Projections of Climate Change Impact on Stream Temperature: A National-Scale Assessment for Poland
<p>Study location with SWAT sub-basins (<b>A</b>), stream temperature gauging stations (<b>B</b>), and mean seasonal air temperatures in summer (<b>C</b>) and winter (<b>D</b>).</p> "> Figure 2
<p>Country-averaged monthly changes in mean daily air temperature under RCP4.5 (blue) and RCP8.5 (orange). The intensity of each colour represents different horizons: light (baseline—ACT), medium (near future—NF), and dark (far future—FF).</p> "> Figure 3
<p>Goodness-of-fit measures derived upon validation: Kling–Gupta efficiency (KGE) (<b>A</b>), percent bias (PBIAS) (<b>B</b>), and coefficient of determination (R<sup>2</sup>) (<b>C</b>).</p> "> Figure 4
<p>Box plots showing the model performance expressed by Kling–Gupta efficiency (KGE), coefficient of determination (R2) (<b>A</b>), and percent bias (PBIAS) (<b>B</b>) values in 369 water quality monitoring points.</p> "> Figure 5
<p>Spatial distribution of multi-annual summer season mean stream temperature at the reach level for Representative Concentration Pathways (RCPs) 4.5 and 8.5 at baseline (ACT), in the near future (NF), and in the far future (FF).</p> "> Figure 6
<p>Spatial distribution of multi-annual winter season mean stream temperature at the reach level for Representative Concentration Pathways (RCPs) 4.5 and 8.5 at baseline (ACT), in the near future (NF), and in the far future (FF).</p> "> Figure 7
<p>Projections of the average daily air temperature during the summer period over multiple years for RCP4.5 (<b>A</b>) and RCP8.5 (<b>B</b>). The bands indicate extreme values (min and max) from nine climate models; the solid line represents the median. The green colour represents the historical period. The intensity of the blue and orange colours denotes the time horizon, where lighter shades indicate the near future, while darker shades indicate the far future.</p> "> Figure 8
<p>Projections of the average daily air temperature during the winter period over multiple years for RCP4.5 (<b>A</b>) and RCP8.5 (<b>B</b>). The bands indicate extreme values (min and max) from nine climate models; the solid line represents the median. The green colour represents the historical period. The intensity of the blue and orange colours denotes the time horizon, where lighter shades indicate the near future, while darker shades indicate the far future.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. SWAT Model
2.3. Stream Temperature Validation
2.4. Climate Change Scenarios
2.5. Analysis of Results
3. Results
3.1. Projected Changes in Air Temperature in Poland
3.2. Stream Temperature Validation Results
3.3. Projected Stream Temperature Changes
4. Discussion
4.1. Modelling of Climate Change Impact on Stream Temperature
4.2. Potential Consequences of Stream Temperature Increase for Freshwater Ecosystems
4.3. Modelling Limitations
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Knouft, J.H.; Ficklin, D.L. The Potential Impacts of Climate Change on Biodiversity in Flowing Freshwater Systems. Annu. Rev. Ecol. Evol. Syst. 2017, 48, 111–133. [Google Scholar] [CrossRef]
- Bonacina, L.; Fasano, F.; Mezzanotte, V.; Fornaroli, R. Effects of water temperature on freshwater macroinvertebrates: A systematic review. Biol. Rev. 2023, 98, 191–221. [Google Scholar] [CrossRef] [PubMed]
- Gillooly, J.F.; Brown, J.H.; West, G.B.; Savage, V.M.; Charnov, E.L. Effects of Size and Temperature on Metabolic Rate. Science 2001, 293, 2248–2251. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.; Berglund, I. The effect of temperature on the energetic growth efficiency of Arctic charr (Salvelinus alpinus L.) from four Swedish populations. J. Therm. Biol. 2005, 30, 29–36. [Google Scholar] [CrossRef]
- Siikavuopio, S.I.; Sæther, B.-S.; Johnsen, H.; Evensen, T.; Knudsen, R. Temperature preference of juvenile Arctic charr originating from different thermal environments. Aquat. Ecol. 2014, 48, 313–320. [Google Scholar] [CrossRef]
- Mugwanya, M.; Dawood, M.A.O.; Kimera, F.; Sewilam, H. Anthropogenic temperature fluctuations and their effect on aquaculture: A comprehensive review. Aquac. Fish. 2022, 7, 223–243. [Google Scholar] [CrossRef]
- Döll, P.; Zhang, J. Impact of climate change on freshwater ecosystems: A global-scale analysis of ecologically relevant river flow alterations. Hydrol. Earth Syst. Sci. 2010, 14, 783–799. [Google Scholar] [CrossRef]
- AghaKouchak, A.; Chiang, F.; Huning, L.S.; Love, C.A.; Mallakpour, I.; Mazdiyasni, O.; Moftakhari, H.; Papalexiou, S.M.; Ragno, E.; Sadegh, M. Climate Extremes and Compound Hazards in a Warming World. Annu. Rev. Earth Planet. Sci. 2020, 48, 519–548. [Google Scholar] [CrossRef]
- Pecl, G.T.; Araújo, M.B.; Bell, J.D.; Blanchard, J.; Bonebrake, T.C.; Chen, I.-C.; Clark, T.D.; Colwell, R.K.; Danielsen, F.; Evengård, B. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 2017, 355, eaai9214. [Google Scholar] [CrossRef]
- Humphries, P.; Baldwin, D.S. Drought and aquatic ecosystems: An introduction. Freshw. Biol. 2003, 48, 1141–1146. [Google Scholar] [CrossRef]
- Dugdale, S.J.; Hannah, D.M.; Malcolm, I.A. River temperature modelling: A review of process-based approaches and future directions. Earth-Sci. Rev. 2017, 175, 97–113. [Google Scholar] [CrossRef]
- Isaak, D.J.; Wenger, S.J.; Peterson, E.E.; Ver Hoef, J.M.; Nagel, D.E.; Luce, C.H.; Hostetler, S.W.; Dunham, J.B.; Roper, B.B.; Wollrab, S.P.; et al. The NorWeST Summer Stream Temperature Model and Scenarios for the Western U.S.: A Crowd-Sourced Database and New Geospatial Tools Foster a User Community and Predict Broad Climate Warming of Rivers and Streams. Water Resour. Res. 2017, 53, 9181–9205. [Google Scholar] [CrossRef]
- Ouellet, V.; St-Hilaire, A.; Dugdale, S.J.; Hannah, D.M.; Krause, S.; Proulx-Ouellet, S. River temperature research and practice: Recent challenges and emerging opportunities for managing thermal habitat conditions in stream ecosystems. Sci. Total Environ. 2020, 736, 139679. [Google Scholar] [CrossRef] [PubMed]
- Steel, E.A.; Beechie, T.J.; Torgersen, C.E.; Fullerton, A.H. Envisioning, Quantifying, and Managing Thermal Regimes on River Networks. BioScience 2017, 67, 506–522. [Google Scholar] [CrossRef]
- Haddeland, I.; Heinke, J.; Biemans, H.; Eisner, S.; Flörke, M.; Hanasaki, N.; Konzmann, M.; Ludwig, F.; Masaki, Y.; Schewe, J. Global water resources affected by human interventions and climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3251–3256. [Google Scholar] [CrossRef]
- van Vliet, M.T.H.; Franssen, W.H.P.; Yearsley, J.R.; Ludwig, F.; Haddeland, I.; Lettenmaier, D.P.; Kabat, P. Global river discharge and water temperature under climate change. Glob. Environ. Chang. 2013, 23, 450–464. [Google Scholar] [CrossRef]
- Hari, R.E.; Livingstone, D.M.; Siber, R.; Burkhardt-Holm, P.; Guttinger, H. Consequences of climatic change for water temperature and brown trout populations in Alpine rivers and streams. Glob. Chang. Biol. 2006, 12, 10–26. [Google Scholar] [CrossRef]
- Mantua, N.; Tohver, I.; Hamlet, A. Climate change impacts on streamflow extremes and summertime stream temperature and their possible consequences for freshwater salmon habitat in Washington State. Clim. Chang. 2010, 102, 187–223. [Google Scholar] [CrossRef]
- Morales-Marín, L.A.; Rokaya, P.; Sanyal, P.R.; Sereda, J.; Lindenschmidt, K.E. Changes in streamflow and water temperature affect fish habitat in the Athabasca River basin in the context of climate change. Ecol. Model. 2019, 407, 108718. [Google Scholar] [CrossRef]
- Chabot, D.; Guénette, S. Physiology of water breathers: Effects of temperature, dissolved oxygen, salinity and pH. In Climate Change Impacts, Vulnerabilities and Opportunities Analysis of the Marine Atlantic Basin; Fisheries and Oceans Canada: Ottawa, ON, Canada, 2013; pp. 16–44. [Google Scholar]
- Bellard, C.; Bertelsmeier, C.; Leadley, P.; Thuiller, W.; Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 2012, 15, 365–377. [Google Scholar] [CrossRef]
- Du, X.; Shrestha, N.K.; Wang, J. Assessing climate change impacts on stream temperature in the Athabasca River Basin using SWAT equilibrium temperature model and its potential impacts on stream ecosystem. Sci. Total Environ. 2019, 650, 1872–1881. [Google Scholar] [CrossRef] [PubMed]
- Smesrud, J.K.; Boyd, M.S.; Cuenca, R.H.; Eisner, S.L. A mechanistic Energy balance model for predicting water temperature in surface flow wetlands. Ecol. Eng. 2014, 67, 11–24. [Google Scholar] [CrossRef]
- Bustillo, V.; Moatar, F.; Ducharne, A.; Thiéry, D.; Poirel, A. A multimodel comparison for assessing water temperatures under changing climate conditions via the equilibrium temperature concept: Case study of the Middle Loire River, France. Hydrol. Process. 2014, 28, 1507–1524. [Google Scholar] [CrossRef]
- Van Vliet, M.; Ludwig, F.; Zwolsman, J.; Weedon, G.; Kabat, P. Global river temperatures and sensitivity to atmospheric warming and changes in river flow. Water Resour. Res. 2011, 47, W02544. [Google Scholar] [CrossRef]
- Chambers, B.M.; Pradhanang, S.M.; Gold, A.J. Simulating Climate Change Induced Thermal Stress in Coldwater Fish Habitat Using SWAT Model. Water 2017, 9, 732. [Google Scholar] [CrossRef]
- Boyd, M.; Kasper, B. Analytical Methods for Dynamic Open Channel Heat and Mass Transfer: Methodology for Heat Source Model Version 7.0; Watershed Sciences Inc.: Portland, OR, USA, 2003; Volume 7. Available online: https://www.oregon.gov/deq/FilterDocs/heatsourcemanual.pdf (accessed on 10 March 2024).
- Ficklin, D.L.; Barnhart, B.L.; Knouft, J.H.; Stewart, I.T.; Maurer, E.P.; Letsinger, S.L.; Whittaker, G.W. Climate change and stream temperature projections in the Columbia River basin: Habitat implications of spatial variation in hydrologic drivers. Hydrol. Earth Syst. Sci. 2014, 18, 4897–4912. [Google Scholar] [CrossRef]
- Piotrowski, A.P.; Osuch, M.; Napiorkowski, J.J. Influence of the choice of stream temperature model on the projections of water temperature in rivers. J. Hydrol. 2021, 601, 126629. [Google Scholar] [CrossRef]
- Pińskwar, I.; Choryński, A. Projections of precipitation changes in Poland. In Climate Change in Poland: Past, Present, Future; Springer: Cham, Switzerland, 2021; pp. 529–544. [Google Scholar]
- Marcinkowski, P.; Kiczko, A.; Kardel, I. Large-scale assessment of spatial variability in stream power distribution: An indicator of channel erosion and deposition potential. J. Hydrol. 2022, 605, 127319. [Google Scholar] [CrossRef]
- Sachindra, D.A.; Nowosad, M. Characteristics of air temperature in Poland from 1994 to 2019 based on hourly data. Int. J. Clim. 2021, 41, 4359–4385. [Google Scholar] [CrossRef]
- Tomczyk, A.M.; Piniewski, M.; Eini, M.R.; Bednorz, E. Projections of changes in maximum air temperature and hot days in Poland. Int. J. Clim. 2022, 42, 5242–5254. [Google Scholar] [CrossRef]
- Stefan, H.G.; Preud’homme, E.B. Stream temperature estimation from air temperature 1. JAWRA J. Am. Water Resour. Assoc. 1993, 29, 27–45. [Google Scholar] [CrossRef]
- Marcinkowski, P.; Kardel, I.; Placzkowska, E.; Gielczewski, M.; Osuch, P.; Okruszko, T.; Venegas-Cordero, N.; Ignar, S.; Piniewski, M. High-resolution simulated water balance and streamflow data set for 1951–2020 for the territory of Poland. Geosci. Data J. 2023, 10, 195–207. [Google Scholar] [CrossRef]
- Marcinkowski, P.; Piniewski, M. Future changes in crop yield over Poland driven by climate change, increasing atmospheric CO2 and nitrogen stress. Agric. Syst. 2024, 213, 103813. [Google Scholar] [CrossRef]
- Piniewski, M.; Marcinkowski, P.; Kardel, I.; Gielczewski, M.; Izydorczyk, K.; Fratczak, W. Spatial Quantification of Non-Point Source Pollution in a Meso-Scale Catchment for an Assessment of Buffer Zones Efficiency. Water 2015, 7, 1889–1920. [Google Scholar] [CrossRef]
- Piniewski, M.; Szcześniak, M.; Kardel, I.; Chattopadhyay, S.; Berezowski, T. G2DC-PL+: A gridded 2 km daily climate dataset for the union of the Polish territory and the Vistula and Odra basins. Earth Syst. Sci. Data 2021, 13, 1273–1288. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Ford, J.D.; Keskitalo, E.; Smith, T.; Pearce, T.; Berrang-Ford, L.; Duerden, F.; Smit, B. Case study and analogue methodologies in climate change vulnerability research. Wiley Interdiscip. Rev. Clim. Chang. 2010, 1, 374–392. [Google Scholar] [CrossRef]
- Fowler, H.J.; Blenkinsop, S.; Tebaldi, C. Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol. A J. R. Meteorol. Soc. 2007, 27, 1547–1578. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef]
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Chang. 2013, 14, 563–578. [Google Scholar] [CrossRef]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Marcinkowski, P.; Piniewski, M.; Jefimow, M. Assessment of projected climate change impact on agro-climatic indicators in Poland. Int. J. Clim. 2023, 43, 6003–6019. [Google Scholar] [CrossRef]
- Enayati, M.; Bozorg-Haddad, O.; Bazrafshan, J.; Hejabi, S.; Chu, X. Bias correction capabilities of quantile mapping methods for rainfall and temperature variables. J. Water Clim. Chang. 2021, 12, 401–419. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin and Co. Ltd.: London, UK, 1948. [Google Scholar]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Hilderbrand, R.H.; Kashiwagi, M.T.; Prochaska, A.P. Regional and Local Scale Modeling of Stream Temperatures and Spatio-Temporal Variation in Thermal Sensitivities. Environ. Manag. 2014, 54, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Morid, R.; Shimatani, Y.; Sato, T. Impact assessment of climate change on environmental flow component and water temperature—Kikuchi River. J. Ecohydraulics 2019, 4, 88–105. [Google Scholar] [CrossRef]
- Mustafa, M.; Barnhart, B.; Babbar-Sebens, M.; Ficklin, D. Modeling Landscape Change Effects on Stream Temperature Using the Soil and Water Assessment Tool. Water 2018, 10, 1143. [Google Scholar] [CrossRef]
- Rajesh, M.; Rehana, S. Impact of climate change on river water temperature and dissolved oxygen: Indian riverine thermal regimes. Sci. Rep. 2022, 12, 9222. [Google Scholar] [CrossRef]
- Punzet, M.; Voß, F.; Voß, A.; Kynast, E.; Bärlund, I. A Global Approach to Assess the Potential Impact of Climate Change on Stream Water Temperatures and Related In-Stream First-Order Decay Rates. J. Hydrometeorol. 2012, 13, 1052–1065. [Google Scholar] [CrossRef]
- Lavender, E.; Fox, C.J.; Burrows, M.T. Modelling the impacts of climate change on thermal habitat suitability for shallow-water marine fish at a global scale. PLoS ONE 2021, 16, e0258184. [Google Scholar] [CrossRef]
- Pankhurst, N.W.; Munday, P.L. Effects of climate change on fish reproduction and early life history stages. Mar. Freshw. Res. 2011, 62, 1015–1026. [Google Scholar] [CrossRef]
- Kwak, J.; St-Hilaire, A.; Chebana, F.; Kim, G. Summer Season Water Temperature Modeling under the Climate Change: Case Study for Fourchue River, Quebec, Canada. Water 2017, 9, 346. [Google Scholar] [CrossRef]
- Rahel, F.J.; Olden, J.D. Assessing the Effects of Climate Change on Aquatic Invasive Species. Conserv. Biol. 2008, 22, 521–533. [Google Scholar] [CrossRef] [PubMed]
- Pérez, J.; Correa-Araneda, F.; López-Rojo, N.; Basaguren, A.; Boyero, L. Extreme temperature events alter stream ecosystem functioning. Ecol. Indic. 2021, 121, 106984. [Google Scholar] [CrossRef]
- Null, S.E.; Mouzon, N.R.; Elmore, L.R. Dissolved oxygen, stream temperature, and fish habitat response to environmental water purchases. J. Environ. Manag. 2017, 197, 559–570. [Google Scholar] [CrossRef]
- Free, G.; Van de Bund, W.; Gawlik, B.; Van Wijk, L.; Wood, M.; Guagnini, E.; Koutelos, K.; Annunziato, A.; Grizzetti, B.; Vigiak, O.; et al. An EU Analysis of the Ecological Disaster in the Oder River of 2022—Lessons Learned and Research-Based Recommendations to Avoid Future Ecological Damage in EU Rivers, a Joint Analysis from DG ENV, JRC and the EEA; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar] [CrossRef]
- Ficklin, D.L.; Luo, Y.; Stewart, I.T.; Maurer, E.P. Development and application of a hydroclimatological stream temperature model within the Soil and Water Assessment Tool. Water Resour. Res. 2012, 48, W01511. [Google Scholar] [CrossRef]
- Noa-Yarasca, E.; Babbar-Sebens, M.; Jordan, C. An improved model of shade-affected stream temperature in Soil & Water Assessment Tool. Hydrol. Earth Syst. Sci. 2023, 27, 739–759. [Google Scholar] [CrossRef]
Model Number | Institutions | Global Model | Regional Model | RCM Version | Model Run Scenario |
---|---|---|---|---|---|
CM1 | CNRM, CERFACS | CNRM-CM5 | CNRM-ALADIN63 | v2 | r1i1p1 |
CM2 | DMI | ICHEC-EC-EARTH | DMI-HIRHAM5 | v2 | r3i1p1 |
CM3 | KNMI | ICHEC-EC-EARTH | KNMI-RACMO22E | v1 | r12i1p1 |
CM4 | KNMI | ICHEC-EC-EARTH | KNMI-RACMO22E | v1 | r1i1p1 |
CM5 | SMHI | ICHEC-EC-EARTH | SMHI-RCA4 | v1 | r12i1p1 |
CM6 | SMHI | MPI-M-MPI-ESM-LR | SMHI- RCA4 | v1a | r1i1p1 |
Temperature Characteristic | Season | RCP | ACT | NF | FF | FF-ACT Absolute Change | NF-ACT Absolute Change |
---|---|---|---|---|---|---|---|
20th percentile | summer | 4.5 | 13.2 | 13.7 | 14.2 | 1.0 | 0.6 |
20th percentile | summer | 8.5 | 13.2 | 14.2 | 15.8 | 2.6 | 1.0 |
80th percentile | summer | 4.5 | 19.0 | 19.4 | 19.9 | 0.9 | 0.4 |
80th percentile | summer | 8.5 | 19.0 | 19.8 | 21.4 | 2.4 | 0.9 |
20th percentile | winter | 4.5 | 3.9 | 4.5 | 5.6 | 1.7 | 0.7 |
20th percentile | winter | 8.5 | 3.9 | 5.2 | 7.0 | 3.1 | 1.3 |
80th percentile | winter | 4.5 | 10.0 | 10.4 | 10.9 | 1.0 | 0.5 |
80th percentile | winter | 8.5 | 10.0 | 10.8 | 12.5 | 2.5 | 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcinkowski, P. Projections of Climate Change Impact on Stream Temperature: A National-Scale Assessment for Poland. Appl. Sci. 2024, 14, 10900. https://doi.org/10.3390/app142310900
Marcinkowski P. Projections of Climate Change Impact on Stream Temperature: A National-Scale Assessment for Poland. Applied Sciences. 2024; 14(23):10900. https://doi.org/10.3390/app142310900
Chicago/Turabian StyleMarcinkowski, Paweł. 2024. "Projections of Climate Change Impact on Stream Temperature: A National-Scale Assessment for Poland" Applied Sciences 14, no. 23: 10900. https://doi.org/10.3390/app142310900
APA StyleMarcinkowski, P. (2024). Projections of Climate Change Impact on Stream Temperature: A National-Scale Assessment for Poland. Applied Sciences, 14(23), 10900. https://doi.org/10.3390/app142310900