Functional Magnetic Resonance Imaging in Research on Dog Cognition: A Systematic Review
<p>PRISMA flow diagram depicting research articles on dog cognition investigated using functional magnetic resonance imaging (fMRI) included and excluded from this systematic review.</p> "> Figure 2
<p>Traffic light plot of risk of bias in randomized controlled trials on (<b>A</b>) visual stimuli, (<b>B</b>) auditory stimuli, (<b>C</b>) olfactory stimuli, and (<b>D</b>) somatosensory stimuli and multi-stimuli.</p> "> Figure 3
<p>Traffic light plot of risk of bias in non-randomized trials and observational studies on (<b>A</b>) resting state networks, (<b>B</b>) visual stimuli, (<b>C</b>) auditory stimuli, and (<b>D</b>) somatosensory stimuli and multi–stimuli.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Exclusion Criteria
2.3. Search Strategies
2.4. Selection Process
2.5. Data Collection Process
2.6. Risk of Bias Assessment and Data Synthesis
3. Results
3.1. Study Selection
3.2. Research Articles on Canine fMRI Without Stimuli (Resting State Network)
3.3. Research Articles on Canine fMRI Studies Using Visual Stimuli
3.4. Research Articles on Canine fMRI Studies Using Auditory Stimuli
3.5. Research Articles on Canine fMRI Studies Using Olfactory Stimuli
3.6. Research Articles on Canine fMRI Studies Using Somatosensory Stimuli and Multi-Stimuli
3.7. The Risks of Bias in Randomized Controlled Trials, Non-Randomized Trials, and Observational Studies
4. Discussion
4.1. Research Articles Without Stimuli (Resting State Network)
4.2. Research Articles Considering Visual Stimuli
4.3. Research Articles Considering Auditory Stimuli
4.4. Research Articles Considering Olfactory Stimuli
4.5. Research Articles Considering Somatosensory Stimuli and Multi-Stimuli
4.6. Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thompkins, A.M.; Deshpande, G.; Waggoner, P.; Katz, J.S. Functional magnetic resonance imaging of the domestic dog: Research, methodology, and conceptual issues. Comp. Cogn. Behav. Rev. 2016, 11, 63. [Google Scholar] [CrossRef]
- Gore, J.C. Principles and practice of functional MRI of the human brain. J. Clin. Investig. 2003, 112, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Daliri, M.R.; Behroozi, M. fMRI: Clinical and research applications. OMICS J. Radiol. 2012, 1, e112. [Google Scholar]
- Andics, A.; Gácsi, M.; Faragó, T.; Kis, A.; Miklósi, Á. Voice-sensitive regions in the dog and human brain are revealed by comparative fMRI. Curr. Biol. 2014, 24, 574–578. [Google Scholar] [CrossRef] [PubMed]
- Bunford, N.; Hernández–Pérez, R.; Farkas, E.B.; Cuaya, L.V.; Szabó, D.; Szabó, Á.G.; Andics, A. Comparative brain imaging reveals analogous and divergent patterns of species and face sensitivity in humans and dogs. J. Neurosci. 2020, 40, 8396–8408. [Google Scholar] [CrossRef] [PubMed]
- Boch, M.; Huber, L.; Lamm, C. Domestic dogs as a comparative model for social neuroscience: Advances and challenges. Neurosci. Biobehav. Rev. 2024, 162, 105700. [Google Scholar] [CrossRef]
- Berns, G.S.; Brooks, A.M.; Spivak, M.; Levy, K. Functional MRI in awake dogs predicts suitability for assistance work. Sci. Rep. 2017, 7, 43704. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Pustovyy, O.M.; Wang, Y.; Waggoner, P.; Beyers, R.J.; Schumacher, J.; Deshpande, G. Enhancement of odor—Induced activity in the canine brain by zinc nanoparticles: A functional MRI study in fully unrestrained conscious dogs. Chem. Senses 2016, 41, 53–67. [Google Scholar] [CrossRef] [PubMed]
- Karl, S.; Boch, M.; Virányi, Z.; Lamm, C.; Huber, L. Training pet dogs for eye–tracking and awake fMRI. Behav. Res. Methods 2020, 52, 838–856. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta–analyses: The PRISMA statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef]
- Ryan, R.; Synnot, A.; Prictor, M.; Hill, S. Data Extraction Template for Included Studies; Cochrane Consumers and Communication Group: London, UK, 2016; pp. 1–25. Available online: https://cccrg.cochrane.org/sites/cccrg.cochrane.org/files/uploads/det_2015_revised_final_june_20_2016_nov_29_revised.doc (accessed on 24 September 2024).
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Sterne, J.A.; Hernan, M.A.; Reeves, B.C.; Savovic, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef] [PubMed]
- Beckmann, K.M.; Wang–Leandro, A.; Dennler, M.; Carrera, I.; Richter, H.; Bektas, R.N.; Haller, S. Resting state networks of the canine brain under sevoflurane anaesthesia. PLoS ONE 2020, 15, e0231955. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, G.; Zhao, S.; Waggoner, P.; Beyers, R.; Morrison, E.; Huynh, N.; Katz, J.S. Two Separate Brain Networks for Predicting Trainability and Tracking Training—Related Plasticity in Working Dogs. Animals 2024, 14, 1082. [Google Scholar] [CrossRef] [PubMed]
- Szabó, D.; Janosov, M.; Czeibert, K.; Gácsi, M.; Kubinyi, E. Central nodes of canine functional brain networks are concentrated in the cingulate gyrus. Brain Struct. Funct. 2023, 228, 831–843. [Google Scholar] [CrossRef] [PubMed]
- Szabó, D.; Czeibert, K.; Kettinger, Á.; Gácsi, M.; Andics, A.; Miklósi, Á.; Kubinyi, E. Resting-state fMRI data of awake dogs (Canis familiaris) via group-level independent component analysis reveal multiple, spatially distributed resting–state networks. Sci. Rep. 2019, 9, 15270. [Google Scholar] [CrossRef]
- Xu, Y.; Christiaen, E.; De Witte, S.; Chen, Q.; Peremans, K.; Saunders, J.H.; Baeken, C. Network analysis reveals abnormal functional brain circuitry in anxious dogs. PLoS ONE 2023, 18, e0282087. [Google Scholar] [CrossRef]
- Berns, G.S.; Brooks, A.M.; Spivak, M. Functional MRI in awake unrestrained dogs. PLoS ONE 2012, 7, e38027. [Google Scholar] [CrossRef]
- Phillips, E.M.; Gillette, K.D.; Dilks, D.D.; Berns, G.S. Through a Dog’s Eyes: fMRI Decoding of Naturalistic Videos from the Dog Cortex. JoVE J. Vis. Exp. 2022, 187, e64442. [Google Scholar] [CrossRef] [PubMed]
- Thompkins, A.M.; Lazarowski, L.; Ramaiahgari, B.; Gotoor, S.S.R.; Waggoner, P.; Denney, T.S.; Katz, J.S. Dog-human social relationship: Representation of human face familiarity and emotions in the dog brain. Anim. Cogn. 2021, 24, 251–266. [Google Scholar] [CrossRef]
- Prichard, A.; Chhibber, R.; Athanassiades, K.; Chiu, V.; Spivak, M.; Berns, G.S. 2D or not 2D? An fMRI study of how dogs visually process objects. Anim. Cogn. 2021, 24, 1143–1151. [Google Scholar] [CrossRef] [PubMed]
- Boch, M.; Karl, S.; Sladky, R.; Huber, L.; Lamm, C.; Wagner, I.C. Tailored haemodynamic response function increases detection power of fMRI in awake dogs (Canis familiaris). Neuroimage 2021, 224, 117414. [Google Scholar] [CrossRef]
- Karl, S.; Boch, M.; Zamansky, A.; van der Linden, D.; Wagner, I.C.; Völter, C.J.; Huber, L. Exploring the dog-human relationship by combining fMRI, eye–tracking and behavioural measures. Sci. Rep. 2020, 10, 22273. [Google Scholar] [CrossRef]
- Szabó, D.; Gábor, A.; Gácsi, M.; Faragó, T.; Kubinyi, E.; Miklósi, Á.; Andics, A. On the face of it: No differential sensitivity to internal facial features in the dog brain. Front. Behav. Neurosci. 2020, 14, 25. [Google Scholar] [CrossRef] [PubMed]
- Aulet, L.S.; Chiu, V.C.; Prichard, A.; Spivak, M.; Lourenco, S.F.; Berns, G.S. Canine sense of quantity: Evidence for numerical ratio-dependent activation in parietotemporal cortex. Biol. Lett. 2019, 15, 20190666. [Google Scholar] [CrossRef] [PubMed]
- Thompkins, A.M.; Ramaiahgari, B.; Zhao, S.; Gotoor, S.S.R.; Waggoner, P.; Denney, T.S.; Katz, J.S. Separate brain areas for processing human and dog faces as revealed by awake fMRI in dogs (Canis familiaris). Learn. Behav. 2018, 46, 561–573. [Google Scholar] [CrossRef] [PubMed]
- Cook, P.F.; Prichard, A.; Spivak, M.; Berns, G.S. Awake canine fMRI predicts dogs’ preference for praise vs food. Soc. Cogn. Affect. Neurosci. 2016, 11, 1853–1862. [Google Scholar]
- Cuaya, L.V.; Hernández–Pérez, R.; Concha, L. Our faces in the dog’s brain: Functional imaging reveals temporal cortex activation during perception of human faces. PLoS ONE 2016, 11, e0149431. [Google Scholar] [CrossRef] [PubMed]
- Dilks, D.D.; Cook, P.; Weiller, S.K.; Berns, H.P.; Spivak, M.; Berns, G.S. Awake fMRI reveals a specialized region in dog temporal cortex for face processing. PeerJ 2015, 3, e1115. [Google Scholar] [CrossRef]
- Cook, P.F.; Spivak, M.; Berns, G.S. One pair of hands is not like another: Caudate BOLD response in dogs depends on signal source and canine temperament. PeerJ 2014, 2, e596. [Google Scholar] [CrossRef]
- Berns, G.S.; Brooks, A.; Spivak, M. Replicability and heterogeneity of awake unrestrained canine fMRI responses. PLoS ONE 2013, 8, e81698. [Google Scholar] [CrossRef] [PubMed]
- Willis, C.K.; Quinn, R.P.; McDonell, W.M.; Gati, J.; Partlow, G.; Vilis, T. Functional MRI activity in the thalamus and occipital cortex of anesthetized dogs induced by monocular and binocular stimulation. Can. J. Vet. Res. 2001, 65, 188. [Google Scholar]
- Willis, C.K.; Quinn, R.P.; McDonell, W.M.; Gati, J.; Parent, J.; Nicolle, D. Functional MRI as a tool to assess vision in dogs: The optimal anesthetic. Vet. Ophthalmol. 2001, 4, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Bach, J.P.; Lüpke, M.; Dziallas, P.; Wefstaedt, P.; Uppenkamp, S.; Seifert, H.; Nolte, I. Auditory functional magnetic resonance imaging in dogs–normalization and group analysis and the processing of pitch in the canine auditory pathways. BMC Vet. Res. 2016, 12, 32. [Google Scholar] [CrossRef] [PubMed]
- Cuaya, L.V.; Hernández–Pérez, R.; Andics, A.; Báji, R.; Gácsi, M.; Guilloux, M.; Ujfalussy, D.J. Representation of rewards differing in their hedonic valence in the caudate nucleus correlates with the performance in a problem-solving task in dogs (Canis familiaris). Sci. Rep. 2023, 13, 14353. [Google Scholar] [CrossRef]
- Bálint, A.; Szabó, Á.; Andics, A.; Gácsi, M. Dog and human neural sensitivity to voicelikeness: A comparative fMRI study. NeuroImage 2023, 265, 119791. [Google Scholar] [CrossRef] [PubMed]
- Gergely, A.; Gábor, A.; Gácsi, M.; Kis, A.; Czeibert, K.; Topál, J.; Andics, A. Dog brains are sensitive to infant- and dog-directed prosody. Commun. Biol. 2023, 6, 859. [Google Scholar] [CrossRef]
- Cuaya, L.V.; Hernández–Pérez, R.; Boros, M.; Deme, A.; Andics, A. Speech naturalness detection and language representation in the dog brain. NeuroImage 2022, 248, 118811. [Google Scholar] [CrossRef]
- Boros, M.; Magyari, L.; Török, D.; Bozsik, A.; Deme, A.; Andics, A. Neural processes underlying statistical learning for speech segmentation in dogs. Curr. Biol. 2021, 31, 5512–5521. [Google Scholar] [CrossRef] [PubMed]
- Gábor, A.; Andics, A.; Miklósi, Á.; Czeibert, K.; Carreiro, C.; Gácsi, M. Social relationship-dependent neural response to speech in dogs. Neuroimage 2021, 243, 118480. [Google Scholar] [CrossRef] [PubMed]
- Boros, M.; Gábor, A.; Szabó, D.; Bozsik, A.; Gácsi, M.; Szalay, F.; Andics, A. Repetition enhancement to voice identities in the dog brain. Sci. Rep. 2020, 10, 3989. [Google Scholar] [CrossRef]
- Gábor, A.; Gácsi, M.; Szabó, D.; Miklósi, Á.; Kubinyi, E.; Andics, A. Multilevel fMRI adaptation for spoken word processing in the awake dog brain. Sci. Rep. 2020, 10, 11968. [Google Scholar] [CrossRef]
- Prichard, A.; Cook, P.F.; Spivak, M.; Chhibber, R.; Berns, G.S. Awake fMRI reveals brain regions for novel word detection in dogs. Front. Neurosci. 2018, 12, 737. [Google Scholar] [CrossRef]
- Andics, A.; Gábor, A.; Gácsi, M.; Faragó, T.; Szabó, D.; Miklósi, A. Neural mechanisms for lexical processing in dogs. Science 2016, 353, 1030–1032. [Google Scholar] [CrossRef]
- Bach, J.P.; Lüpke, M.; Dziallas, P.; Wefstaedt, P.; Uppenkamp, S.; Seifert, H.; Nolte, I. Functional magnetic resonance imaging of the ascending stages of the auditory system in dogs. BMC Vet. Res. 2013, 9, 210. [Google Scholar] [CrossRef]
- Jia, H.; Pustovyy, O.M.; Waggoner, P.; Beyers, R.J.; Schumacher, J.; Wildey, C.; Deshpande, G. Functional MRI of the olfactory system in conscious dogs. PLoS ONE 2014, 9, e86362. [Google Scholar] [CrossRef] [PubMed]
- Prichard, A.; Chhibber, R.; King, J.; Athanassiades, K.; Spivak, M.; Berns, G.S. Decoding odor mixtures in the dog brain: An awake fMRI study. Chem. Senses 2020, 45, 833–844. [Google Scholar] [CrossRef] [PubMed]
- Berns, G.S.; Brooks, A.M.; Spivak, M. Scent of the familiar: An fMRI study of canine brain responses to familiar and unfamiliar human and dog odors. Behav. Process. 2015, 110, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Ramaihgari, B.; Pustovyy, O.M.; Waggoner, P.; Beyers, R.J.; Wildey, C.; Morrison, E.; Deshpande, G. Zinc nanoparticles enhance brain connectivity in the canine olfactory network: Evidence from an fMRI study in unrestrained awake dogs. Front. Vet. Sci. 2018, 5, 127. [Google Scholar] [CrossRef]
- Prichard, A.; Chhibber, R.; Athanassiades, K.; Spivak, M.; Berns, G.S. Fast neural learning in dogs: A multimodal sensory fMRI study. Sci. Rep. 2018, 8, 14614. [Google Scholar] [CrossRef]
- Cook, P.F.; Spivak, M.; Berns, G. Neurobehavioral evidence for individual differences in canine cognitive control: An awake fMRI study. Anim. Cogn. 2016, 19, 867–878. [Google Scholar] [CrossRef]
- Guran, C.N.; Boch, M.; Sladky, R.; Lonardo, L.; Karl, S.; Huber, L.; Lamm, C. Functional mapping of the somatosensory cortex using noninvasive fMRI and touch in awake dogs. Brain Struct. Funct. 2024, 229, 1193–1207. [Google Scholar] [CrossRef] [PubMed]
- Prichard, A.; Chhibber, R.; Athanassiades, K.; Chiu, V.; Spivak, M.; Berns, G.S. The mouth matters most: A functional magnetic resonance imaging study of how dogs perceive inanimate objects. J. Comp. Neurol. 2021, 529, 2987–2994. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.K.; Jahng, G.H.; Lee, S.H.; Choi, I.W.; Choi, C.B.; Choi, W.S. Differential localization of pain–related neural responses during acupuncture stimulation using blood oxygen level dependent (BOLD) fMRI in a canine model. Am. J. Chin. Med. 2012, 40, 919–936. [Google Scholar] [CrossRef] [PubMed]
- Boillat, Y.; Xin, L.; Van der Zwaag, W.; Gruetter, R. Metabolite concentration changes associated with positive and negative BOLD responses in the human visual cortex: A functional MRS study at 7 Tesla. J. Cereb. Blood Flow Metab. 2020, 40, 488–500. [Google Scholar] [CrossRef]
- Craven, A.R.; Dwyer, G.; Ersland, L.; Kazimierczak, K.; Noeske, R.; Sandøy, L.B.; Johnsen, E.; Hugdahl, K. GABA, glutamatergic dynamics and BOLD contrast assessed concurrently using functional MRS during a cognitive task. NMR Biomed. 2024, 37, e5065. [Google Scholar] [CrossRef] [PubMed]
- Warsi, M.A.; Molloy, W.; Noseworthy, M.D. Correlating brain blood oxygenation level dependent (BOLD) fractal dimension mapping with magnetic resonance spectroscopy (MRS) in Alzheimer’s disease. Magn. Reson. Mater. Phys. Biol. Med. 2012, 25, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Soares, D.P.; Law, M. Magnetic resonance spectroscopy of the brain: Review of metabolites and clinical applications. Clin. Radiol. 2009, 64, 12–21. [Google Scholar] [CrossRef] [PubMed]
Article | Study Type | Studied Issue | Participants | fMRI Technique | Research Conclusion: Main Areas of Activation |
---|---|---|---|---|---|
Deshpande et al. [15] | Observational cohort | exploring resting-state functional whole-brain connectivity to predict trainability in working dogs | 40 dogs; age: 12–36 months; sex: 16 females, 24 males | BOLD; no anesthesia | functional connectivity between brainstem and frontal cortex |
Szabó et al. [16] | Observational cross-sectional | mapping whole-brain functional networks | 33 dogs; age: 1–14 years; sex: 17 females, 16 males | BOLD; no anesthesia | Ttwo highly connected, lateralized multi-region networks, auditory regions, associative and sensorimotor cortices, and insular cortex |
Xu et al. [18] | Observational cross-sectional | functional whole-brain connectivity patterns in anxious dogs | 38 dogs; age: 1–8 years; sex: 19 females, 6 males | BOLD; general anesthesia | anxiety circuit: amygdala–hippocampus, amygdala– mesencephalon, amygdala–thalamus, frontal lobe–hippocampus, frontal lobe–thalamus, and hippocampus–thalamus |
Beckmann et al. [14] | Observational cross-sectional | mapping whole-brain functional networks under anesthesia | 10 dogs; age: 2–6 years; sex: 4 females, 6 males | BOLD; general anesthesia | resting state networks: default mode, primary and higher-order visual, auditory, two putative motor–somatosensory and one putative somatosensory |
Szabó et al. [17] | Non-randomized trial | functional whole-brain connectivity patterns | 22 dogs; age: 2–13 years; sex: 10 females, 12 males | BOLD; no anesthesia | network involving prefrontal cortex, anterior cingulate, posterior cingulate and hippocampal regions; sensorimotor, auditory, frontal, cerebellar, and striatal networks |
Article | Study Type | Studied Issue | Participants | fMRI Technique | Research Conclusion: Main Areas of Activation |
---|---|---|---|---|---|
Phillips et al. [20] | Randomized controlled trial | processing dynamic visual information | 2 humans; 2 dogs; age: 4–11 years; sex: 1 female, 1 male | BOLD; no anesthesia | both dogs and humans: occipital, parietal, and temporal cortices |
Thompkins et al. [21] | Randomized controlled trial | human face familiarity and emotions | 37 dogs; age: 6 months–3 years; sex: 17 females, 20 males | BOLD; no anesthesia | caudate, hippocampus, and amygdala |
Prichard et al. [22] | Randomized controlled trial | ability to differentiate between 3D and 2D images | 15 dogs; age: no data; sex: 11 females, 4 males | BOLD; no anethesia | caudate, left posterior parietal region, and right parietotemporal region |
Boch et al. [23] | Non-randomized trial | improving awake fMRI in dogs by tailored dog hemodynamic response function | 17 dogs; age: 3–11 years; sex: 10 females, 7 males | BOLD; no anesthesia | from occipital lobe to caudal parietal cortex, bilateral temporal cortex, and hippocampal and thalamic regions |
Karl et al. [24] | Randomized controlled trial | human face processing | 17 dogs; age: no data; sex: no data | BOLD; no anesthesia | caudate and limbic regions |
Bunford et al. [5] | Randomized controlled trial | conspecific preference and face preference | 30 humans; 20 dogs; age: 2.5–11 years; sex: 11 males, 9 females | BOLD; no anesthesia | dogs: mid-suprasylvian gyrus and visually responsive cortex; humans: right amygdala/hippocampus and the posterior superior temporal sulcus |
Szabó et al. [25] | Randomized controlled trial | sensitivity of dogs to internal facial features | 24 dogs; age: 1–11 years; sex: 11 females, 13 males | BOLD; no anesthesia | temporo-parietal and occipital regions, Sylvian gyrus, marginal gyrus, suprasylvian gyrus, and the insular cortex |
Aulet et al. [26] | Randomized controlled trial | quantity perception | 11 dogs; age: 2–13 years; sex: 8 females; 3 males | BOLD; no anesthesia | parietotemporal cortex |
Thompkins et al. [27] | Randomized controlled trial | human and dog faces processing | 12 dogs; age: 6 months–3 years; sex: no data | BOLD; no anesthesia | left temporal cortex |
Berns et al. [7] | Randomized controlled trial | efficacy of fMRI in predicting whether dogs would succeed as service dogs | 43 dogs; age: 17–21 months; sex: 19 females, 24 males | BOLD; no anesthesia | caudate, amygdala, and visual cortex |
Cook et al. [28] | Randomized controlled trial | dogs’ preferences for social praise versus food rewards | 15 dogs; age: no data; sex: no data | BOLD; no anesthesia | ventral caudate |
Cuaya et al. [29] | Non-randomized trial | human face processing | 7 dogs; age: 15–50 months; sex: 3 females, 4 males | BOLD; no anesthesia | bilateral temporal cortex |
Dilks et al. [30] | Non-randomized trial | human and dog faces processing | 6 dogs; age: no data; sex: 3 females, 3 males | BOLD; no anesthesia | temporal lobe |
Cook et al. [31] | Randomized controlled trial | influence of signal source and dogs’ temperament on signal processing | 13 dogs; age: 3–9 years; sex: 7 females, 5 males | BOLD; no anesthesia | caudate, visual cortex |
Berns et al. [32] | Randomized controlled trial | reliability of awake fMRI in dogs | 13 dogs; age: 3–8 years; sex: 7 females, 5 males | BOLD; no anesthesia | caudate |
Berns et al. [19] | Non-randomized trial | reward-activated brain areas | 2 dogs; age: 2–3 years; sex: 2 females | BOLD; no anesthesia | caudate |
Willis et al. [33] | Randomized controlled trial | detecting brain activity areas in response to visual stimuli | 6 dogs; age: no data; sex: 5 females, 1 male | BOLD; general anesthesia | lateral geniculate nucleus and occipital lobe |
Willis et al. [34] | Randomized controlled trial | impacts of anesthesia on fMRI | 6 dogs; age: no data; sex: 5 females, 1 male | BOLD; general anesthesia | lateral geniculate nucleus and occipital lobe |
Article | Study Type | Studied Issue | Participants | fMRI Technique | Research Conclusion: Main Areas of Activation |
---|---|---|---|---|---|
Bálint et al. [37] | Non-randomized trial | neural sensitivity to voice-like sounds in both dogs and humans | 20 humans; 21 dogs; age: 2–12 years; sex: 8 females, 13 males | BOLD; no anesthesia | dogs: left auditory cortical region extending from ectosylvian gyri; humans: multiple auditory cortical regions, Heschl’s gyrus, temporal gyri, and right planum temporale |
Cuaya et al. [36] | Non-randomized trial | associating different sounds with appetitive stimuli | 20 dogs; age: 2–11 years; sex: 11 females, 9 males | BOLD; no anesthesia | caudate nucleus and amygdala |
Gergely et al. [38] | Randomized controlled trial | dogs’ sensitivity to prosody in infant- and dog-directed speech | 19 dogs; age: 2–10 years; sex: 8 females, 11 males | BOLD; no anesthesia | temporal pole, left caudal, and rostral Sylvian gyrus |
Cuaya et al. [39] | Non-randomized trial | speech detection; distinguishing language (familiar/unfamiliar) | 18 dogs; age: 3–11 years; sex: 9 females, 9 males | BOLD; no anesthesia | secondary auditory cortex located in precruciate, suprasylvian, and ectosylvian gyri |
Boros et al. [40] | Randomized controlled trial | neural activity patterns for tracking statistical regularities in speech | 18 dogs; age: 2–12 years; sex: 11 females, 7 males | BOLD; no anesthesia | ectosylvian and Sylvian gyri, caudate nucleus, and thalamus |
Gábor et al. [41] | Randomized controlled trial | processing speech from their owners and a neutral speaker | 14 dogs; age: 1–12 years; sex: 8 females, 6 males | BOLD; no anesthesia | caudate nucleus and secondary auditory cortex located in caudal ectosylvian gyrus |
Boros et al. [42] | Non-randomized trial | voice identity; responses to novelty | 12 dogs; age: 1–10 years; sex: 5 females, 7 males | BOLD; no anesthesia | secondary auditory region cortex located in caudal ectosylvian gyrus |
Gábor et al. [43] | Randomized controlled trial | adaptation for spoken word processing | 12 dogs; age: 2–10 years; sex: 4 females, 8 males | BOLD; no anesthesia | temporal lobe, Sylvian sulci, and ectosylvian gyrus |
Prichard et al. [44] | Randomized controlled trial | dogs’ processing of human words | 12 dogs; age: 2–12 years; sex: 9 females, 3 males | BOLD; no anesthesia | parietotemporal cortex, left temporal cortex, amygdala, left caudate, and thalamus |
Bach et al. [35] | Randomized controlled trial | pitch processing in dogs | 10 dogs; age: mean ± SD 3.7 ± 2.3 years; sex: no data | BOLD; no anesthesia | caudal colliculi, medial geniculate nuclei, right superior olivary nucleus, lateral lemniscus, internal capsule, and temporal cortex |
Andics et al. [45] | Non-randomized trial | lexical processing | 19 dogs; age: no data; sex: no data | BOLD; no anesthesia | hemispheric bias, mid ectosylvian gyrus, and connectivity between auditory regions and caudate |
Andics et al. [4] | Non-randomized trial | sound processing in humans and dogs | 22 humans; 11 dogs; age: no data; sex: no data | BOLD; no anesthesia | dogs: perisylvian regions; humans: superior temporal sulcus and inferior frontal cortex |
Bach et al. [46] | Randomized controlled trial | sound processing in dogs | 10 dogs; age: mean ± SD 3.7 ± 2.3 years; sex: 10 males | BOLD; general anesthesia | medial geniculate nucleus, caudal colliculus, and temporal cortex |
Article | Study Type | Studied Issue | Participants | fMRI Technique | Research Conclusion: Main Areas of Activation |
---|---|---|---|---|---|
Prichard et al. [48] | Randomized controlled trial | how dogs decode odor mixtures | 18 dogs; age: no data; sex: 11 females, 7 males | BOLD; no anesthesia | caudate, amygdala, and olfactory bulbs, perirhinal cortex, and posterior cingulate |
Ramaihgari et al. [50] | Randomized controlled trial | effect of zinc nanoparticles on brain connectivity within the olfactory network | 8 dogs; age: 12–60 months; sex: no data | BOLD; no anesthesia | network one: olfactory bulb and driving to the pyriform lobe and entorhinal cortex; network two: between the frontal cortex, thalamus, caudate, amygdala, and hippocampus |
Jia et al. [8] | Randomized controlled trial | effect of zinc nanoparticles on olfactory processing in dogs | 14 dogs; age: 12–60 months; sex: no data | BOLD; no anesthesia/general anesthesia | conscious dogs: olfactory bulb and hippocampus; anesthetised dogs: olfactory bulb |
Berns et al. [49] | Randomized controlled trial | response to biological scents based on familiarity | 12 dogs; age: no data; sex: no data | BOLD; no anesthesia | olfactory bulb/peduncle and caudate |
Jia et al. [47] | Randomized controlled trial | investigating the olfactory system in conscious dogs | 6 dogs; age: 12–60 months; sex: 1 female, 5 males | BOLD; no anesthesia/general anesthesia | conscious dogs: frontal cortex; conscious and anesthetised dogs: frontal cortex olfactory bulb and piriform lobe |
Article | Study Type | Studied Issue | Participants | fMRI Technique | Research Conclusion: Main Areas of Activation |
---|---|---|---|---|---|
Guran et al. [53] | Non-randomized trial | somatosensory processing | 22 dogs; age: 1–8 years; sex: 9 females, 13 males | BOLD; no anesthesia | contralateral hemisphere, cingulate cortex, right cerebellum and vermis, and Sylvian gyrus |
Prichard et al. [54] | Randomized controlled trial | somatosensory processing and anticipated actions | 16 dogs; age: 2.8–16.8 years; sex: 9 females, 7 males | BOLD; no anesthesia | cruciate sulcus, regions dorsolaterally in the occipital lobe, and postcruciate gyrus |
Prichard et al. [51] | Randomized controlled trial | multi-stimuli associative learning | 19 dogs; age: no data; sex: 11 females, 8 males | BOLD; no anesthesia | caudate, amygdala, and parietotemporal cortex |
Cook et al. [52] | Randomized controlled trial | multi-stimuli response inhibition | 13 dogs; age: 3–10 years; sex: 7 females, 6 males | BOLD; no anesthesia | frontal brain regions |
Chang et al. [55] | Non-randomized trial | somatosensory: neural responses during acupuncture stimulation | 6 dogs; age: 1–2 years; sex: no data | BOLD; no anesthesia/local anesthesia | pre anesthesia: left somatic afferent area, right visual and auditory association area, and brainstem; post anesthesia: left olfactory peduncle and brainstem |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skierbiszewska, K.; Borowska, M.; Bonecka, J.; Turek, B.; Jasiński, T.; Domino, M. Functional Magnetic Resonance Imaging in Research on Dog Cognition: A Systematic Review. Appl. Sci. 2024, 14, 12028. https://doi.org/10.3390/app142412028
Skierbiszewska K, Borowska M, Bonecka J, Turek B, Jasiński T, Domino M. Functional Magnetic Resonance Imaging in Research on Dog Cognition: A Systematic Review. Applied Sciences. 2024; 14(24):12028. https://doi.org/10.3390/app142412028
Chicago/Turabian StyleSkierbiszewska, Katarzyna, Marta Borowska, Joanna Bonecka, Bernard Turek, Tomasz Jasiński, and Małgorzata Domino. 2024. "Functional Magnetic Resonance Imaging in Research on Dog Cognition: A Systematic Review" Applied Sciences 14, no. 24: 12028. https://doi.org/10.3390/app142412028
APA StyleSkierbiszewska, K., Borowska, M., Bonecka, J., Turek, B., Jasiński, T., & Domino, M. (2024). Functional Magnetic Resonance Imaging in Research on Dog Cognition: A Systematic Review. Applied Sciences, 14(24), 12028. https://doi.org/10.3390/app142412028