Enhanced Ischemic Stroke Lesion Segmentation in MRI Using Attention U-Net with Generalized Dice Focal Loss
<p>Scheme of the proposed model.</p> "> Figure 2
<p>Distribution of segmentation masks’ sizes (in pixels) with annotation of the first quartile (Q1), median (Q2), and third quartile (Q3): (<b>a</b>) ISLES 2015, (<b>b</b>) ISLES 2022.</p> "> Figure 3
<p>F1-Scores resulting from changing key hyperparameters <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mrow> <mi>F</mi> <mi>L</mi> </mrow> </msub> <mo>=</mo> <mi>FL</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mrow> <mi>G</mi> <mi>D</mi> <mi>L</mi> </mrow> </msub> <mo>=</mo> <mi>GDL</mi> </mrow> </semantics></math>. The combination leading to the best results is highlighted in orange. (<b>a</b>) Experiments performed on FLAIR sequences of ISLES 2015. (<b>b</b>) Experiments performed on DWI modality of ISLES 2022.</p> "> Figure 4
<p>Learning curves comparison: (<b>a</b>) Proposed model, (<b>b</b>) SGD, (<b>c</b>) W/O A.M., (<b>d</b>) CBAM, (<b>e</b>) Dice Loss, (<b>f</b>) Focal Loss.</p> "> Figure 5
<p>Visual comparison of the model’s versions results: Ground truth masks are displayed in the first column (<b>a</b>,<b>g</b>,<b>m</b>,<b>s</b>). Results of Proposed model are given in the second column (<b>b</b>,<b>h</b>,<b>n</b>,<b>t</b>), of Dice Loss model in the third column (<b>c</b>,<b>i</b>,<b>o</b>,<b>u</b>), of Focal Loss model in the fourth column (<b>d</b>,<b>j</b>,<b>p</b>,<b>v</b>), of W/O A.M. model in the fifth column (<b>e</b>,<b>k</b>,<b>q</b>,<b>w</b>), and of CBAM model in the sixth column (<b>f</b>,<b>l</b>,<b>r</b>,<b>x</b>).</p> "> Figure 6
<p>Violin plot of the proposed model’s results on FLAIR images using the axial view, where the dot localizes the median, and the white line represents the mean: (<b>a</b>) IoU scores by mask’s size category, (<b>b</b>) F1-Scores by mask’s size category.</p> "> Figure 7
<p>Performance of the proposed model in segmenting small lesions on different MRI modalities using the ISLES 2015 dataset (dot and white line represent the median and the mean values): (<b>a</b>) IoU scores by MRI modality, (<b>b</b>) F1-Scores by MRI modality.</p> "> Figure 8
<p>Overall performance of the proposed model on different MRI modalities using the ISLES 2015 dataset (dot and white line represent the median and the mean values): (<b>a</b>) IoU scores in the coronal plane, (<b>b</b>) IoU scores in the sagittal plane.</p> "> Figure 9
<p>Examples of segmented FLAIR images in the coronal plane by the proposed method (second row) and their corresponding ground truth mask (first row) for mask categories Small (<b>a</b>,<b>e</b>), Medium Down (<b>b</b>,<b>f</b>), Medium Up (<b>c</b>,<b>g</b>), and Large (<b>d</b>,<b>h</b>).</p> "> Figure 10
<p>Examples of segmented FLAIR images in the sagittal plane by the proposed method (second row) and their corresponding ground truth mask (first row) for mask categories Small (<b>a</b>,<b>e</b>), Medium Down (<b>b</b>,<b>f</b>), Medium Up (<b>c</b>,<b>g</b>), and Large (<b>d</b>,<b>h</b>).</p> "> Figure 11
<p>Violin plot of the proposed model’s results on DWI and ADC images using the axial view, where the dot localizes the median, and the white line represents the mean: (<b>a</b>) F1-Scores by mask size category using DWI and configuration A (FL = 0.7, GDL = 0.3), (<b>b</b>) F1-Scores by mask size category using DWI and configuration B (FL = 0.9, GDL = 0.1), (<b>c</b>) F1-Scores by mask size category using ADC and configuration A (FL = 0.7, GDL = 0.3), (<b>d</b>) F1-Scores by mask size category using ADC and configuration B (FL = 0.9, GDL = 0.1).</p> "> Figure 12
<p>Violin plot of the non-segmented images’ mask size in pixels. Mean value is marked as a white line.</p> "> Figure 13
<p>Examples of ground truth mask of DWI images in the axial plane (first row) and the segmentation results by the proposed method using <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mrow> <mi>G</mi> <mi>D</mi> <mi>L</mi> </mrow> </msub> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mrow> <mi>F</mi> <mi>L</mi> </mrow> </msub> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math> (second row) and <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mrow> <mi>G</mi> <mi>D</mi> <mi>L</mi> </mrow> </msub> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mrow> <mi>F</mi> <mi>L</mi> </mrow> </msub> <mo>=</mo> <mn>0.9</mn> </mrow> </semantics></math> (third row) for mask categories Small (<b>a</b>,<b>e</b>,<b>i</b>), Medium Down (<b>b</b>,<b>f</b>,<b>j</b>), Medium Up (<b>c</b>,<b>g</b>,<b>k</b>), and Large (<b>d</b>,<b>h</b>,<b>l</b>).</p> ">
Abstract
:1. Introduction
2. Related Works
- A new system based on U-Net architecture using attention mechanisms that enhance the segmentation in MRI images of small brain lesions caused by ischemic stroke by incorporating the Generalized Dice Focal Loss (GDFL) composite function.
- Efficient segmentation in different MRI modalities and planes.
- Improved segmentation performance compared to state-of-the-art systems based on the evaluation of the system using the ISLES 2015 dataset and competitive performance with state-of-the-art models in evaluating the ISLES 2022 dataset.
- The model moderately converges at 200 epochs with 7.9 million parameters, making it suitable for training in general-purpose mid- and high-end graphic processing units (GPU).
3. Materials and Methods
3.1. Overview of the Proposed Approach
3.1.1. Network Architecture
3.1.2. Loss Function and Optimizer
3.2. Experimental Setup
3.2.1. Datasets
3.2.2. Data Augmentation
3.2.3. Hyperparameter Optimization
3.2.4. Evaluation Metrics
- Intersection over Union (IoU) evaluates the overlap between two areas, such as the predicted and ground truth masks. It is calculated as the intersection divided by the union of two sets:
- F1-Score represents the harmonic mean between precision and sensitivity. It measures the model’s performance in balancing false positives and false negatives:
- The Hausdorff Distance (HD) measures the maximum distance between the nearest points in two sets. It evaluates the similarity between shapes or contours:
- Accuracy assesses the overall performance of a classification model, describing the percentage of correct predictions out of the total predictions:
- Precision gives the accuracy of the positive predictions:
- Sensitivity, also known as Recall, evaluates the model’s ability to identify positive cases correctly:
- Specificity measures the model’s ability to identify the negative cases correctly:
4. Results
4.1. Ablation Testing
4.2. Performance on Different MRI Modalities and Planes
4.3. Performance on the ISLES 2022 Dataset
4.4. Comparison with State-of-the-Art Methods
4.5. Training Time
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feigin, V.L.; Norrving, B.; Mensah, G.A. Global Burden of Stroke. Circ. Res. 2017, 120, 439–448. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Stroke, Cerebrovascular Accident. 2024. Available online: https://www.emro.who.int/health-topics/stroke-cerebrovascular-accident/index.html (accessed on 11 August 2024).
- Adams, H.P.; Bendixen, B.H.; Kappelle, L.J.; Biller, J.; Love, B.B.; Gordon, D.L.; Marsh, E.E. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 1993, 24, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Hurford, R.; Sekhar, A.; Hughes, T.A.T.; Muir, K.W. Diagnosis and management of acute ischaemic stroke. Pract. Neurol. 2020, 20, 304–316. [Google Scholar] [CrossRef] [PubMed]
- Saver, J.L. Time Is Brain—Quantified. Stroke 2006, 37, 263–266. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, R.; Qin, C.; Oktay, O.; Bowles, C.; Chen, L.; Joules, R.; Wolz, R.; Valdés-Hernández, M.; Dickie, D.; Wardlaw, J.; et al. White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks. NeuroImage Clin. 2018, 17, 918–934. [Google Scholar] [CrossRef]
- Zhang, J.; Ta, N.; Fu, M.; Tian, F.H.; Wang, J.; Zhang, T.; Wang, B. Use of DWI-FLAIR Mismatch to Estimate the Onset Time in Wake-Up Strokes. Neuropsychiatr. Dis. Treat. 2022, 18, 355–361. [Google Scholar] [CrossRef]
- Li, X.; Su, F.; Yuan, Q.; Chen, Y.; Liu, C.Y.; Fan, Y. Advances in differential diagnosis of cerebrovascular diseases in magnetic resonance imaging: A narrative review. Quant. Imaging Med. Surg. 2023, 13, 2712. [Google Scholar] [CrossRef]
- Liu, L.; Kurgan, L.; Wu, F.X.; Wang, J. Attention convolutional neural network for accurate segmentation and quantification of lesions in ischemic stroke disease. Med. Image Anal. 2020, 65, 101791. [Google Scholar] [CrossRef]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.; van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention, Proceedings of the MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar] [CrossRef]
- Mahmood, Q.; Basit, A. Automatic Ischemic Stroke Lesion Segmentation in Multi-spectral MRI Images Using Random Forests Classifier. In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries; Springer International Publishing: Cham, Switzerland, 2016; pp. 266–274. [Google Scholar] [CrossRef]
- Maier, O.; Menze, B.H.; von der Gablentz, J.; Häni, L.; Heinrich, M.P.; Liebrand, M.; Winzeck, S.; Basit, A.; Bentley, P.; Chen, L.; et al. ISLES 2015—A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI. Med. Image Anal. 2017, 35, 250–269. [Google Scholar] [CrossRef]
- Havaei, M.; Davy, A.; Warde-Farley, D.; Biard, A.; Courville, A.; Bengio, Y.; Pal, C.; Jodoin, P.M.; Larochelle, H. Brain tumor segmentation with Deep Neural Networks. Med. Image Anal. 2017, 35, 18–31. [Google Scholar] [CrossRef] [PubMed]
- Oktay, O.; Schlemper, J.; Folgoc, L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla, N.; Kainz, B.; et al. Attention U-Net: Learning Where to Look for the Pancreas. arXiv 2018, arXiv:1804.03999. [Google Scholar] [CrossRef]
- Liu, L.; Wu, F.X.; Wang, J. Efficient multi-kernel DCNN with pixel dropout for stroke MRI segmentation. Neurocomputing 2019, 350, 117–127. [Google Scholar] [CrossRef]
- Karthik, R.; Gupta, U.; Jha, A.; Rajalakshmi, R.; Menaka, R. A deep supervised approach for ischemic lesion segmentation from multimodal MRI using Fully Convolutional Network. Appl. Soft Comput. 2019, 84, 105685. [Google Scholar] [CrossRef]
- Abdmouleh, N.; Echtioui, A.; Kallel, F.; Hamida, A.B. Modified U-Net Architeture based Ischemic Stroke Lesions Segmentation. In Proceedings of the 2022 IEEE 21st international Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), Sousse, Tunisia, 19–21 December 2022. [Google Scholar] [CrossRef]
- Aboudi, F.; Drissi, C.; Kraiem, T. A Hybrid Model for Ischemic Stroke Brain Segmentation from MRI Images using CBAM and ResNet50-Unet. Int. J. Adv. Comput. Sci. Appl. 2024, 15, 950. [Google Scholar] [CrossRef]
- Shah, P.M.; Khan, H.; Shafi, U.; Islam, S.u.; Raza, M.; Son, T.T.; Le-Minh, H. 2D-CNN Based Segmentation of Ischemic Stroke Lesions in MRI Scans. In Advances in Computational Collective Intelligence; Springer International Publishing: Cham, Switzerland, 2020; pp. 276–286. [Google Scholar] [CrossRef]
- Kamnitsas, K.; Chen, L.; Ledig, C.; Rueckert, D.; Glocker, B. Multi-scale 3D convolutional neural networks for lesion segmentation in brain MRI. In Proceedings of the Ischemic Stroke Lesion Segmentation, Munich, Germany, 5 October 2015. [Google Scholar]
- Kamnitsas, K.; Ledig, C.; Newcombe, V.F.; Simpson, J.P.; Kane, A.D.; Menon, D.K.; Rueckert, D.; Glocker, B. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 2017, 36, 61–78. [Google Scholar] [CrossRef]
- Zhang, R.; Zhao, L.; Lou, W.; Abrigo, J.M.; Mok, V.C.T.; Chu, W.C.W.; Wang, D.; Shi, L. Automatic Segmentation of Acute Ischemic Stroke From DWI Using 3-D Fully Convolutional DenseNets. IEEE Trans. Med. Imaging 2018, 37, 2149–2160. [Google Scholar] [CrossRef]
- Zhang, L.; Song, R.; Wang, Y.; Zhu, C.; Liu, J.; Yang, J.; Liu, L. Ischemic Stroke Lesion Segmentation Using Multi-Plane Information Fusion. IEEE Access 2020, 8, 45715–45725. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, X.; Li, F.; Wang, S.; Huang, L.; Li, J. W-Net: A boundary-enhanced segmentation network for stroke lesions. Expert Syst. Appl. 2023, 230, 120637. [Google Scholar] [CrossRef]
- Werdiger, F.; Yogendrakumar, V.; Visser, M.; Kolacz, J.; Lam, C.; Hill, M.; Chen, C.; Parsons, M.W.; Bivard, A. Clinical performance review for 3-D Deep Learning segmentation of stroke infarct from diffusion-weighted images. Neuroimage Rep. 2024, 4, 100196. [Google Scholar] [CrossRef]
- Jeong, H.; Lim, H.; Yoon, C.; Won, J.; Lee, G.Y.; de la Rosa, E.; Kirschke, J.S.; Kim, B.; Kim, N.; Kim, C. Robust Ensemble of Two Different Multimodal Approaches to Segment 3D Ischemic Stroke Segmentation Using Brain Tumor Representation Among Multiple Center Datasets. J. Imaging Inform. Med. 2024. [Google Scholar] [CrossRef] [PubMed]
- Isensee, F.; Jaeger, P.F.; Kohl, S.A.A.; Petersen, J.; Maier-Hein, K.H. nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 2020, 18, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Umirzakova, S.; Ahmad, S.; Mardieva, S.; Muksimova, S.; Whangbo, T.K. Deep learning-driven diagnosis: A multi-task approach for segmenting stroke and Bell’s palsy. Pattern Recognit. 2023, 144, 109866. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, Y.; Zhang, H. Recent Advances in Stochastic Gradient Descent in Deep Learning. Mathematics 2023, 11, 682. [Google Scholar] [CrossRef]
- Loshchilov, I.; Hutter, F. Fixing Weight Decay Regularization in Adam. arXiv 2017, arXiv:1711.05101. [Google Scholar] [CrossRef]
- Yeung, M.; Sala, E.; Schönlieb, C.B.; Rundo, L. Unified Focal loss: Generalising Dice and cross entropy-based losses to handle class imbalanced medical image segmentation. Comput. Med. Imaging Graph. 2022, 95, 102026. [Google Scholar] [CrossRef]
- Sudre, C.H.; Li, W.; Vercauteren, T.; Ourselin, S.; Jorge Cardoso, M. Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; Springer International Publishing: Cham, Switzerland, 2017; pp. 240–248. [Google Scholar] [CrossRef]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 318–327. [Google Scholar] [CrossRef]
- Cardoso, M.J.; Li, W.; Brown, R.; Ma, N.; Kerfoot, E.; Wang, Y.; Murrey, B.; Myronenko, A.; Zhao, C.; Yang, D.; et al. MONAI: An open-source framework for deep learning in healthcare. arXiv 2022, arXiv:2211.02701. [Google Scholar] [CrossRef]
- Hernandez Petzsche, M.R.; de la Rosa, E.; Hanning, U.; Wiest, R.; Valenzuela, W.; Reyes, M.; Meyer, M.; Liew, S.L.; Kofler, F.; Ezhov, I.; et al. ISLES 2022: A multi-center magnetic resonance imaging stroke lesion segmentation dataset. Sci. Data 2022, 9, 762. [Google Scholar] [CrossRef]
- Buslaev, A.; Iglovikov, V.I.; Khvedchenya, E.; Parinov, A.; Druzhinin, M.; Kalinin, A.A. Albumentations: Fast and Flexible Image Augmentations. Information 2020, 11, 125. [Google Scholar] [CrossRef]
- Aboudi, F.; Drissi, C.; Kraiem, T. Efficient U-Net CNN with Data Augmentation for MRI Ischemic Stroke Brain Segmentation. In Proceedings of the 2022 8th International Conference on Control, Decision and Information Technologies (CoDIT), Istanbul, Turkey, 17–20 May 2022. [Google Scholar] [CrossRef]
- Kumar, A.; Debnath, A.; Tejaswini, T.; Gupta, S.; Chakraborty, B.; Nandi, D. Automatic Detection of Ischemic Stroke Lesion from Multimodal MR Image. In Proceedings of the 2019 Fifth International Conference on Image Information Processing (ICIIP), Shimla, India, 15–17 November 2019. [Google Scholar] [CrossRef]
Plane | Mask Size | Training | Validation | Testing | Total |
---|---|---|---|---|---|
Axial | Small | 190 | 48 | 98 | 336 |
Medium Down | 189 | 48 | 105 | 342 | |
Medium Up | 190 | 47 | 102 | 339 | |
Large | 190 | 47 | 102 | 339 | |
Total | 759 | 190 | 407 | 1356 | |
Coronal | Small | 237 | 59 | 127 | 423 |
Medium Down | 239 | 60 | 128 | 427 | |
Medium Up | 238 | 60 | 127 | 425 | |
Large | 239 | 59 | 128 | 426 | |
Total | 953 | 238 | 510 | 1701 | |
Sagittal | Small | 142 | 36 | 76 | 254 |
Medium Down | 143 | 36 | 76 | 255 | |
Medium Up | 142 | 36 | 76 | 254 | |
Large | 143 | 35 | 77 | 255 | |
Total | 570 | 143 | 305 | 1018 |
Plane | Mask Size | Training | Validation | Testing | Total |
---|---|---|---|---|---|
Axial | Small | 670 | 168 | 359 | 1197 |
Medium Down | 681 | 170 | 365 | 1216 | |
Medium Up | 675 | 169 | 362 | 1206 | |
Large | 677 | 169 | 362 | 1208 | |
Total | 2703 | 676 | 1448 | 4827 | |
Coronal | Small | 1060 | 264 | 568 | 1892 |
Medium Down | 1166 | 292 | 625 | 2083 | |
Medium Up | 1126 | 282 | 603 | 2011 | |
Large | 1121 | 280 | 601 | 2002 | |
Total | 4473 | 1118 | 2397 | 7988 | |
Sagittal | Small | 854 | 213 | 458 | 1525 |
Medium Down | 849 | 213 | 455 | 1517 | |
Medium Up | 867 | 217 | 464 | 1548 | |
Large | 857 | 214 | 459 | 1530 | |
Total | 3427 | 857 | 1836 | 6120 |
Notation | Attention Module | Loss Function | Optimizer |
---|---|---|---|
Proposed | AM | GDFL | AdamW |
W/O A. M. | NO | GDFL | AdamW |
CBAM | CBAM | GDFL | AdamW |
Dice Loss | AM | Dice loss | AdamW |
Focal Loss | AM | Focal loss | AdamW |
SGD | AM | GDFL | SGD |
Metric | Proposed | W/O A. M. | CBAM | Dice Loss | Focal Loss | SGD |
---|---|---|---|---|---|---|
IoU | 0.8596 ± 0.1598 | 0.8239 ± 0.1593 | 0.8553 ± 0.1601 | 0.8258 ± 0.1798 | 0.8300 ± 0.1797 | 0.4004 ± 0.2796 |
F1-Score | 0.9129 ± 0.1362 | 0.8917 ± 0.1364 | 0.9106 ± 0.1345 | 0.8893 ± 0.1570 | 0.8922 ± 0.1549 | 0.5079 ± 0.3244 |
HD | 4.09 ± 7.67 | 5.19 ± 8.27 | 4.24 ± 8.17 | 4.94 ± 8.97 | 3.77 ± 6.59 | 31.24 ± 23.98 |
N. S. | 4.10 ± 2.70 | 4.30 ± 2.65 | 3.20 ± 2.27 | 6.10 ± 4.04 | 5.80 ± 1.78 | 86.10 ± 2.98 |
N. S. Small | 3.80 ± 2.52 | 4.00 ± 2.68 | 2.70 ± 2.28 | 5.80 ± 3.99 | 5.40 ± 1.91 | 70.60 ± 1.50 |
N. S. M. D. | 0.30 ± 0.90 | 0.30 ± 0.64 | 0.40 ± 0.80 | 0.30 ± 0.90 | 0.40 ± 0.92 | 15.50 ± 2.62 |
Plane | Metric | FLAIR | DWI | T1 | T2 |
---|---|---|---|---|---|
Axial | IoU | 0.8596 ± 0.1598 | 0.8524 ± 0.1562 | 0.8355 ± 0.1926 | 0.8441 ± 0.1959 |
F1-Score | 0.9129 ± 0.1362 | 0.9096 ± 0.1290 | 0.8916 ± 0.1783 | 0.8966 ± 0.1809 | |
HD | 4.09 ± 7.67 | 4.13 ± 6.94 | 5.12 ± 9.24 | 4.98 ± 8.96 | |
N. S. | 4.10 ± 2.70 | 2.70 ± 2.05 | 11.20 ± 6.35 | 10.70 ± 4.05 | |
Coronal | IoU | 0.8550 ± 0.1658 | 0.8491 ± 0.1660 | 0.8447 ± 0.1846 | 0.8532 ± 0.1973 |
F1-Score | 0.9094 ± 0.1425 | 0.9058 ± 0.1418 | 0.8995 ± 0.1651 | 0.9017 ± 0.1816 | |
HD | 4.74 ± 6.88 | 5.58 ± 9.34 | 5.95 ± 9.67 | 5.20 ± 8.13 | |
N. S. | 5.00 ± 2.94 | 5.00 ± 2.16 | 7.67 ± 2.49 | 12.33 ± 2.49 | |
Sagittal | IoU | 0.8350 ± 0.2087 | 0.8238 ± 0.1978 | 0.8040 ± 0.2206 | 0.8038 ± 0.2366 |
F1-Score | 0.8885 ± 0.1933 | 0.8847 ± 0.1752 | 0.8667 ± 0.2030 | 0.8623 ± 0.2235 | |
HD | 8.20 ± 14.44 | 8.63 ± 14.02 | 10.38 ± 17.49 | 7.60 ± 12.10 | |
N. S. | 8.33 ± 0.94 | 4.33 ± 0.47 | 8.33 ± 2.87 | 13.33 ± 4.19 |
Plane | Metric | DWI | ADC |
---|---|---|---|
Axial | IoU | 0.6961 ± 0.3414 | 0.5505 ± 0.3666 |
F1-Score | 0.7517 ± 0.3470 | 0.6192 ± 0.3884 | |
HD | 9.90 ± 17.56 | 16.73 ± 23.36 | |
N. S. | 121 ± 9 | 253 ± 13 | |
Coronal | IoU | 0.5833 ± 0.4000 | 0.4954 ± 0.3918 |
F1-Score | 0.6318 ± 0.4187 | 0.5535 ± 0.4193 | |
HD | 10.73 ± 19.32 | 18.08 ± 26.32 | |
N. S. | 188 ± 19 | 364 ± 27 | |
Sagittal | IoU | 0.5636 ± 0.3926 | 0.4554 ± 0.3740 |
F1-Score | 0.6176 ± 0.4147 | 0.5211 ± 0.4103 | |
HD | 14.02 ± 23.21 | 23.73 ± 32.06 | |
N. S. | 133 ± 25 | 318 ± 8 |
Method | MRI Modality | F1-Score | HD | Accuracy | Precision | Sensitivity | Specificity |
---|---|---|---|---|---|---|---|
Liu et al. [9] | FLAIR | 0.7178 | 3.36 | - | - | - | - |
FLAIR-DWI | 0.7639 | 3.19 | - | - | - | - | |
Zhang et al. [23] | DWI | 0.58 | 38.98 | - | 0.60 | 0.68 | - |
Zhang et al. [24] | DWI | 0.6220 | - | 0.9998 | - | 0.7322 | 0.9997 |
Karthik et al. [17] | Multi | 0.7008 | - | - | - | - | - |
Shah et al. [20] | Multi | 0.7156 | - | - | - | - | - |
Mahmood and Basit [12] | Multi | 0.54 | - | - | 0.67 | 0.5 | - |
Aboudi et al. [38] | Multi | 0.5577 | - | 0.9996 | 0.9977 | - | - |
Aboudi et al. [19] | Multi | 0.7960 | - | 0.9956 | 0.9712 | - | - |
Abdmouleh et al. [18] | FLAIR | 0.8135 | - | 0.9673 | - | 0.8007 | 0.9962 |
DWI | 0.6928 | - | 0.9649 | - | 0.6069 | 0.9967 | |
T1 | 0.7000 | - | 0.9651 | - | 0.6301 | 0.9961 | |
T2 | 0.7072 | - | 0.965 | - | 0.6443 | 0.9961 | |
Kumar et al. [39] | FLAIR | 0.8289 | - | - | - | - | - |
DWI | 0.7029 | - | - | - | - | - | |
T1 | 0.7015 | - | - | - | - | - | |
T2 | 0.7368 | - | - | - | - | - | |
Proposed | FLAIR | 0.9129 | 4.09 | 0.9986 | 0.9152 | 0.9240 | 0.9992 |
DWI | 0.9096 | 4.13 | 0.9985 | 0.9084 | 0.9263 | 0.9991 | |
T1 | 0.8916 | 5.12 | 0.9984 | 0.8870 | 0.9088 | 0.999 | |
T2 | 0.8966 | 4.98 | 0.9984 | 0.8968 | 0.9092 | 0.9991 |
Criterion | Wu et al. [25] | Werdiger et al. [26] | Jeong et al. [27] | Proposed | ||
---|---|---|---|---|---|---|
F1-Score | 0.8560 | 0.6940 | 0.7869 | 0.7641 | 0.7517 | 0.6192 |
MRI Modality | Multi | Multi | Multi | DWI | DWI | ADC |
Method | Parameters (M) |
---|---|
Wu et al. [25] | 119.0 |
Werdiger et al. [26] | 22.3 |
Proposed | 7.9 |
Dataset | GPU Model | Axial | Coronal | Sagittal |
---|---|---|---|---|
ISLES 2015 | GeForce RTX 3070 | 34 m 32 s | 41 m 08 s | 24 m 55 s |
GeForce RTX 3090 | 16 m 26 s | 20 m 07 s | 11 m 59 s | |
ISLES 2022 | GeForce RTX 3090 | 53 m 26 s | 1 h 16 m 37 s | 1 h 16 m 39 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Salgado, B.P.; Almaraz-Damian, J.A.; Cervantes-Chavarria, O.; Ponomaryov, V.; Reyes-Reyes, R.; Cruz-Ramos, C.; Sadovnychiy, S. Enhanced Ischemic Stroke Lesion Segmentation in MRI Using Attention U-Net with Generalized Dice Focal Loss. Appl. Sci. 2024, 14, 8183. https://doi.org/10.3390/app14188183
Garcia-Salgado BP, Almaraz-Damian JA, Cervantes-Chavarria O, Ponomaryov V, Reyes-Reyes R, Cruz-Ramos C, Sadovnychiy S. Enhanced Ischemic Stroke Lesion Segmentation in MRI Using Attention U-Net with Generalized Dice Focal Loss. Applied Sciences. 2024; 14(18):8183. https://doi.org/10.3390/app14188183
Chicago/Turabian StyleGarcia-Salgado, Beatriz P., Jose A. Almaraz-Damian, Oscar Cervantes-Chavarria, Volodymyr Ponomaryov, Rogelio Reyes-Reyes, Clara Cruz-Ramos, and Sergiy Sadovnychiy. 2024. "Enhanced Ischemic Stroke Lesion Segmentation in MRI Using Attention U-Net with Generalized Dice Focal Loss" Applied Sciences 14, no. 18: 8183. https://doi.org/10.3390/app14188183
APA StyleGarcia-Salgado, B. P., Almaraz-Damian, J. A., Cervantes-Chavarria, O., Ponomaryov, V., Reyes-Reyes, R., Cruz-Ramos, C., & Sadovnychiy, S. (2024). Enhanced Ischemic Stroke Lesion Segmentation in MRI Using Attention U-Net with Generalized Dice Focal Loss. Applied Sciences, 14(18), 8183. https://doi.org/10.3390/app14188183