, S.D.; Arnab, S.; Ott, M.; Kravcik, M.; Lim, T.; Louchart, S.; et al. Neurophysiological methods for monitoring brain activity in serious games and virtual environments: A review. Int. J. Technol. Enhanc. Learn. 2014, 6, 78. [Google Scholar] [CrossRef]
- Ahn, M.; Lee, M.; Choi, J.; Jun, S. A Review of Brain-Computer Interface Games and an Opinion Survey from Researchers, Developers and Users. Sensors 2014, 14, 14601–14633. [Google Scholar] [CrossRef]
- Kerous, B.; Skola, F.; Liarokapis, F. EEG-based BCI and video games: A progress report. Virtual Real. 2018, 22, 119–135. [Google Scholar] [CrossRef]
- Zyda, M. From visual simulation to virtual reality to games. Computer 2005, 38, 25–32. [Google Scholar] [CrossRef]
- Michael, D. Serious Games: Games That Educate, Train and Inform; OCLC: ocm62780159; Thomson Course Technology: Boston, MA, USA, 2006. [Google Scholar]
- Baranowski, T.; Buday, R.; Thompson, D.I.; Baranowski, J. Playing for Real. Am. J. Prev. Med. 2008, 34, 74–82.e10. [Google Scholar] [CrossRef]
- Alvarez, J.; Djaouti, D. An introduction to Serious game Definitions and concepts. In Proceedings of the Serious Games & Simulation for Risks Management, Paris, France, 5 December 2011; pp. 11–15. [Google Scholar]
- Wilkinson, P. A Brief History of Serious Games. In Entertainment Computing and Serious Games; Series Title: Lecture Notes in Computer, Science; Dörner, R., Göbel, S., Kickmeier-Rust, M., Masuch, M., Zweig, K., Eds.; Springer International Publishing: Cham, Switzerland, 2016; Volume 9970, pp. 17–41. [Google Scholar] [CrossRef]
- Alvarez, J.; Rampnoux, O.; Jessel, J.P.; Méthel, G. Serious Game: Just a question of posture? In Proceedings of the 33rd Annual Convention of the Society for the Study of Artificial Intelligence and the Simulation of Behaviour (AISB 2007), Newcastle, UK, 2–5 April 2007; Society for the Study of Artificial Intelligence and Simulation of Behaviour (AISB), Newport: Wales, UK, 2007; pp. 420–426. [Google Scholar]
- Fauquet Alekhine, P. Human or Avatar: Psychological Dimensions on Full Scope, Hybrid, and Virtual Reality Simulators; Laboratory for Research in Science of Energy: Montagret, France, 2011; pp. 22–36. [Google Scholar]
- Cordeiro d’Ornellas, M.; Cargnin, D.J.; Cervi Prado, A.L. Thoroughly Approach to Upper Limb Rehabilitation Using Serious Games for Intensive Group Physical Therapy or Individual Biofeedback Training. In Proceedings of the 2014 Brazilian Symposium on Computer Games and Digital Entertainment, Porto Alegre, Brazil, 12–14 November 2014; pp. 140–147. [Google Scholar] [CrossRef]
- Pedraza-Hueso, M.; Martín-Calzón, S.; Díaz-Pernas, F.J.; Martínez-Zarzuela, M. Rehabilitation Using Kinect-based Games and Virtual Reality. Procedia Comput. Sci. 2015, 75, 161–168. [Google Scholar] [CrossRef]
- Allal-Chérif, O.; Bidan, M. Collaborative open training with serious games: Relations, culture, knowledge, innovation, and desire. J. Innov. Knowl. 2017, 2, 31–38. [Google Scholar] [CrossRef]
- Nagashima, Y. Towards the Biofeedback Game—With Interoception and Rehabilitation. In Proceedings of the 2016 8th International Conference on Games and Virtual Worlds for Serious Applications (VS-GAMES), Barcelona, Spain, 7–9 September 2016; pp. 1–7. [Google Scholar] [CrossRef]
- Rocha, F.; Junior, R.G.M.; Horta, T.; Cesar, F.; D’Israel, D.M.; Da Silva, W.; Thomaz, C. EEG acquisition and processing for cognitive brain mapping during chess problem solving. IEEE Lat. Am. Trans. 2016, 14, 1129–1134. [Google Scholar] [CrossRef]
- Mastorakos, P.; McGavern, D. The anatomy and immunology of vasculature in the central nervous system. Sci. Immunol. 2019, 4, eaav0492. [Google Scholar] [CrossRef]
- Elashmawi, W.H.; Ayman, A.; Antoun, M.; Mohamed, H.; Mohamed, S.E.; Amr, H.; Talaat, Y.; Ali, A. A Comprehensive Review on Brain–Computer Interface (BCI)-Based Machine and Deep Learning Algorithms for Stroke Rehabilitation. Appl. Sci. 2024, 14, 6347. [Google Scholar] [CrossRef]
- Wolpaw, J.R.; Birbaumer, N.; McFarland, D.J.; Pfurtscheller, G.; Vaughan, T. Brain computer interfaces for communication and control. Clin. Neurophysiol. 2002, 113, 767–791. [Google Scholar] [CrossRef]
- He, B.; Gao, S.; Yuan, H.; Wolpaw, J. Brain–computer interfaces. In Neural Engineering; Springer Science+Business Media: New York, NY, USA, 2013; pp. 87–151. [Google Scholar] [CrossRef]
- Ramadan, R.A.; Vasilakos, A.V. Brain computer interface: Control signals review. Neurocomputing 2017, 223, 26–44. [Google Scholar] [CrossRef]
- Erbslöh, A.; Buron, L.; Ur-Rehman, Z.; Musall, S.; Hrycak, C.; Löhler, P.; Klaes, C.; Seidl, K.; Schiele, G. Technical survey of end-to-end signal processing in BCIs using invasive MEAs. J. Neural Eng. 2024, 21, 051003. [Google Scholar] [CrossRef]
- Perez Vidal, A.F.; Oliver Salazar, M.A.; Salas Lopez, G. Development of a Brain-Computer Interface Based on Visual Stimuli for the Movement of a Robot Joints. IEEE Lat. Am. Trans. 2016, 14, 477–484. [Google Scholar] [CrossRef]
- Becerra, M.A.; Londoño-Delgado, E.; Pelaez-Becerra, S.M.; Serna-Guarín, L.; Castro-Ospina, A.E.; Marin-Castrillón, D.; Peluffo-Ordóñez, D.H. Odor Pleasantness Classification from Electroencephalographic Signals and Emotional States. In Advances in Computing; Series Title: Communications in Computer and Information Science; Serrano, C.J.E., Martínez-Santos, J.C., Eds.; Springer International Publishing: Cham, Switzerland, 2018; Volume 885, pp. 128–138. [Google Scholar] [CrossRef]
- Ortega-Adarme, M.; Moreno-Revelo, M.; Peluffo-Ordoñez, D.H.; Marín Castrillon, D.; Castro-Ospina, A.E.; Becerra, M.A. Analysis of Motor Imaginary BCI Within Multi-environment Scenarios Using a Mixture of Classifiers. In Advances in Computing; Series Title: Communications in Computer and Information, Science; Solano, A., Ordoñez, H., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 735, pp. 511–523. [Google Scholar] [CrossRef]
- Martišius, I.; Damaševičius, R. A Prototype SSVEP Based Real Time BCI Gaming System. Comput. Intell. Neurosci. 2016, 2016, 3861425. [Google Scholar] [CrossRef]
- Lotte, F.; Bougrain, L.; Clerc, M. Electroencephalography (EEG)-Based Brain–Computer Interfaces. In Wiley Encyclopedia of Electrical and Electronics Engineering, 1st ed.; Webster, J.G., Ed.; Wiley: Hoboken, NJ, USA, 2015; pp. 1–20. [Google Scholar] [CrossRef]
- Graimann, B.; Allison, B.; Pfurtscheller, G. Brain Computer Interfaces: A Gentle Introduction. In Brain-Computer Interfaces; Series Title: The Frontiers Collection; Graimann, B., Pfurtscheller, G., Allison, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–27. [Google Scholar] [CrossRef]
- Belkacem, A.N.; Saetia, S.; Zintus-art, K.; Shin, D.; Kambara, H.; Yoshimura, N.; Berrached, N.; Koike, Y. Real-Time Control of a Video Game Using Eye Movements and Two Temporal EEG Sensors. Comput. Intell. Neurosci. 2015, 2015, 653639. [Google Scholar] [CrossRef]
- Sreeja, S.; Samanta, D.; Mitra, P.; Sarma, M. Motor Imagery EEG Signal Processing and Classification using Machine Learning Approach. Jordanian J. Comput. Inf. Technol. 2018, 4, 80–93. [Google Scholar] [CrossRef]
- AlEssa, G.N.; Alzahrani, S.I. EEG-Based Methods for Diagnosing Color Vision Deficiency: A Comprehensive Review. Appl. Sci. 2024, 14, 7579. [Google Scholar] [CrossRef]
- Wang, Q.; Sourina, O.; Nguyen, M.K. EEG-Based “Serious” Games Design for Medical Applications. In Proceedings of the 2010 International Conference on Cyberworlds, Singapore, 20–22 October 2010; pp. 270–276. [Google Scholar] [CrossRef]
- Brienza, M.; Mecarelli, O. Neurophysiological Basis of EEG. In Clinical Electroencephalography; Mecarelli, O., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 9–21. [Google Scholar] [CrossRef]
- Teplan, M. Fundamentals of EEG measurement. Meas. Sci. Rev. 2002, 2, 1–11. [Google Scholar]
- Larsen, E.A. Classification of EEG Signals in a Brain Computer Interface Sys. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2011. [Google Scholar]
- Quintero-Zea, A.; LóPez, J.D.; Smith, K.; Trujillo, N.; Parra, M.A.; Escudero, J. Phenotyping Ex-Combatants From EEG Scalp Connectivity. IEEE Access 2018, 6, 55090–55098. [Google Scholar] [CrossRef]
- Oikonomou, V.P.; Georgiadis, K.; Liaros, G.; Nikolopoulos, S.; Kompatsiaris, I. A Comparison Study on EEG Signal Processing Techniques Using Motor Imagery EEG Data. In Proceedings of the 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS), Thessaloniki, Greece, 22–24 June 2017; pp. 781–786. [Google Scholar] [CrossRef]
- Singala, K.V.; Trivedi, K.R. Connection setup of openvibe tool with EEG headset, parsing and processing of EEG signals. In Proceedings of the 2016 International Conference on Communication and Signal Processing (ICCSP), Melmaruvathur, India, 6–8 April 2016; pp. 0902–0906. [Google Scholar] [CrossRef]
- Kawala Janik, A. Efficiency Evaluation of External Environments Control Using Bio-Signals. Ph.D. Thesis, University of Greenwiich, London, UK, 2013. [Google Scholar]
- Pinheiro, O.; Alves, L.; Souza, J. EEG Signals Classification: Motor Imagery for Driving an Intelligent Wheelchair. IEEE Lat. Am. Trans. 2018, 16, 254–259. [Google Scholar] [CrossRef]
- Becerra, M.A.; Londoño-Delgado, E.; Pelaez-Becerra, S.M.; Castro-Ospina, A.E.; Mejia-Arboleda, C.; Durango, J.; Peluffo-Ordóñez, D.H. Electroencephalographic Signals and Emotional States for Tactile Pleasantness Classification. In Progress in Artificial Intelligence and Pattern Recognition; Series Title: Lecture Notes in Computer Science; Hernández Heredia, Y., Milián Núñez, V., Ruiz Shulcloper, J., Eds.; Springer International Publishing: Cham, Switzerland, 2018; Volume 11047, pp. 309–316. [Google Scholar] [CrossRef]
- Becerra, M.A.; Alvarez-Uribe, K.C.; Peluffo-Ordoñez, D.H. Low Data Fusion Framework Oriented to Information Quality for BCI Systems. In Bioinformatics and Biomedical Engineering; Series Title: Lecture Notes in Computer Science; Rojas, I., Ortuño, F., Eds.; Springer International Publishing: Cham, Switzerland, 2018; Volume 10814, pp. 289–300. [Google Scholar] [CrossRef]
- Lalor, E.C.; Kelly, S.P.; Finucane, C.; Burke, R.; Smith, R.; Reilly, R.B.; McDarby, G. Steady-State VEP-Based Brain-Computer Interface Control in an Immersive 3D Gaming nvironment. EURASIP J. Adv. Signal Process. 2005, 2005, 706906. [Google Scholar] [CrossRef]
- Van Vliet, M.; Robben, A.; Chumerin, N.; Manyakov, N.V.; Combaz, A.; Van Hulle, M.M. Designing a brain-computer interface controlled video-game using consumer grade EEG hardware. In Proceedings of the 2012 ISSNIP Biosignals and Biorobotics Conference: Biosignals and Robotics for Better and Safer Living (BRC), Manaus, Brazil, 9–11 January 2012; pp. 1–6. [Google Scholar] [CrossRef]
- Khong, A.; Jiangnan, L.; Thomas, K.P.; Vinod, A.P. BCI based multi-player 3-D game control using EEG for enhancing attention and memory. In Proceedings of the 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), San Diego, CA, USA, 5–8 October 2014; pp. 1847–1852. [Google Scholar] [CrossRef]
- Kawala-Janik, A.; Podpora, M.; Gardecki, A.; Czuczwara, W.; Baranowski, J.; Bauer, W. Game controller based on biomedical signals. In Proceedings of the 2015 20th International Conference on Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, Poland, 24–27 August 2015; pp. 934–939. [Google Scholar] [CrossRef]
- Mondéjar, T.; Hervás, R.; Johnson, E.; Gutierrez, C.; Latorre, J.M. Correlation between videogame mechanics and executive functions through EEG analysis. J. Biomed. Inform. 2016, 63, 131–140. [Google Scholar] [CrossRef]
- Delisle-Rodriguez, D.; De Oliveira, H.L.; Da Silva, J.C.; De Souza, M.L.; Bastos, T.; Nakamura-Palacios, E.M.; Frizera-Neto, A. Multi-channel EEG-based BCI using regression and classification methods for attention training by serious game. Biomed. Signal Process. Control 2023, 85, 104937. [Google Scholar] [CrossRef]
- Hosťovecký, M.; Babušiak, B. Brain activity: Beta wave analysis of 2D and 3D serious games using EEG. J. Appl. Math. Stat. Inform. 2017, 13, 39–53. [Google Scholar] [CrossRef]
- Vourvopoulos, A.; Bermudez i Badia, S.; Liarokapis, F. EEG correlates of video game experience and user profile in motor-imagery-based brain–computer interaction. Vis. Comput. 2017, 33, 533–546. [Google Scholar] [CrossRef]
- Huang, D.; Qian, K.; Fei, D.Y.; Jia, W.; Chen, X.; Bai, O. Electroencephalography (EEG)-Based Brain–Computer Interface (BCI): A 2-D Virtual Wheelchair Control Based on Event-Related Desynchronization/Synchronization and State Control. IEEE Trans. Neural Syst. Rehabil. Eng. 2012, 20, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Hawsawi, O.; Semwal, S.K. EEG headset supporting mobility impaired gamers with game accessibility. In Proceedings of the 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), San Diego, CA, USA, 5–8 October 2014; pp. 837–841. [Google Scholar] [CrossRef]
- Munoz, J.E.; Chavarriaga, R.; Villada, J.F.; SebastianLopez, D. BCI and motion capture technologies for rehabilitation based on videogames. In Proceedings of the IEEE Global Humanitarian Technology Conference (GHTC 2014), San Jose, CA, USA, 10–13 October 2014; pp. 396–401. [Google Scholar] [CrossRef]
- Amiri, S.; Fazel-Rezai, R.; Asadpour, V. A Review of Hybrid Brain-Computer Interface Systems. Adv. Hum.-Comput. Interact. 2013, 2013, 187024. [Google Scholar] [CrossRef]
- He, B.; Baxter, B.; Edelman, B.J.; Cline, C.C.; Ye, W.W. Noninvasive Brain-Computer Interfaces Based on Sensorimotor Rhythms. Proc. IEEE 2015, 103, 907–925. [Google Scholar] [CrossRef] [PubMed]
- Wolpaw, J.; Birbaumer, N.; Heetderks, W.; McFarland, D.; Peckham, P.; Schalk, G.; Donchin, E.; Quatrano, L.; Robinson, C.; Vaughan, T. Brain computer interface technology: A review of the first international meeting. IEEE Trans. Rehabil. Eng. 2000, 8, 164–173. [Google Scholar] [CrossRef]
- Dharmasena, S.; Lalitharathne, K.; Dissanayake, K.; Sampath, A.; Pasqual, A. Online classification of imagined hand movement using a consumer grade EEG device. In Proceedings of the 2013 IEEE 8th International Conference on Industrial and Information Systems, Peradeniya, Sri Lanka, 17–20 December 2013; pp. 537–541. [Google Scholar] [CrossRef]
- Han, C.H.; Lim, J.H.; Lee, J.H.; Kim, K.; Im, C.H. Data-Driven User Feedback: An Improved Neurofeedback Strategy considering the Interindividual Variability of EEG Features. BioMed Res. Int. 2016, 2016, 3939815. [Google Scholar] [CrossRef]
- Allison, B.Z.; McFarland, D.J.; Schalk, G.; Zheng, S.D.; Jackson, M.M.; Wolpaw, J.R. Towards an independent brain–computer interface using steady state visual evoked potentials. Clin. Neurophysiol. 2008, 119, 399–408. [Google Scholar] [CrossRef]
- Vourvopoulos, A.; Liarokapis, F.; Chen, M.C. The Effect of Prior Gaming Experience in Motor Imagery Training for Brain-Computer Interfaces: A Pilot Study. In Proceedings of the 2015 7th International Conference on Games and Virtual Worlds for Serious Applications (VS-Games), Skövde, Sweden, 16–18 September 2015; pp. 1–8. [Google Scholar] [CrossRef]
- Vega, I.M.; Adarve, C.A.; Villar-Vega, H.F.; Páramo, C.A. Serious game for real-time brain-computer interface training. J. Phys. Conf. Ser. 2019, 1418, 012011. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patiño, J.; Vega, I.; Becerra, M.A.; Duque-Grisales, E.; Jimenez, L. Integration Between Serious Games and EEG Signals: A Systematic Review. Appl. Sci. 2025, 15, 1946. https://doi.org/10.3390/app15041946
Patiño J, Vega I, Becerra MA, Duque-Grisales E, Jimenez L. Integration Between Serious Games and EEG Signals: A Systematic Review. Applied Sciences. 2025; 15(4):1946. https://doi.org/10.3390/app15041946
Chicago/Turabian StylePatiño, Julian, Isabel Vega, Miguel A. Becerra, Eduardo Duque-Grisales, and Lina Jimenez. 2025. "Integration Between Serious Games and EEG Signals: A Systematic Review" Applied Sciences 15, no. 4: 1946. https://doi.org/10.3390/app15041946
APA StylePatiño, J., Vega, I., Becerra, M. A., Duque-Grisales, E., & Jimenez, L. (2025). Integration Between Serious Games and EEG Signals: A Systematic Review. Applied Sciences, 15(4), 1946. https://doi.org/10.3390/app15041946