Single-Handed Gesture Recognition with RGB Camera for Drone Motion Control
<p>Overview of the HGR pipeline. Hand keypoints are estimated and input into two HGR models, which detect drone motion commands from hand gestures.</p> "> Figure 2
<p>An illustration of the manipulation of drone movement with a combination of hand gestures. When a user presents the stop gesture, no motion command is transmitted to the drone. Meanwhile, when presenting the neutral gesture, the drone movement is controlled by a combination of hand gestures.</p> "> Figure 3
<p>Hand gesture examples for manipulation of roll and throttle. From the neutral position, the commands for both throttle and roll movements consist of the thumb, middle, and pinky fingers. The stop sign is excluded from this illustration.</p> "> Figure 4
<p>An illustration demonstrating the manipulation of the yaw axis of the drone. When the hand rotates counterclockwise, the positive rotation angle causes the drone to turn left along the yaw axis. Conversely, the drone turns right if the rotation angle is negative.</p> "> Figure 5
<p>Overview of the MLP architecture for the classification of the 21-keypoint sequence. The network comprises three dense blocks, one FC layer, and a softmax activation function. The input to the network consists of preprocessed, normalized relative keypoints; see <a href="#sec3dot1-applsci-14-10230" class="html-sec">Section 3.1</a>.</p> "> Figure 6
<p>Examples of motion-based hand gesture recognition. (<b>a</b>–<b>c</b>) Pitch-related gestures: forward, neutral, and backward. (<b>d</b>–<b>f</b>) Yaw-related gestures: yaw_left, neutral, and yaw_right.</p> "> Figure 7
<p>The confusion matrices of motion-based hand gesture recognition. (<b>a</b>) Pitch-related gestures. (<b>b</b>) Yaw-related gestures.</p> "> Figure 8
<p>The confusion matrix of the posture-based hand gesture recognition model.</p> "> Figure 9
<p>An illustrative scenario from the drone simulator demonstrates the application of the proposed hand gesture vocabulary in controlling a drone flight. In this example, the drone executes commands for ‘pitch forward’, ‘roll left’, and ‘yaw left’ simultaneously.</p> ">
Abstract
:1. Introduction
2. Related Works
3. Methodology
3.1. Hand Tracking for Hand Pose Estimation
3.2. Hand Gesture Vocabulary for Drone Control
3.3. Hand Gesture Recognition (HGR)
3.3.1. Hand Distance Estimation Module
3.3.2. Hand Rotation Estimation Module
3.3.3. Posture-Based Gesture Classification Module
4. Experiments and Results
4.1. Motion-Based Gesture Recognition
4.2. Posture-Based Gesture Recognition
4.2.1. Dataset Acquisition
4.2.2. Model Implementation and Results
4.3. Drone Flight Performed in a Simulated Environment
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, C.; Kim, C.; Kim, H.; Kwak, H.; Lee, W.; Im, C.H. Facial electromyogram-based facial gesture recognition for hands-free control of an AR/VR environment: Optimal gesture set selection and validation of feasibility as an assistive technology. Biomed. Eng. Lett. 2023, 13, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.L.; Hou, W.J. Gaze-Based Interaction Intention Recognition in Virtual Reality. Electronics 2022, 11, 1647. [Google Scholar] [CrossRef]
- Kwon, J.; Nam, H.; Chae, Y.; Lee, S.; Kim, I.Y.; Im, C.H. Novel three-axis accelerometer-based silent speech interface using deep neural network. Eng. Appl. Artif. Intell. 2023, 120, 105909. [Google Scholar] [CrossRef]
- Rinalduzzi, M.; De Angelis, A.; Santoni, F.; Buchicchio, E.; Moschitta, A.; Carbone, P.; Bellitti, P.; Serpelloni, M. Gesture recognition of sign language alphabet using a magnetic positioning system. Appl. Sci. 2021, 11, 5594. [Google Scholar] [CrossRef]
- Qi, W.; Ovur, S.E.; Li, Z.; Marzullo, A.; Song, R. Multi-sensor guided hand gesture recognition for a teleoperated robot using a recurrent neural network. IEEE Robot. Autom. Lett. 2021, 6, 6039–6045. [Google Scholar] [CrossRef]
- Gao, Q.; Liu, J.; Ju, Z. Hand gesture recognition using multimodal data fusion and multiscale parallel convolutional neural network for human–robot interaction. Expert Syst. 2021, 38, e12490. [Google Scholar] [CrossRef]
- Ilyina, I.A.; Eltikova, E.A.; Uvarova, K.A.; Chelysheva, S.D. Metaverse-death to offline communication or empowerment of interaction? In Proceedings of the 2022 Communication Strategies in Digital Society Seminar (ComSDS), Saint Petersburg, Russia, 13 April 2022; pp. 117–119. [Google Scholar]
- Lu, C.; Zhang, H.; Pei, Y.; Xie, L.; Yan, Y.; Yin, E.; Jin, J. Online Hand Gesture Detection and Recognition for UAV Motion Planning. Machines 2023, 11, 210. [Google Scholar] [CrossRef]
- Liu, C.; Szirányi, T. Real-time human detection and gesture recognition for on-board UAV rescue. Sensors 2021, 21, 2180. [Google Scholar] [CrossRef] [PubMed]
- Oudah, M.; Al-Naji, A.; Chahl, J. Hand gesture recognition based on computer vision: A review of techniques. J. Imaging 2020, 6, 73. [Google Scholar] [CrossRef]
- Premaratne, P.; Premaratne, P. Historical development of hand gesture recognition. In Human Computer Interaction Using Hand Gestures; Springer: Singapore, 2014; pp. 5–29. [Google Scholar]
- Ahuja, M.K.; Singh, A. Static vision based Hand Gesture recognition using principal component analysis. In Proceedings of the 2015 IEEE 3rd International Conference on MOOCs, Innovation and Technology in Education (MITE), Amritsar, India, 1–2 October 2015; pp. 402–406. [Google Scholar]
- Kramer, R.K.; Majidi, C.; Sahai, R.; Wood, R.J. Soft curvature sensors for joint angle proprioception. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 1919–1926. [Google Scholar]
- Jesperson, E.; Neuman, M.R. A thin film strain gauge angular displacement sensor for measuring finger joint angles. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, New Orleans, LA, USA, 4–7 November 1988; p. 807. [Google Scholar]
- Shrote, S.; Deshpande, M.; Deshmukh, P.; Mathapati, S. Assistive Translator for Deaf & Dumb People. Int. J. Electron. Commun. Comput. Eng. 2014, 5, 86–89. [Google Scholar]
- Gupta, H.P.; Chudgar, H.S.; Mukherjee, S.; Dutta, T.; Sharma, K. A continuous hand gestures recognition technique for human-machine interaction using accelerometer and gyroscope sensors. IEEE Sens. J. 2016, 16, 6425–6432. [Google Scholar] [CrossRef]
- Alashhab, S.; Gallego, A.J.; Lozano, M.Á. Efficient gesture recognition for the assistance of visually impaired people using multi-head neural networks. Eng. Appl. Artif. Intell. 2022, 114, 105188. [Google Scholar] [CrossRef]
- Rajesh, R.J.; Nagarjunan, D.; Arunachalam, R.; Aarthi, R. Distance transform based hand gestures recognition for PowerPoint presentation navigation. Adv. Comput. 2012, 3, 41. [Google Scholar]
- Van den Bergh, M.; Carton, D.; De Nijs, R.; Mitsou, N.; Landsiedel, C.; Kuehnlenz, K.; Wollherr, D.; Van Gool, L.; Buss, M. Real-time 3D hand gesture interaction with a robot for understanding directions from humans. In Proceedings of the 2011 Ro-Man, Atlanta, GA, USA, 31 July–3 August 2011; pp. 357–362. [Google Scholar]
- Wachs, J.P.; Kölsch, M.; Stern, H.; Edan, Y. Vision-based hand-gesture applications. Commun. ACM 2011, 54, 60–71. [Google Scholar] [CrossRef]
- Zhang, A.; Li, Q.; Li, Z.; Li, J. Multimodal Fusion Convolutional Neural Network Based on sEMG and Accelerometer Signals for Inter-Subject Upper Limb Movement Classification. IEEE Sens. J. 2023, 23, 12334–12345. [Google Scholar] [CrossRef]
- Bello, H.; Suh, S.; Geißler, D.; Ray, L.S.S.; Zhou, B.; Lukowicz, P. CaptAinGlove: Capacitive and inertial fusion-based glove for real-time on edge hand gesture recognition for drone control. In Proceedings of the Adjunct Proceedings of the 2023 ACM International Joint Conference on Pervasive and Ubiquitous Computing & the 2023 ACM International Symposium on Wearable Computing, Cancun, Mexico, 8–12 October 2023; pp. 165–169. [Google Scholar]
- Konstantoudakis, K.; Albanis, G.; Christakis, E.; Zioulis, N.; Dimou, A.; Zarpalas, D.; Daras, P. Single-Handed Gesture UAV Control for First Responders—A Usability and Performance User Study. In Proceedings of the 17th International Conference on Information Systems for Crisis Response and Management (ISCRAM 2020), Blacksburg, VA, USA, 24–27 May 2020; pp. 24–27. [Google Scholar]
- Khaksar, S.; Checker, L.; Borazjan, B.; Murray, I. Design and Evaluation of an Alternative Control for a Quad-Rotor Drone Using Hand-Gesture Recognition. Sensors 2023, 23, 5462. [Google Scholar] [CrossRef]
- Helen, S.; Jenny, P.; Yvonne, R. Interaction Design: Beyond Human-Computer Interaction; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Glonek, G.; Pietruszka, M. Natural user interfaces (NUI). J. Appl. Comput. Sci. 2012, 20, 27–45. [Google Scholar]
- Herdel, V.; Yamin, L.J.; Cauchard, J.R. Above and beyond: A scoping review of domains and applications for human-drone interaction. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, New Orleans, LA, USA, 29 April–5 May 2022; pp. 1–22. [Google Scholar]
- Al Farid, F.; Hashim, N.; Abdullah, J.; Bhuiyan, M.R.; Shahida Mohd Isa, W.N.; Uddin, J.; Haque, M.A.; Husen, M.N. A structured and methodological review on vision-based hand gesture recognition system. J. Imaging 2022, 8, 153. [Google Scholar] [CrossRef]
- Zhang, F.; Bazarevsky, V.; Vakunov, A.; Tkachenka, A.; Sung, G.; Chang, C.L.; Grundmann, M. Mediapipe Hands: On-Device Real-Time Hand Tracking. 2020. Available online: https://arxiv.org/abs/2006.10214 (accessed on 15 June 2023).
- Leap Motion Developer. 2020. Available online: https://leap2.ultraleap.com/ (accessed on 31 March 2024).
- Yoo, J.H.; Kim, D.H.; Park, S.K. Categorical object recognition method robust to scale changes using depth data from an RGB-D sensor. In Proceedings of the 2015 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 9–12 January 2015; pp. 98–99. [Google Scholar]
- MediaPipe Iris: Real-Time Iris Tracking & Depth Estimation. 2020. Available online: https://ai.googleblog.com/2020/08/mediapipe-iris-real-time-iris-tracking.html (accessed on 15 June 2023).
- Taud, H.; Mas, J. Multilayer perceptron (MLP). In Geomatic Approaches for Modeling Land Change Scenarios; Springer: Cham, Switzerland, 2018; pp. 451–455. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Agarap, A.F. Deep Learning Using Rectified Linear Units (Relu). 2018. Available online: https://arxiv.org/abs/1803.08375 (accessed on 15 June 2023).
- Bridle, J. Training stochastic model recognition algorithms as networks can lead to maximum mutual information estimation of parameters. In Proceedings of the Advances in Neural Information Processing Systems, Denver, CO, USA, 27–30 November 1989; pp. 211–217. [Google Scholar]
- Yang, L.; Shami, A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 2020, 415, 295–316. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- David, R.; Duke, J.; Jain, A.; Janapa Reddi, V.; Jeffries, N.; Li, J.; Kreeger, N.; Nappier, I.; Natraj, M.; Wang, T.; et al. Tensorflow lite micro: Embedded machine learning for tinyml systems. Proc. Mach. Learn. Syst. 2021, 3, 800–811. [Google Scholar]
- Tello UAV Simulator. 2022. Available online: https://github.com/PYBrulin/UAV-Tello-Simulator (accessed on 31 March 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, G.; Kwak, H.; Kim, D.H. Single-Handed Gesture Recognition with RGB Camera for Drone Motion Control. Appl. Sci. 2024, 14, 10230. https://doi.org/10.3390/app142210230
Yun G, Kwak H, Kim DH. Single-Handed Gesture Recognition with RGB Camera for Drone Motion Control. Applied Sciences. 2024; 14(22):10230. https://doi.org/10.3390/app142210230
Chicago/Turabian StyleYun, Guhnoo, Hwykuen Kwak, and Dong Hwan Kim. 2024. "Single-Handed Gesture Recognition with RGB Camera for Drone Motion Control" Applied Sciences 14, no. 22: 10230. https://doi.org/10.3390/app142210230
APA StyleYun, G., Kwak, H., & Kim, D. H. (2024). Single-Handed Gesture Recognition with RGB Camera for Drone Motion Control. Applied Sciences, 14(22), 10230. https://doi.org/10.3390/app142210230