Enhancing Robot Behavior with EEG, Reinforcement Learning and Beyond: A Review of Techniques in Collaborative Robotics
<p>The various levels of cooperation between a human worker and a robot.</p> "> Figure 2
<p>Classical RL loop [<a href="#B15-applsci-14-06345" class="html-bibr">15</a>].</p> "> Figure 3
<p>Percentage increase in publications across topic clusters over time (2012–2023).</p> "> Figure 4
<p>The five different brain waves: Delta, theta, alpha, beta, and gamma.</p> "> Figure 5
<p>Real experimentation using EEG for an assembly task [<a href="#B33-applsci-14-06345" class="html-bibr">33</a>].</p> "> Figure 6
<p>Different bio-sensors and their positions in the human body [<a href="#B51-applsci-14-06345" class="html-bibr">51</a>].</p> "> Figure 7
<p>Conceptual diagram. Intersection between topics displayed in triplets for future research.</p> ">
Abstract
:1. Introduction
- Reinforcement Learning: A machine learning approach where an agent refines decision-making skills by interacting with the environment, guided by rewards or penalties for actions, progressively improving decisions [23].
- Emergent Behavior: For reinforcement learning agents, emergent behaviors relate to unpredictable actions arising from the combination of simpler actions; in collaborative robotics, it is the robot’s ability to exhibit unplanned responses from interactions [12].
- EEG Sensors: Devices measuring brain electrical activity, which is valuable for monitoring neural signals and cognitive processes, particularly in assessing the mental state of human operators in collaborative robotics [24].
- Human–Robot Interaction (HRI): Dynamic interactions between humans and robots in collaborative settings, encompassing communication, cooperation, and the study of their collaboration in shared workspaces [25]. In construction, innovative categorizations have been developed, leading to better approaches to human–robot interaction problems [26].
2. Materials and Methods
3. State of the Art
3.1. EEG-Based Brain–Computer Interface Approaches in Collaborative Robot Control
3.2. Enhancing EEG in Collaborative Robot Control with Reinforcement Learning
3.3. Additional Human State Measuring Techniques for Collaborative Robotics
3.4. Immersive Technologies as a Safe Training Ground for Reinforcement Learning in Human-Interactive Robotics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AR | Augmented Reality |
BCI | Brain–Computer Interface |
BDI | Beck Depression Inventory |
BVP | Blood Volume Pulse |
CNN | Convolutional Neural Network |
ECG | Electrocardiography |
EEG | Electroencephalography |
EOG | Electro-oculograph |
ErrP | Error Potential-Related Event |
ERP | Error-Related Potential |
GSR | Galvanic Skin Response |
HAR | Human–Robot Recognition |
HDT | Human Digital Twin |
HRI | Human–Robot Interaction |
ICA | Independent Component Analysis |
KNN | K-Nearest Neighbor |
MR | Mixed Reality |
PSS | Perceived Stress Questionnaire |
RL | Reinforcement Learning |
RSP | Respiration Rate |
SVM | Support Vector Machine |
VR | Virtual Reality |
References
- Weiss, A.; Wortmeier, A.K.; Kubicek, B. Cobots in industry 4.0: A roadmap for future practice studies on human–robot collaboration. IEEE Trans. Hum. Mach. Syst. 2021, 51, 335–345. [Google Scholar] [CrossRef]
- Krüger, J.; Lien, T.; Verl, A. Cooperation of human and machines in assembly lines. CIRP Ann. 2009, 58, 628–646. [Google Scholar] [CrossRef]
- Baumgartner, M.; Kopp, T.; Kinkel, S. Analysing Factory Workers’ Acceptance of Collaborative Robots: A Web-Based Tool for Company Representatives. Electronics 2022, 11, 145. [Google Scholar] [CrossRef]
- Sherwani, F.; Asad, M.M.; Ibrahim, B. Collaborative Robots and Industrial Revolution 4.0 (IR 4.0). In Proceedings of the 2020 International Conference on Emerging Trends in Smart Technologies (ICETST), Karachi, Pakistan, 26–27 March 2020. [Google Scholar] [CrossRef]
- Parsons, H. Human factors in industrial robot safety. J. Occup. Accid. 1986, 8, 25–47. [Google Scholar] [CrossRef]
- Bauer, W.; Bender, M.; Braun, M.; Rally, P.; Scholtz, O. Lightweight Robots in Manual Assembly—Best to Start Simply! Examining Companies’ Initial Experiences with Lightweight Robots; Frauenhofer-Institut für Arbeitswirtschaft und Organisation IAO: Stuttgart, Germany, 2016. [Google Scholar]
- Pearce, M.; Mutlu, B.; Shah, J.; Radwin, R. Optimizing makespan and ergonomics in integrating collaborative robots into manufacturing processes. IEEE Trans. Autom. Sci. Eng. 2018, 15, 1772–1784. [Google Scholar] [CrossRef]
- Simone, V.D.; Pasquale, V.D.; Giubileo, V.; Miranda, S. Human-Robot Collaboration: An analysis of worker’s performance. Procedia Comput. Sci. 2022, 200, 1540–1549. [Google Scholar] [CrossRef]
- Kragic, D.; Gustafson, J.; Karaoguz, H.; Jensfelt, P.; Krug, R. Interactive, Collaborative Robots: Challenges and Opportunities. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018. [Google Scholar]
- Monari, E.; Avallone, G.; Valori, M.; Agostini, L.; Chen, Y.; Palazzi, E.; Vertechy, R. Physical Ergonomics Monitoring in Human–Robot Collaboration: A Standard-Based Approach for Hand-Guiding Applications. Machines 2024, 12, 231. [Google Scholar] [CrossRef]
- Sheridan, T.B. Human-robot interaction: Status and challenges. Hum. Factors 2016, 58, 525–532. [Google Scholar] [CrossRef]
- Kober, J.; Bagnell, J.A.; Peters, J. Reinforcement learning in robotics: A survey. Int. J. Robot. Res. 2013, 32, 1238–1274. [Google Scholar] [CrossRef]
- Kormushev, P.; Calinon, S.; Caldwell, D. Reinforcement Learning in Robotics: Applications and Real-World Challenges. Robotics 2013, 2, 122–148. [Google Scholar] [CrossRef]
- Brunke, L.; Greeff, M.; Hall, A.W.; Yuan, Z.; Zhou, S.; Panerati, J.; Schoellig, A.P. Safe Learning in Robotics: From Learning-Based Control to Safe Reinforcement Learning. Annu. Rev. Control Robot. Auton. Syst. 2022, 5, 411–444. [Google Scholar] [CrossRef]
- Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Kiran, B.R.; Sobh, I.; Talpaert, V.; Mannion, P.; Sallab, A.A.; Yogamani, S.; P’erez, P. Deep Reinforcement Learning for Autonomous Driving: A Survey. IEEE Trans. Intell. Transp. Syst. 2020, 23, 4909–4926. [Google Scholar] [CrossRef]
- Towers, M.; Terry, J.K.; Kwiatkowski, A.; Balis, J.U.; de Cola, G.; Deleu, T.; Goulão, M.; Kallinteris, A.; KG, A.; Krimmel, M.; et al. Gymnasium, v0.28.1; Zenodo: Geneva, Switzerland, 2023. [CrossRef]
- Koenig, N.; Howard, A. Design and use paradigms for Gazebo, an open-source multi-robot simulator. In Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), Sendai, Japan, 28 September–2 October 2004; Volume 3, pp. 2149–2154. [Google Scholar] [CrossRef]
- Maurtua, I.; Ibarguren, A.; Kildal, J.; Susperregi, L.; Sierra, B. Human–robot collaboration in industrial applications: Safety, interaction and trust. Int. J. Adv. Robot. Syst. 2017, 14, 172988141771601. [Google Scholar] [CrossRef]
- Wang, W.; Chen, Y.; Li, R.; Jia, Y. Learning and comfort in human–robot interaction: A review. Appl. Sci. 2019, 9, 5152. [Google Scholar] [CrossRef]
- Sawangjai, P.; Hompoonsup, S.; Leelaarporn, P.; Kongwudhikunakorn, S.; Wilaiprasitporn, T. Consumer Grade EEG Measuring Sensors as Research Tools: A Review. IEEE Sens. J. 2020, 20, 3996–4024. [Google Scholar] [CrossRef]
- Burdea, G. Invited review: The synergy between virtual reality and robotics. IEEE Trans. Robot. Autom. 1999, 15, 400–410. [Google Scholar] [CrossRef]
- Kaelbling, L.P.; Littman, M.L.; Moore, A.W. Reinforcement learning: A survey. J. Artif. Intell. Res. 1996, 4, 237–285. [Google Scholar] [CrossRef]
- Salazar-Gomez, A.F.; DelPreto, J.; Gil, S.; Guenther, F.H.; Rus, D. Correcting robot mistakes in real time using EEG signals. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017. [Google Scholar]
- Goodrich, M.A.; Schultz, A.C. Human-Robot Interaction: A Survey. Found. Trends Hum.-Comput. Interact. 2007, 1, 203–275. [Google Scholar] [CrossRef]
- Rodrigues, P.B.; Singh, R.; Oytun, M.; Adami, P.; Woods, P.J.; Becerik-Gerber, B.; Soibelman, L.; Copur-Gencturk, Y.; Lucas, G.M. A multidimensional taxonomy for human-robot interaction in construction. Autom. Constr. 2023, 150, 104845. [Google Scholar] [CrossRef]
- Slater, M.; Sanchez-Vives, M.V. Enhancing our lives with immersive virtual reality. Front. Robot. AI 2016, 3, 74. [Google Scholar] [CrossRef]
- Freeman, D.; Reeve, S.; Robinson, A.; Ehlers, A.; Clark, D.; Spanlang, B.; Slater, M. Virtual reality in the assessment, understanding, and treatment of mental health disorders. Psychol. Med. 2017, 47, 2393–2400. [Google Scholar] [CrossRef] [PubMed]
- Google Scholar Search Engine. Available online: https://scholar.google.com (accessed on 11 April 2024).
- Scopus Database. Available online: https://www.scopus.com (accessed on 11 April 2024).
- Web of Science. Available online: https://www.webofscience.com/wos (accessed on 11 April 2024).
- Urrútia, G.; Bonfill, X. Declaración PRISMA: Una propuesta para mejorar la publicación de revisiones sistemáticas y metaanálisis. Med. Clín. 2010, 135, 507–511. [Google Scholar] [CrossRef] [PubMed]
- Toichoa Eyam, A.; Mohammed, W.M.; Martinez Lastra, J.L. Emotion-driven analysis and control of human-robot interactions in collaborative applications. Sensors 2021, 21, 4626. [Google Scholar] [CrossRef]
- Alarcão, S.M.; Fonseca, M.J. Emotions Recognition Using EEG Signals: A Survey. IEEE Trans. Affect. Comput. 2019, 10, 374–393. [Google Scholar] [CrossRef]
- Shayesteh, S.; Ojha, A.; Jebelli, H. Workers’ trust in collaborative construction robots: EEG-based trust recognition in an immersive environment. In Automation and Robotics in the Architecture, Engineering, and Construction Industry; Springer International Publishing: Cham, Switzerland, 2022; pp. 201–215. [Google Scholar]
- Caruana, R.; Niculescu-Mizil, A. An empirical comparison of supervised learning algorithms. In Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, PA, USA, 25–29 June 2006. [Google Scholar] [CrossRef]
- Pontil, M.; Verri, A. Properties of Support Vector Machines. Neural Comput. 1998, 10, 955–974. [Google Scholar] [CrossRef] [PubMed]
- Akinola, I.; Wang, Z.; Shi, J.; He, X.; Lapborisuth, P.; Xu, J.; Watkins-Valls, D.; Sajda, P.; Allen, P. Accelerated Robot Learning via Human Brain Signals. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation, Paris, France, 31 May–31 August 2019. [Google Scholar] [CrossRef]
- Zhang, R.; Lv, Q.; Li, J.; Bao, J.; Liu, T.; Liu, S. A reinforcement learning method for human-robot collaboration in assembly tasks. Robot. Comput. Integr. Manuf. 2022, 73, 102227. [Google Scholar] [CrossRef]
- Lagomarsino, M.; Lorenzini, M.; Constable, M.D.; De Momi, E.; Becchio, C.; Ajoudani, A. Maximising Coefficiency of Human-Robot Handovers through Reinforcement Learning. IEEE Robot. Autom. Lett. 2023, 8, 4378–4385. [Google Scholar] [CrossRef]
- Iturrate, I.; Montesano, L.; Minguez, J. Robot reinforcement learning using EEG-based reward signals. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010. [Google Scholar]
- Millán, J.D.R.; Rupp, R.; Müller-Putz, G.R.; Murray-Smith, R.; Giugliemma, C.; Tangermann, M.; Vidaurre, C.; Cincotti, F.; Kübler, A.; Leeb, R.; et al. Combining brain-computer interfaces and assistive technologies: State-of-the-art and challenges. Front. Neurosci. 2010, 4, 161. [Google Scholar] [CrossRef] [PubMed]
- Gehring, W.J.; Goss, B.; Coles, M.G.H.; Meyer, D.E.; Donchin, E. A Neural System for Error Detection and Compensation. Psychol. Sci. 1993, 4, 385–390. [Google Scholar] [CrossRef]
- Watkins, C.J.C.H.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. [Google Scholar] [CrossRef]
- Kar, R.; Ghosh, L.; Konar, A.; Chakraborty, A.; Nagar, A.K. EEG-induced autonomous game-teaching to a robot arm by human trainers using reinforcement learning. IEEE Trans. Games 2022, 14, 610–622. [Google Scholar] [CrossRef]
- Yeung, N.; Botvinick, M.M.; Cohen, J.D. The neural basis of error detection: Conflict monitoring and the error-related negativity. Psychol. Rev. 2004, 111, 931–959. [Google Scholar] [CrossRef] [PubMed]
- Ferrez, P.W.; del R Millan, J. Error-related EEG potentials generated during simulated brain-computer interaction. IEEE Trans. Biomed. Eng. 2008, 55, 923–929. [Google Scholar] [CrossRef] [PubMed]
- Lotte, F.; Congedo, M.; Lécuyer, A.; Lamarche, F.; Arnaldi, B. A Review of Classification Algorithms for EEG-based Brain–computer Interfaces. J. Neural Eng. 2007, 4, R1. [Google Scholar] [CrossRef] [PubMed]
- Borboni, A.; Elamvazuthi, I.; Cusano, N. EEG-based empathic safe cobot. Machines 2022, 10, 603. [Google Scholar] [CrossRef]
- Luo, T.J.; Fan, Y.C.; Lv, J.T.; Zhou, C.L. Deep reinforcement learning from error-related potentials via an EEG-based brain-computer interface. In Proceedings of the 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Madrid, Spain, 3–6 December 2018. [Google Scholar]
- Shu, L.; Xie, J.; Yang, M.; Li, Z.; Li, Z.; Liao, D.; Xu, X.; Yang, X. A Review of Emotion Recognition Using Physiological Signals. Sensors 2018, 18, 2074. [Google Scholar] [CrossRef] [PubMed]
- Onose, G.; Grozea, C.; Anghelescu, A.; Daia, C.; Sinescu, C.J.; Ciurea, A.V.; Spircu, T.; Mirea, A.; Andone, I.; Spânu, A.; et al. On the feasibility of using motor imagery EEG-based brain-computer interface in chronic tetraplegics for assistive robotic arm control: A clinical test and long-term post-trial follow-up. Spinal Cord 2012, 50, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Onnasch, L.; Schweidler, P.; Schmidt, H. The potential of robot eyes as predictive cues in HRI-an eye-tracking study. Front. Robot. AI 2023, 10, 1178433. [Google Scholar] [CrossRef]
- Mariscal, M.A.; Ortiz Barcina, S.; García Herrero, S.; López Perea, E.M. Working with collaborative robots and its influence on levels of working stress. Int. J. Comput. Integr. Manuf. 2024, 37, 900–919. [Google Scholar] [CrossRef]
- Pérez, L.; Rodríguez, Í.; Rodríguez, N.; Usamentiaga, R.; García, D.F. Robot guidance using machine vision techniques in industrial environments: A comparative review. Sensors 2016, 16, 335. [Google Scholar] [CrossRef]
- Beddiar, D.R.; Nini, B.; Sabokrou, M.; Hadid, A. Vision-based human activity recognition: A survey. Multimed. Tools Appl. 2020, 79, 30509–30555. [Google Scholar] [CrossRef]
- Zhu, X.; Liang, Y.; Sun, H.; Wang, X.; Ren, B. Robot obstacle avoidance system using deep reinforcement learning. Ind. Robot 2022, 49, 301–310. [Google Scholar] [CrossRef]
- Mohindru, V.; Singla, S. A review of anomaly detection techniques using computer vision. In Recent Innovations in Computing: Proceedings of ICRIC 2020, Jammu, India, 13–14 May 2022; Lecture Notes in Electrical Engineering; Springer: Singapore, 2021; pp. 669–677. [Google Scholar]
- Stamler, J.S.; Goldman, M.E.; Gomes, J.; Matza, D.; Horowitz, S.F. The effect of stress and fatigue on cardiac rhythm in medical interns. J. Electrocardiol. 1992, 25, 333–338. [Google Scholar] [CrossRef]
- Xintarakou, A.; Sousonis, V.; Asvestas, D.; Vardas, P.E.; Tzeis, S. Remote cardiac rhythm monitoring in the era of smart wearables: Present assets and future perspectives. Front. Cardiovasc. Med. 2022, 9, 853614. [Google Scholar] [CrossRef]
- Hellhammer, D.H.; Wüst, S.; Kudielka, B.M. Salivary cortisol as a biomarker in stress research. Psychoneuroendocrinology 2009, 34, 163–171. [Google Scholar] [CrossRef]
- Carere, C.; Van Oers, K. Shy and bold great tits (Parus major): Body temperature and breath rate in response to handling stress. Physiol. Behav. 2004, 82, 905–912. [Google Scholar] [CrossRef]
- Leary, M.R.; Britt, T.W.; Cutlip, W.D.; Templeton, J.L. Social blushing. Psychol. Bull. 1992, 112, 446–460. [Google Scholar] [CrossRef]
- Jackson-Koku, G. Beck depression inventory. Occup. Med. 2016, 66, 174–175. [Google Scholar] [CrossRef]
- Beck, A.T.; Steer, R.A.; Brown, G. Beck Depression Inventory–II. In Psychological Assessment; Psychological Corporation: San Antonio, TX, USA, 1996. [Google Scholar] [CrossRef]
- Jumani, A.K.; Siddique, W.A.; Laghari, A.A.; Abro, A.; Khan, A.A. Virtual reality and augmented reality for education. In Multimedia Computing Systems and Virtual Reality; CRC Press: Boca Raton, FL, USA, 2022; pp. 189–210. [Google Scholar]
- LaValle, S.M. Virtual Reality; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar]
- Parong, J.; Mayer, R.E. Learning science in immersive virtual reality. J. Educ. Psychol. 2018, 110, 785–797. [Google Scholar] [CrossRef]
- Brenneis, D.J.A.; Parker, A.S.; Johanson, M.B.; Butcher, A.; Davoodi, E.; Acker, L.; Botvinick, M.M.; Modayil, J.; White, A.; Pilarski, P.M. Assessing Human Interaction in Virtual Reality With Continually Learning Prediction Agents Based on Reinforcement Learning Algorithms: A Pilot Study. arXiv 2021, arXiv:2112.07774. [Google Scholar] [CrossRef]
- Caudell, T.P.; Mizell, D.W. Augmented reality: An application of heads-up display technology to manual manufacturing processes. In Proceedings of the Twenty-Fifth Hawaii International Conference on System Sciences, Kauai, HI, USA, 7–10 January 1992. [Google Scholar]
- Craig, A.B. Understanding Augmented Reality: Concepts and Applications; Morgan Kaufmann: Burlington, MA, USA, 2013. [Google Scholar]
- Berryman, D.R. Augmented reality: A review. Med. Ref. Serv. Q. 2012, 31, 212–218. [Google Scholar] [CrossRef]
- Hughes, C.; Stapleton, C.; Hughes, D.; Smith, E. Mixed reality in education, entertainment, and training. IEEE Comput. Graph. Appl. 2005, 25, 24–30. [Google Scholar] [CrossRef]
- Chen, J.; Fu, Y.; Lu, W.; Pan, Y. Augmented reality-enabled human-robot collaboration to balance construction waste sorting efficiency and occupational safety and health. J. Environ. Manag. 2023, 348, 119341. [Google Scholar] [CrossRef]
- Szczurek, K.A.; Cittadini, R.; Prades, R.M.; Matheson, E.; Di Castro, M. Enhanced Human–Robot Interface With Operator Physiological Parameters Monitoring and 3D Mixed Reality. IEEE Access 2023, 11, 39555–39576. [Google Scholar] [CrossRef]
- Covaciu, F.; Crisan, N.; Vaida, C.; Andras, I.; Pusca, A.; Gherman, B.; Radu, C.; Tucan, P.; Al Hajjar, N.; Pisla, D. Integration of Virtual Reality in the Control System of an Innovative Medical Robot for Single-Incision Laparoscopic Surgery. Sensors 2023, 23, 5400. [Google Scholar] [CrossRef]
- Lee, J.Y.; Mucksavage, P.; Kerbl, D.C.; Huynh, V.B.; Etafy, M.; McDougall, E.M. Validation Study of a Virtual Reality Robotic Simulator—Role as an Assessment Tool? J. Urol. 2012, 187, 998–1002. [Google Scholar] [CrossRef]
- Wang, Q.; Jiao, W.; Yu, R.; Johnson, M.T.; Zhang, Y. Virtual Reality Robot-Assisted Welding Based on Human Intention Recognition. IEEE Trans. Autom. Sci. Eng. 2020, 17, 799–808. [Google Scholar] [CrossRef]
- Rovira, A.; Slater, M. Encouraging bystander helping behaviour in a violent incident: A virtual reality study using reinforcement learning. Sci. Rep. 2022, 12, 3843. [Google Scholar] [CrossRef]
- Badia, S.B.i.; Silva, P.A.; Branco, D.; Pinto, A.; Carvalho, C.; Menezes, P.; Almeida, J.; Pilacinski, A. Virtual reality for safe testing and development in collaborative robotics: Challenges and perspectives. Electronics 2022, 11, 1726. [Google Scholar] [CrossRef]
- Ghadirzadeh, A.; Chen, X.; Yin, W.; Yi, Z.; Björkman, M.; Kragic, D. Human-centered collaborative robots with deep reinforcement learning. IEEE Robot. Autom. Lett. 2020, 6, 566–571. [Google Scholar] [CrossRef]
- Wang, B.; Zhou, H.; Li, X.; Yang, G.; Zheng, P.; Song, C.; Yuan, Y.; Wuest, T.; Yang, H.; Wang, L. Human Digital Twin in the context of Industry 5.0. Robot. Comput. Integr. Manuf. 2024, 85, 102626. [Google Scholar] [CrossRef]
- Saghafian, M.; Sitompul, T.; Laumann, K.; Sundnes, K.; Lindell, R. Application of Human Factors in the Development Process of Immersive Visual Technologies: Challenges and Future Improvements. Front. Psychol. 2021, 12, 634352. [Google Scholar] [CrossRef]
- Farias, M.C.Q. Quality of Experience of Immersive Media—New Challenges. In Proceedings of the 29th Brazilian Symposium on Multimedia and the Web, Ribeirão Preto, Brazil, 23–27 October 2023. [Google Scholar] [CrossRef]
- Zhao, W.; Queralta, J.P.; Westerlund, T. Sim-to-Real Transfer in Deep Reinforcement Learning for Robotics: A Survey. In Proceedings of the 2020 IEEE Symposium Series on Computational Intelligence (SSCI), Canberra, ACT, Australia, 1–4 December 2020. [Google Scholar] [CrossRef]
- Marmpena, M.; Garcia, F.; Lim, A.; Hemion, N.; Wennekers, T. Data-driven emotional body language generation for social robotics. arXiv 2022, arXiv:2205.00763. [Google Scholar]
- Paolillo, A.; Colella, F.; Nosengo, N.; Schiano, F.; Stewart, W.; Zambrano, D.; Chappuis, I.; Lalive, R.; Floreano, D. How to compete with robots by assessing job automation risks and resilient alternatives. Sci. Robot. 2022, 7, eabg5561. [Google Scholar] [CrossRef]
- Koster, S.; Brunori, C. What to do when the robots come? Non-formal education in jobs affected by automation. Int. J. Manpow. 2021, 42, 1397–1419. [Google Scholar] [CrossRef]
- Dunstan, B.J.; Koh, J.T.K.V. A cognitive model for human willingness in human-robot interaction development. In Proceedings of the SIGGRAPH Asia 2014 Designing Tools For Crafting Interactive Artifacts, Shenzhen, China, 3–6 December 2014. [Google Scholar]
- van Maris, A.; Zook, N.; Caleb-Solly, P.; Studley, M.; Winfield, A.; Dogramadzi, S. Designing ethical social robots—A longitudinal field study with older adults. Front. Robot. AI 2020, 7, 1. [Google Scholar] [CrossRef]
- Draper, H.; Sorell, T. Ethical values and social care robots for older people: An international qualitative study. Ethics Inf. Technol. 2017, 19, 49–68. [Google Scholar] [CrossRef]
- Pal, S.; Mukhopadhyay, S.; Suryadevara, N. Development and Progress in Sensors and Technologies for Human Emotion Recognition. Sensors 2021, 21, 5554. [Google Scholar] [CrossRef]
- Logan, D.; Breazeal, C.; Goodwin, M.; Jeong, S.; O’Connell, B.; Smith-Freedman, D.; Heathers, J.A.J.; Weinstock, P. Social Robots for Hospitalized Children. Pediatrics 2019, 144, e20181511. [Google Scholar] [CrossRef]
- Swangnetr, M.; Kaber, D. Emotional State Classification in Patient–Robot Interaction Using Wavelet Analysis and Statistics-Based Feature Selection. IEEE Trans. Hum.-Mach. Syst. 2013, 43, 63–75. [Google Scholar] [CrossRef]
- Rudd, I. Leveraging Artificial Intelligence and Robotics to Improve Mental Health. Intellect. Arch. 2022, 11, 3. [Google Scholar] [CrossRef]
- Esposito, A.; Esposito, A.; Vogel, C. Needs and challenges in human computer interaction for processing social emotional information. Pattern Recognit. Lett. 2015, 66, 41–51. [Google Scholar] [CrossRef]
Document Reference | Reinforcement Learning | Immersive Technologies | Human-Factor Sensors | Collaborative Robotics |
---|---|---|---|---|
Iturrate, I. et al. (2010) [41] | ✓ | ✓ | ✓ | |
Onose, G. et al. (2012) [52] | ✓ | ✓ | ||
Kragic, D. et al. (2016) [9] | ✓ | ✓ | ||
Sheridan, T.B. et al. (2016) [11] | ✓ | ✓ | ||
Salazar-Gomez, A.F. et al. (2017) [24] | ✓ | ✓ | ||
Luo, T.J. et al. (2018) [50] | ✓ | ✓ | ✓ | |
Pearce, M. et al. (2018) [7] | ✓ | |||
Ghadirzadeh, A. et al. (2020) [81] | ✓ | ✓ | ✓ | |
Brenneis, D.J.A. et al. (2021) [69] | ✓ | ✓ | ✓ | |
Toichoa Eyam, A. et al. (2021) [33] | ✓ | ✓ | ||
Borboni, A. et al. (2022) [49] | ✓ | ✓ | ||
Shayesteh, S. et al. (2022) [35] | ✓ | ✓ | ✓ | |
Zhang, R. et al. (2022) [39] | ✓ | ✓ | ✓ | |
Rovira, A. et al. (2022) [79] | ✓ | ✓ | ||
Kar, R. et al. (2022) [45] | ✓ | ✓ | ✓ | |
Badia, S.B.i. et al. (2022) [80] | ✓ | ✓ | ||
Simone, V.D. et al. (2022) [8] | ✓ | |||
Zhu, X. et al. (2022) [57] | ✓ | ✓ | ✓ | |
Wang, B. et al. (2022) [82] | ✓ | ✓ | ✓ | |
Lagomarsino, M. et al. (2023) [40] | ✓ | ✓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez-Santocildes, A.; Vazquez, J.-I.; Eguiluz, A. Enhancing Robot Behavior with EEG, Reinforcement Learning and Beyond: A Review of Techniques in Collaborative Robotics. Appl. Sci. 2024, 14, 6345. https://doi.org/10.3390/app14146345
Gonzalez-Santocildes A, Vazquez J-I, Eguiluz A. Enhancing Robot Behavior with EEG, Reinforcement Learning and Beyond: A Review of Techniques in Collaborative Robotics. Applied Sciences. 2024; 14(14):6345. https://doi.org/10.3390/app14146345
Chicago/Turabian StyleGonzalez-Santocildes, Asier, Juan-Ignacio Vazquez, and Andoni Eguiluz. 2024. "Enhancing Robot Behavior with EEG, Reinforcement Learning and Beyond: A Review of Techniques in Collaborative Robotics" Applied Sciences 14, no. 14: 6345. https://doi.org/10.3390/app14146345
APA StyleGonzalez-Santocildes, A., Vazquez, J. -I., & Eguiluz, A. (2024). Enhancing Robot Behavior with EEG, Reinforcement Learning and Beyond: A Review of Techniques in Collaborative Robotics. Applied Sciences, 14(14), 6345. https://doi.org/10.3390/app14146345