A Tunable and Switchable Multi-Wavelength Erbium-Doped Fiber Ring Laser Enabled by Adjusting the Spectral Fringe Visibility of a Mach-Zehnder Fiber Interferometer
<p>Experimental erbium-doped fiber ring laser cavity setup for tunable and multi-wavelength emission.</p> "> Figure 2
<p>(<b>a</b>) MZFI structure formed with a pair of tapered sections fabricated on SMF-28, (<b>b</b>) displacement mechanism to used induce curvature in the MZFI.</p> "> Figure 3
<p>ASE spectrum as the light source from the EDF (black line) and the modified spectrum after passing through the MZFI (red line). The laser oscillation at 1563.07 nm is shown by the blue line.</p> "> Figure 4
<p>(<b>a</b>) The progressive modification of ASE spectrum with increasing curvature applied to the MZFI, (<b>b</b>) an inset in the range of 1541 to 1560 nm demonstrates an FSR of 5 nm.</p> "> Figure 5
<p>The wavelength shifts as a function of curvature (0 m<sup>−1</sup> to 2.93 m<sup>−1</sup>) and the variation of the measured fringe visibility.</p> "> Figure 6
<p>Tunable single laser wavelength between 1563.705 nm to 1558.05 nm for the curvatures from 0 m<sup>−1</sup> to 2.79 m<sup>−1</sup>.</p> "> Figure 7
<p>(<b>a</b>). Switchable dual-wavelength emissions generated at curvatures of 1.53 m<sup>−1</sup> with 1559.07 nm and 1563.66 nm, (<b>b</b>) 2.33 m<sup>−1</sup> with 1543.21 nm and 1549.287 nm, (<b>c</b>) 2.5 m<sup>−1</sup> with 1554.61 nm and 1559.667 nm, (<b>d</b>) 2.75 m<sup>−1</sup> with 1556.8 nm and 1561.877 nm.</p> "> Figure 8
<p>(<b>a</b>) Single-wavelength oscillation at 1562.22 nm, (<b>b</b>) dual-wavelength oscillation (1562.22–1562.875 nm), (<b>c</b>) triple-wavelength oscillation (1560.175–1562.22–1562.88 nm).</p> "> Figure 9
<p>(<b>a</b>) Quadruple-wavelength emission (1560.85–1561.51–1562.26–1562.86 nm), (<b>b</b>) quintuple-wavelength emission (1559.59–1560.91–1561.58–1562.93–1563.61 nm), and (<b>c</b>) sextuple-wavelength emission (1560.25–1560.97–1561.63–1562.29–1562.98–1563.64 nm).</p> "> Figure 10
<p>(<b>a</b>) Spectral distribution stability of a single laser oscillation at 1562.22 nm, with high-intensity uniformity across the spectrum, (<b>b</b>) a maximum wavelength shift of 0.01 nm, and (<b>c</b>) output power fluctuations of less than 0.12 dB.</p> "> Figure 11
<p>(<b>a</b>). Stability of the dual-wavelength laser oscillation at 1562.22–1562.785 nm with uniform intensity, (<b>b</b>) a maximum wavelength shift of 0.07 nm, and (<b>c</b>) output power fluctuations of less than 0.25 dB.</p> "> Figure 12
<p>(<b>a</b>) Power stability of the triple-wavelength laser system, (<b>b</b>) maximum wavelength shift of 0.07 nm, and (<b>c</b>) maximum amplitude fluctuation of 0.51dB for the 1562.88 nm line.</p> "> Figure 13
<p>(<b>a</b>) Power stability of the quadruple-wavelength laser system, (<b>b</b>) maximum wavelength shift of 0.22 nm, and (<b>c</b>) maximum amplitude fluctuation of 3 dB for the 1562.83 nm line.</p> "> Figure 14
<p>(<b>a</b>) Power stability of the quintuple-wavelength laser system, (<b>b</b>) maximum wavelength shift of 0.07 nm, and (<b>c</b>) maximum amplitude fluctuation of 1.7 dB for the 1561.58 nm line.</p> "> Figure 15
<p>(<b>a</b>) Power stability of the sextuple-wavelength laser system, (<b>b</b>) negligible wavelength shift, and (<b>c</b>) maximum amplitude fluctuation of 2.71 dB for the 1562.98 nm line.</p> ">
Abstract
:1. Introduction
2. Experimental Setup
3. MZFI Performance
4. Tunable and Switchable Performance
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhardwaj, V.; Kishor, K.; Sharma, A.C. Tapered optical fiber geometries and sensing applications based on Mach Zehnder Interferometer: A review. Opt. Fiber Technol. 2020, 58, 102302. [Google Scholar] [CrossRef]
- Wang, Q.; Wei, W.; Guo, M.; Zhao, Y. Optimization of cascaded fiber tapered Mach-Zehnder interferometer and refractive index sensing technology. Sens. Actuators B Chem. 2016, 222, 159–165. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Bao, X. C- and L-band tunable fiber ring laser using a two-taper Mach–Zehnder interferometer filter. Opt. Lett. 2010, 35, 3354. [Google Scholar] [CrossRef] [PubMed]
- Yin, G.; Wang, X.; Bao, X. Effect of beam waists on performance of the tunable fiber laser based on in-line two-taper Mach-Zehnder interferometer filter. Appl. Opt. 2011, 50, 5714–5720. [Google Scholar] [CrossRef]
- Selvas-Aguilar, R.; Martínez-Rios, A.; Anzueto-Sánchez, G.; Castillo-Guzmán, A.; Hernández-Luna, M.C.; Robledo-Fava, R. Tuning of an erbium-doped fiber ring laser based on heating a tapered fiber filter. Opt. Fiber Technol. 2014, 20, 391–394. [Google Scholar] [CrossRef]
- Zhang, W.; Ying, Z.; Yuan, S.; Tong, Z. A fiber laser sensor for liquid level and temperature based on two taper structures and fiber Bragg grating. Opt. Commun. 2015, 342, 243–246. [Google Scholar] [CrossRef]
- Martinez-Rios, A.; Anzueto-Sanchez, G.; Monzon-Hernandez, D.; Salceda-Delgado, G.; Castrellon-Uribe, J. Multi-wavelength switching of an EDFL by using a fixed fiber-comb filter and a broadband tunable S-bent fiber filter. Opt. Laser Technol. 2014, 58, 197–201. [Google Scholar] [CrossRef]
- Ali, M.I.M.; Ibrahim, S.A.; Abu Bakar, M.H.; Noor, A.S.M.; Anas, S.B.A.; Zamzuri, A.K.; Mahdi, M.A. Tapered-EDF-Based Mach-Zehnder Interferometer for Dual-Wavelength Fiber Laser. IEEE Photonics J. 2014, 6, 1–9. [Google Scholar] [CrossRef]
- Gu, J.; Yang, Y.; Liu, M.; Zhang, J.; Wang, X.; Yuan, Y.; Yao, Y. A switchable and stable single-longitudinal-mode, dual-wavelength erbium-doped fiber laser assisted by Rayleigh backscattering in tapered fiber. J. Appl. Phys. 2015, 118, 103107. [Google Scholar] [CrossRef]
- Tan, S.; Yan, F.; Li, Q.; Peng, W.; Liu, S.; Feng, T.; Chang, F. A stable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser with superimposed FBG and an in-line two-taper MZI filter. Laser Phys. 2013, 23, 3–8. [Google Scholar] [CrossRef]
- Nunez-Gomez, R.E.; Anzueto-Sanchez, G.; Martinez-Rios, A.; Basurto-Pensado, M.A.; Castrellon-Uribe, J.; Camas-Anzueto, J. Combining comb-filters based on tapered fibers for selective lasing performance in erbium-doped fiber lasers. Laser Phys. 2016, 26, 125101. [Google Scholar] [CrossRef]
- Nuñez-Gomez, R.E.; Anzueto-Sanchez, G.; Martinez-Rios, A.; Basurto-Pensado, M.A.; Castrellon-Uribe, J.; Selvas-Aguilar, R.; Camas-Anzueto, J.; Duran-Ramirez, V.M. Multi-wavelength switching of an erbium-doped fiber ring laser based on the cross-sensitivities’ features of tapered fiber filters. Opt. Rev. 2015, 22, 526–531. [Google Scholar] [CrossRef]
- Ahmad, H.; Salim, M.A.; Azzuhri, S.R.; Zulkifli, M.Z.; Harun, S.W. Dual wavelength single longitudinal mode ytterbium-doped fiber laser using a dual-tapered Mach-Zehnder interferometer. J. Eur. Opt. Soc. 2015, 10, 15013. [Google Scholar] [CrossRef]
- Ahmad, H.; Salim, M.A.M.; Azzuhri, S.R.; Jaddoa, M.F.; Harun, S.W. Tunable dual-wavelength ytterbium-doped fiber laser using a strain technique on microfiber Mach–Zehnder interferometer. Appl. Opt. 2016, 55, 778. [Google Scholar] [CrossRef] [PubMed]
- Yan, N.; Han, X.; Chang, P.; Huang, L.; Gao, F.; Yu, X.; Zhang, W.; Zhang, Z.; Zhang, G.; Xu, J. Tunable dual-wavelength fiber laser with unique gain system based on in-fiber acousto-optic Mach–Zehnder interferometer. Opt. Express 2017, 25, 27609. [Google Scholar] [CrossRef]
- Huang, L.; Chang, P.; Song, X.; Peng, W.; Zhang, W.; Gao, F.; Bo, F.; Zhang, G.; Xu, J. Tunable in-fiber Mach-Zehnder interferometer driven by unique acoustic transducer and its application in tunable multi-wavelength laser. Opt. Express 2016, 24, 2406. [Google Scholar] [CrossRef]
- Han, X.; Wang, Z.; Gao, F.; Zhang, W.; Bo, F.; Dong, X.; Zhang, G.; Xu, J. Robust and low cost in-fiber acousto-optic Mach–Zehnder interferometer and its application in a dual-wavelength laser. Appl. Opt. 2021, 61, 22. [Google Scholar] [CrossRef]
- He, W.; Yuan, H.; Lou, X.; Zhu, L.; Dong, M. Multi-wavelength switchable erbium-doped fiber laser based on a hybrid filter incorporating a bi-tapered Mach-Zehnder interferometer and Sagnac loop. Phys. Scr. 2019, 94, 125502. [Google Scholar] [CrossRef]
- Peng, W.; Liu, P. Multi-wavelength erbium-doped fiber laser based on a polarization-dependent in-line Mach–Zehnder interferometer. Opt. Quantum Electron. 2019, 51, 300. [Google Scholar] [CrossRef]
- Wei, H.; Lianqing, Z.; Mingli, D. All-fiber Mach–Zehnder comb filter based on tapered fibers for wavelength switchable erbium-doped fiber lasers. Int. J. Optomechatron. 2020, 14, 18–28. [Google Scholar] [CrossRef]
- Wu, X.; Miao, J.; Wang, Y.; Chen, W.; Chen, Z. All-fiber theta cavity multi-wavelength Tm-doped fiber laser based on a dual biconical taper filter. Opt. Fiber Technol. 2020, 60, 102331. [Google Scholar] [CrossRef]
- Geng, X.; Jiang, Y.; Gu, H.; Luo, S.; Sun, M.; Li, L. Switchable multi-wavelength fiber lasers based on asymmetric biconical fiber tapers. Opt. Commun. 2023, 548, 129837. [Google Scholar] [CrossRef]
- Li, T.; Yan, F.; Wang, P.; Wang, X.; Suo, Y.; Zhou, H. Switchable Multi-Wavelength Thulium-Doped Fiber Laser using a Two-Taper fiber filter. Infrared Phys. Technol. 2022, 125, 104269. [Google Scholar] [CrossRef]
- Salceda-Delgado, G.; Martinez-Rios, A.; Monzón-Hernández, D. Tailoring Mach-Zehnder comb-filters based on concatenated tapers. J. Light. Technol. 2013, 31, 761–767. [Google Scholar] [CrossRef]
- Monzon-Hernandez, D.; Martinez-Rios, A.; Torres-Gomez, I.; Salceda-Delgado, G. Compact optical fiber curvature sensor based on concatenating two tapers. Opt. Lett. 2011, 36, 4380. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, Y. Review of optical fiber bending/curvature sensor. Measurement 2018, 130, 161–176. [Google Scholar] [CrossRef]
- Hecht, E. Optics, 5th ed. Pearson Education, Adelphi University. 2017. Available online: https://www.pearson.com/en-us/subject-catalog/p/optics/P200000006793/9780137526420 (accessed on 15 October 2024).
- Zhao, Q.; Pei, L.; Tang, M.; Xie, Y.; Ruan, Z.; Zheng, J.; Ning, T. Switchable multi-wavelength erbium-doped fiber laser based on core-offset structure and four-wave-mixing effect. Opt. Fiber Technol. 2020, 54, 102111. [Google Scholar] [CrossRef]
- Lv, Y.; Lou, S.; Tang, Z.; Liu, X.; Wang, X. Tunable C-band and L-band multi-wavelength erbium-doped fiber ring laser based on a triple-core photonic crystal fiber with polarization-dependent loss. Opt. Laser Technol. 2020, 128, 106269. [Google Scholar] [CrossRef]
- Li, Y.; Shen, Y.; Tian, J.; Fu, Q.; Yao, Y. Wavelength Switchable Multi-Wavelength Erbium-Doped Fiber Laser Based on Polarization-Dependent Loss Modulation. J. Light. Technol. 2021, 39, 243–250. [Google Scholar] [CrossRef]
- Huang, B.; Sheng, X.; Tang, Z.; Lou, S. High SMSR and widely tunable multi-wavelength erbium doped fiber laser based on cascaded filters. Infrared Phys. Technol. 2022, 122, 104082. [Google Scholar] [CrossRef]
- Martinez-Ramirez, L.G.; Alvarado, E.S.; Gallegos-Arellano, E.; Fernandez-Jaramillo, A.; Estudillo-Ayala, J.; Jauregui-Vazquez, D.; Rojas-Laguna, R.; Sierra-Hernandez, J. Select-cutoff Mach-Zehnder interferometer based on waist-enlarged technique and its multi-wavelength fiber laser application. Infrared Phys. Technol. 2023, 128, 104508. [Google Scholar] [CrossRef]
- Contreras-Teran, M.A.; Gallegos-Arellano, E.; Jauregui-Vazquez, D.; Martinez-Rios, A.; Hernandez-Garcia, J.C.; Ayona, J.R.R.; Sierra-Hernandez, J.M. Spacing mode multi-wavelength erbium doped fiber laser based on a symmetrical long-period fiber grating. Phys. Scr. 2024, 99, 095517. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, X.; Shi, Y.; Tong, Z.; Wang, X.; Wang, H. Spacing-adjustable and switchable multi-wavelength erbium-doped fiber laser using the filter of MMF–PMF–MMF based on PHB. Appl. Phys. B Lasers Opt. 2024, 130, 129. [Google Scholar] [CrossRef]
- Qin, G.; Li, Q.; Wei, W.; Duan, J. Multi-wavelength tunable ring cavity fiber laser incorporated with a Mach–Zehnder interferometer filter based on waist-enlarged fiber bitapers. Optik 2021, 248, 168088. [Google Scholar] [CrossRef]
- Salceda-Delgado, G.; Martinez-Rios, A.; Jimenez-Lizarraga, M.; Rodríguez-Carreón, V.; Selvas-Aguilar, R.; Sierra-Hernandez, J.; Rojas-Laguna, R.; López-Zenteno, J. Modifiable optical fiber tapered Mach–Zehnder interferometer for tune and switch optical fiber laser applications. Opt. Fiber Technol. 2022, 70, 102884. [Google Scholar] [CrossRef]
- Al-Rubaiyee, H.A.; Al-Hayali, S.K.; Al-Janabi, A.H. Vernier effect based on hybrid fiber interferometers: A new tool for wavelength switchability and adjustable free spectral range fiber lasing. Opt. Contin. 2023, 2, 1203–1215. [Google Scholar] [CrossRef]
- Al-Rubaiyee, H.A.; Al-Hayali, S.K.; Harun, S.W.; Al-Janabi, A.H. Vernier effect based on cascading two Mach–Zehnder interferometers for selectable comb filter and saturable absorber applications in erbium-doped fiber laser. Opt. Fiber Technol. 2024, 84, 103757. [Google Scholar] [CrossRef]
- Gutierrez-Gutierrez, J.; Rojas-Laguna, R.; Estudillo-Ayala, J.; Sierra-Hernández, J.; Jauregui-Vazquez, D.; Vargas-Treviño, M.; Tepech-Carrillo, L.; Grajales-Coutiño, R. Switchable and multi-wavelength linear fiber laser based on Fabry-Perot and Mach-Zehnder interferometers. Opt. Commun. 2016, 374, 39–44. [Google Scholar] [CrossRef]
- Zhao, Q.; Pei, L.; Zheng, J.; Tang, M.; Xie, Y.; Li, J.; Ning, T. Tunable and interval-adjustable multi-wavelength erbium-doped fiber laser based on cascaded filters with the assistance of NPR. Opt. Laser Technol. 2020, 131, 106387. [Google Scholar] [CrossRef]
- Bianchetti, M.; Sierra-Hernandez, J.; Mata-Chavez, R.; Gallegos-Arellano, E.; Estudillo-Ayala, J.; Jauregui-Vazquez, D.; Fernandez-Jaramillo, A.; Salceda-Delgado, G.; Rojas-Laguna, R. Switchable multi-wavelength laser based on a core-offset Mach-Zehnder interferometer with non-zero dispersion-shifted fiber. Opt. Laser Technol. 2018, 104, 49–55. [Google Scholar] [CrossRef]
- Martin-Vela, J.A.; Sierra-Hernandez, J.; Gallegos-Arellano, E.; Estudillo-Ayala, J.; Bianchetti, M.; Jauregui-Vazquez, D.; Reyes-Ayona, J.; Silva-Alvarado, E.; Rojas-Laguna, R. Switchable and tunable multi-wavelength fiber laser based on a core-offset aluminum coated Mach-Zehnder interferometer. Opt. Laser Technol. 2020, 125, 106039. [Google Scholar] [CrossRef]
- Chang, Y.; Pei, L.; Ning, T.; Zheng, J.; Li, J.; Xie, C. Switchable and tunable multi-wavelength fiber ring laser employing a cascaded fiber filter. Opt. Fiber Technol. 2020, 58, 102240. [Google Scholar] [CrossRef]
- Zhao, X.; Dong, M.; Zhang, Y.; Luo, F.; Zhu, L. Switchable multi-wavelength and tunable wavelength spacing erbium-doped fiber laser based on a phase-shifted fiber Bragg grating combined with a Mach-Zehnder interferometer. Opt. Laser Technol. 2019, 112, 500–507. [Google Scholar] [CrossRef]
Ref | Filter Type | Laser Performance | Laser Lines | Wavelength Operation | SMSR | Power Fluctuation | Wavelength Fluctuations | Control |
---|---|---|---|---|---|---|---|---|
This work | MZFI pair of concatenated tapered fibers | Tunable single/switchable M.W. | 6 | 1543.21–1563.705nm | 40 dB | 3 dB | 0.07 nm | Curvature Polarization |
[17] | AO-MZI taper-shaped sandwich-like fiber | Tunable/switchable dual W | 2 | 1563.82–1569.16 nm | 40 dB | 3 dB | 0.02 nm | Acousto-optic |
[20] | Two-taper MZFI | Switchable M.W. | 3 | 1557.2–1570.2 nm | 33.72 dB | 2.482 dB | — | Polarization |
[21] | Dual biconical fiber taper | Switchable M.W. | 3 | 1978.8–1991.8 nm | 30 dB | 4.73 dB | Negligible | Polarization |
[22] | IFMZI based on ABTF | Switchable M.W. | 3 | 1558.36–1562.36 nm | 51.1 dB | 1.64 dB | 0.76 nm | Polarization |
[23] | Two-taper fiber | Tunable single/switchable M.W. | 6 | 1952.06–1975.62 nm | 31.87 dB | 0.9 dB | 0.3 nm | Polarization |
[28] | TMF core offset structure | Switchable M.W. | 10 | 1550.56–1553.77 nm | 30 dB | 3.82 dB | 0.01 nm | Polarization |
[29] | TCPCF and MMF segment | Tunable single/switchable M.W. | 3 | 1540.32–1568.9 nm | 50 dB | 0.96 dB | 0.06 nm | Strain Polarization |
[30] | Cascaded FBG | Switchable M.W. | 4 | 1550–1562 nm | 47 dB | 0.966 dB | 0.044 nm | Polarization |
[31] | TCPCF and SLF | Tunable single/tunable switchable W.M. | 3 | 1531–1568.5 nm | 40 dB | 8.09 dB | 0.09 nm | Bending Polarization |
[32] | MZI based on SCF and waist enlarged | Tunable single/switchable M.W. | 3 | 1539.36–159.63 nm | 51 dB | 1.344 dB | 0.1479 nm | Temperature Curvature Polarization |
[33] | Asymmetrically LPFG | Switchable M.W. | 6 | 1546–1553 nm | 38.02 dB | 6.9 dB | 0.28 nm | Curvature |
[34] | MMF–PMF–MMF | Switchable M.W. | 6 | 1528.73–1560.99 nm | 41 dB | 0.1 dB | 0.15 nm | Polarization |
[35] | MZFI two waist enlarged bi-taper | Tunable singe/switchable M.W. | 3 | 1554.4–1563.5 nm | 30 dB | 0.59 dB | — | Polarization |
[36] | MZI based on two-taper | Tunable/switchable W.M. | 4 | 1527–1563 nm | 15 dB | 2.98 dB | 0.71 nm | Curvature |
[37] | MZI and S.I. bi-tapered PMFs | Switchable M.W. | 3 | 1530.1–1560.8 nm | 42.2 dB | Not reported | Not reported | Polarization |
[38] | MZFI bi-tapered PFMs | Q-switched/switchable M.W. | 4 | 1529.8–1532.9 nm | 34.9 dB | — | — | Polarization |
[39] | FPI and MZFI | Switchable M.W. | 4 | 1525-1534 nm | 30 dB | 1.2 dB | 0.05 nm | Curvature |
[40] | Sagngac and Lyot filters | Tunable/switchable M.W. | 7 | 1530–1560 nm | 40 dB | 3 dB | 0.4 nm | Polarization |
[41] | Core offset MZI based on NZ-DSF | Switchable M.W. | 3 | 1546–1564 nm | 56 dB | 2.2 dB | 0.02 nm | Polarization |
[42] | Core offset ACMZFI | Tunable single/switchable M.W. | 3 | 1557–1562.32 nm | 55 dB | 5 dB | 0.02 nm | Temperature Polarization |
[43] | SE-HSOFF | Switchable/tunable M.W. | 4 | 1526.2–1556.3 nm | 30 dB | 1.93 dB | 0.1 nm | Polarization |
[44] | PSBG and MZI | Tunable/switchable M.W. | 4 | 1527–1550 nm | 50 dB | Not reported | 0.025 nm | Optical attenuation Temperature Strain |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nuñez Gomez, R.E.; Anzueto Sánchez, G.; Martínez Ríos, A.; Fong González, A.; Olarte Paredes, A.; Salgado Delgado, A.M.; Castrellón Uribe, J.; Salgado Delgado, R. A Tunable and Switchable Multi-Wavelength Erbium-Doped Fiber Ring Laser Enabled by Adjusting the Spectral Fringe Visibility of a Mach-Zehnder Fiber Interferometer. Appl. Sci. 2024, 14, 9846. https://doi.org/10.3390/app14219846
Nuñez Gomez RE, Anzueto Sánchez G, Martínez Ríos A, Fong González A, Olarte Paredes A, Salgado Delgado AM, Castrellón Uribe J, Salgado Delgado R. A Tunable and Switchable Multi-Wavelength Erbium-Doped Fiber Ring Laser Enabled by Adjusting the Spectral Fringe Visibility of a Mach-Zehnder Fiber Interferometer. Applied Sciences. 2024; 14(21):9846. https://doi.org/10.3390/app14219846
Chicago/Turabian StyleNuñez Gomez, Romeo Emmanuel, Gilberto Anzueto Sánchez, Alejando Martínez Ríos, Ariel Fong González, Alfredo Olarte Paredes, Areli Marlen Salgado Delgado, Jesús Castrellón Uribe, and René Salgado Delgado. 2024. "A Tunable and Switchable Multi-Wavelength Erbium-Doped Fiber Ring Laser Enabled by Adjusting the Spectral Fringe Visibility of a Mach-Zehnder Fiber Interferometer" Applied Sciences 14, no. 21: 9846. https://doi.org/10.3390/app14219846
APA StyleNuñez Gomez, R. E., Anzueto Sánchez, G., Martínez Ríos, A., Fong González, A., Olarte Paredes, A., Salgado Delgado, A. M., Castrellón Uribe, J., & Salgado Delgado, R. (2024). A Tunable and Switchable Multi-Wavelength Erbium-Doped Fiber Ring Laser Enabled by Adjusting the Spectral Fringe Visibility of a Mach-Zehnder Fiber Interferometer. Applied Sciences, 14(21), 9846. https://doi.org/10.3390/app14219846