How to Optimize the Experimental Protocol for Surface EMG Signal Measurements Using the InterCriteria Decision-Making Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Procedure
2.2. The ICrA Decision-Making Approach
Obj1 | … | Objk | … | Objl | … | Objn | ||
Cr1 | eCr1,Obj1 | … | eCr1,Objk | … | eCr1,Objl | … | eCr1,Objn | |
… | … | … | … | … | … | … | … | |
IMA = | Cri | eCri,Obj1 | … | eCri,Objk | … | eCri,Objl | … | eCri,Objn |
… | … | … | … | … | … | … | … | |
Crj | eCrj,Obj1 | … | eCrj,Objk | … | eCrj,Objl | … | eCrj,Objn | |
… | … | … | … | … | … | … | … | |
Crm | eCrm,Obj1 | … | eCrm,Objk | … | eCrm,Objl | … | eCrm,Objn |
Cr1 | … | Crm | ||
IMA* = | Cr1 | … | ||
… | … | … | … | |
Crm | … |
- In positive consonance when > α and < β;
- In negative consonance when < β and > α;
- In dissonance otherwise.
3. Results
4. Discussion
- Preliminary preparation for EMG data measurements: Determination of the purpose of the research; selection of surface muscles for EMG signals recording; determination of the type and sequence of movements in the FEP; determination of inclusion and exclusion criteria for the participants.
- Selecting suitable subjects for the study.
- FEP execution, including training on and performing the cyclic movements.
- EMG data processing, including the choice of the best cyclic movement (BCM). BCM separation into four phases; application of filters; signal rectification; normalization and calculation of area under the obtained curve.
- ICrA application for optimization of the FEP, based on the calculated values for the flexion and extension phases.
- Objective (based on ICrA) and subjective (based on the researcher’s opinion) assessment of the results.
- Obtaining the OEP.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Atanassov, K.T.; Mavrov, D.; Atanassova, V.K. Intercriteria decision making: A new approach for multicriteria decision making, based on index matrices and intuitionistic fuzzy sets. Issues IFSs GNs 2014, 11, 1–8. [Google Scholar]
- Vankova, D.; Sotirova, E.; Bureva, V. An application of the Intercriteria method approach to health-related quality of life. Notes Int. Fuzzy Sets 2015, 21, 40–48. [Google Scholar]
- Zaharieva, B.; Doukovska, L.; Ribagin, S.; Michalikova, A.; Radeva, I. Intercriteria analysis of Behterev’s kinesitherapy program. Notes Int. Fuzzy Sets 2017, 23, 69–80. [Google Scholar]
- Zaharieva, B.; Doukovska, L.; Ribagin, S.; Radeva, I. InterCriteria approach to Behterev’s disease analysis. Notes Int. Fuzzy Sets 2017, 23, 119–127. [Google Scholar]
- Zaharieva, B.; Doukovska, L.; Ribagin, S.; Radeva, I. InterCriteria analysis of data obtained from patients with Behterev’s disease. Int. J. Bioaut. 2020, 24, 5–14. [Google Scholar] [CrossRef]
- Ribagin, S.; Grozeva, A.; Popova, G.; Stoyanova, Z. InterCriteria analysis of body composition measurements data, associated with obesity among college students. Notes Int. Fuzzy Sets 2019, 25, 78–82. [Google Scholar] [CrossRef]
- Jekova, I.; Vassilev, P.; Stoyanov, T.; Pencheva, T. InterCriteria analysis: Application for ECG data analysis. Mathematics 2021, 9, 854. [Google Scholar] [CrossRef]
- Atanassov, K.; Pencheva, T. InterCriteria analysis approach as a tool for promising decision making in physiological rhythms. In 2019–20 MATRIX Annals; MATRIX Book Series; de Gier, J., Praeger, C.E., Tao, T., Eds.; Springer: Cham, Switzerland, 2021; pp. 279–285. [Google Scholar]
- Fidanova, S.; Zhivkov, P.; Roeva, O. InterCriteria analysis applied on air pollution influence on morbidity. Mathematics 2022, 10, 1195. [Google Scholar] [CrossRef]
- Todinova, S.; Mavrov, D.; Krumova, S.; Marinov, P.; Atanassova, V.; Atanassov, K.; Taneva, S.G. Blood plasma thermograms dataset analysis by means of InterCriteria and correlation analyses for the case of colorectal cancer. Int. J. Bioaut. 2016, 20, 115–124. [Google Scholar]
- Krumova, S.; Todinova, S.; Mavrov, D.; Marinov, P.; Atanassova, V.; Atanassov, K.; Taneva, S.G. InterCriteria analysis of calorimetric data of blood serum proteome. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2017, 1861, 409–417. [Google Scholar] [CrossRef]
- Vassilev, P.; Todorova, L.; Popov, E.; Georgieva, R.; Slavov, C.; Atanassov, K. Two new modifications of the InterCriteria analysis. Proc. Bulg. Acad. Sci. 2023, 76, 23–34. [Google Scholar] [CrossRef]
- Andreev, N.; Sotirova, E.; Ribagin, S. Intercriteria analysis of data from the centers for transfusion hematology in Bulgaria. Comptes Rendus L’acade’mie Bulg. Sci 2018, 72, 982–990. [Google Scholar]
- Andreev, N.; Vassilev, P.; Ribagin, S.; Sotirov, S. InterCriteria analysis of data for blood collection in the Transfusion Hematology Department. University Hospital “St. Anna”, Sofia. Notes Int. Fuzzy Sets 2019, 25, 88–95. [Google Scholar] [CrossRef]
- Andreev, N.; Atanassova, V. InterCriteria analysis of the blood group distribution of patients of Saint Anna hospital in 2015–2019. In Advances and New Developments in Fuzzy Logic and Technology, IWIFSGN’2019—The Eighteenth International Workshop on Intuitionistic Fuzzy Sets and Generalized Nets, Warsaw, Poland, 24–25 October 2019; Advances in Intelligent Systems and Computing; Atanassov, K.T., Atanassova, V., Kacprzyk, J., Kałuszko, A., Krawczak, M., Owsiński, J.W., Sotirov, S.S., Sotirova, E., Szmidt, E., Zadrożny, S., Eds.; Springer: Cham, Switzerland, 2021; Volume 1308, pp. 158–165. [Google Scholar]
- Andreev, N.; Atanasov, K.; Bureva, V. InterCriteria analysis of blood collection data. In Yearbook of the Informatic Section, Union of Scientists in Bulgaria; 2019/2020; Volume 10, pp. 30–53. (In Bulgarian)
- Angelova, S.; Angelova, M.; Raikova, R. Estimating surface EMG activity of human upper arm muscles using InterCriteria Analysis. Math. Comput. 2024, 29, 8. [Google Scholar] [CrossRef]
- Guidance on Assessing and Minimizing Risk in Human Research, and When They Are Prolonged the Risk Rises. Available online: https://irb.unm.edu/library/documents/guidance/assessing-and-minimizing-risk-in-human-research.pdf (accessed on 18 March 2024).
- Hanney, S.R.; Castle-Clarke, S.; Grant, J.; Guthrie, S.; Henshall, C.; Mestre-Ferrandiz, J.; Pistollato, M.; Pollitt, A.; Sussex, J.; Wooding, S. How long does biomedical research take? Studying the time taken between biomedical and health research and its translation into products, policy, and practice. Health Res. Policy Syst. 2015, 13, 1. [Google Scholar] [CrossRef]
- Attracting Life Science Investments in Europe. Fourth Edition. 2023. Available online: https://www.europabio.org/wp-content/uploads/2023/10/Life-Science-Attractiveness-2023-October-22-Final.pdf (accessed on 21 March 2024).
- Atanassov, K.T.; Atanassova, V.K.; Gluhchev, G. InterCriteria analysis: Ideas and problems. Notes Int. Fuzzy Sets 2015, 21, 81–88. [Google Scholar]
- Atanassov, K.T. Index Matrices: Towards an Augmented Matrix Calculus; Springer International Publishing: Cham, Switzerland, 2014. [Google Scholar]
- Roeva, O.; Fidanova, S.; Ganzha, M. InterCriteria analysis of the evaporation parameter influence on ant colony optimization algorithm: A workforce planning problem. In Results of the Workshop on Computational Optimization; Fidanova, S., Ed.; Springer International Publishing: Cham, Switzerland, 2021; Volume 920, pp. 89–109. [Google Scholar]
- Mucherino, A.; Fidanova, S.; Ganzha, M. Ant Colony Optimization With Environment Changes: An Application to GPS Surveying. In Proceedings of the 2015 Federated Conference on Computer Science and Information Systems (FedCSIS), Lodz, Poland, 13–16 September 2015. [Google Scholar]
- Castillo, O.; Ramirez, E.; Roeva, O. Water cycle algorithm augmentation with fuzzy and intuitionistic fuzzy dynamic adaptation of parameters. Notes Int. Fuzzy Sets 2017, 23, 79–94. [Google Scholar]
- Cuvalcioglu, G.; Bureva, V.; Michalikova, A. Intercriteria analysis applied to university ranking system of Turkey. Notes Int. Fuzzy Sets 2019, 25, 90–97. [Google Scholar] [CrossRef]
- Kacprzyk, A.; Sotirov, S.; Sotirova, E.; Shopova, D.; Georgiev, P. Application of intercriteria analysis in the finance and accountancy positions. Notes Int. Fuzzy Sets 2017, 23, 84–90. [Google Scholar]
- Parvathi, R.; Atanassova, V.; Doukovska, L.; Yuvapriya, C.; Indhurekha, K. InterCriteria analysis of rankings of Indian universities. Notes Int. Fuzzy Sets 2018, 24, 99–109. [Google Scholar] [CrossRef]
- Krawczak, M.; Bureva, V.; Sotirova, E.; Szmidt, E. Application of the intercriteria decision making method to universities ranking. Nov. Develop. Uncert. Repres. Proc. 2016, 401, 365–372. [Google Scholar]
- Ikonomov, N.; Vassilev, P.; Roeva, O. ICrAData—Software for intercriteria analysis. Int. J. Bioautom. 2018, 22, 1–10. [Google Scholar] [CrossRef]
- Word Medical Association. Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects; WMA: Helsinki, Finland, 1964. [Google Scholar]
- Park, S.W.; Marino, H.; Charles, S.K.; Sternad, D.; Hogan, N. Moving slowly is hard for humans: Limitations of dynamic primitives. J. Neurophysiol. 2017, 118, 69–83. [Google Scholar] [CrossRef] [PubMed]
Means | µ-Values | |
---|---|---|
positive consonance | strong positive | (0.95, 1.00] |
positive | (0.85, 0.95] | |
weak positive | (0.75, 0.85] | |
dissonance | (0.25; 0.75] | |
negative consonance | weak negative | (0.15, 0.25] |
negative | (0.05, 0.15] | |
strong negative | [0.00, 0.05] |
Flexion Phases in Sagittal Plane | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 |
---|---|---|---|---|---|---|---|---|---|---|
10fsp-6fsp | 1 | 0.87 | 1 | 1 | 0.93 | 1 | 0.93 | 0.93 | 0.93 | 0.87 |
10fsp-2fsp | 1 | 0.87 | 0.93 | 1 | 0.93 | 0.87 | 0.8 | 0.8 | 0.93 | 0.8 |
10fsp-1fsp | 1 | 0.6 | 0.87 | 0.87 | 0.8 | 0.87 | 0.67 | 0.93 | 0.93 | 0.8 |
10fsp-10fspW | 0.8 | 0.53 | 0.87 | 1 | 0.87 | 0.87 | 0.87 | 1 | 0.87 | 0.8 |
10fsp-6fspW | 0.87 | 0.6 | 0.87 | 0.93 | 1 | 0.87 | 0.87 | 1 | 0.87 | 0.8 |
10fsp-2fspW | 93 | 0.6 | 0.87 | 0.93 | 0.87 | 0.87 | 0.87 | 0.93 | 0.93 | 0.8 |
10fsp-1fspW | 1 | 0.6 | 0.87 | 0.87 | 0.8 | 0.87 | 0.67 | 0.93 | 0.87 | 0.8 |
6fsp-2fspW | 1 | 1 | 0.93 | 1 | 1 | 0.87 | 0.87 | 0.87 | 0.87 | 0.93 |
6fsp-1fspW | 1 | 0.73 | 0.87 | 0.87 | 0.87 | 0.87 | 0.73 | 1 | 0.87 | 0.93 |
6fsp-10fspW | 0.8 | 0.67 | 0.87 | 1 | 0.8 | 0.87 | 0.93 | 0.93 | 0.8 | 0.93 |
6fsp-6fspW | 0.87 | 0.73 | 0.87 | 0.93 | 0.93 | 0.87 | 0.93 | 0.93 | 0.8 | 0.93 |
6fsp-2fspW | 0.93 | 0.73 | 0.87 | 0.93 | 0.8 | 0.87 | 0.93 | 1 | 1 | 0.93 |
6fsp-1fspW | 1 | 0.73 | 0.87 | 0.87 | 0.73 | 0.87 | 0.73 | 1 | 0.93 | 0.93 |
2fsp-1fspW | 1 | 0.73 | 0.93 | 0.87 | 0.87 | 1 | 0.87 | 0.87 | 1 | 1 |
2fsp-10fspW | 0.8 | 0.67 | 0.93 | 1 | 0.8 | 1 | 0.93 | 0.8 | 0.93 | 0.87 |
2fsp-6fspW | 0.87 | 0.73 | 0.93 | 0.93 | 0.93 | 1 | 0.93 | 0.8 | 0.93 | 1 |
2fsp-2fspW | 0.93 | 0.73 | 0.93 | 0.93 | 0.8 | 1 | 0.93 | 0.87 | 0.87 | 1 |
2fsp-1flspW | 1 | 0.73 | 0.93 | 0.87 | 0.73 | 1 | 0.87 | 0.87 | 0.8 | 1 |
1fsp-10fspW | 0.8 | 0.8 | 0.87 | 0.87 | 0.67 | 1 | 0.8 | 0.93 | 0.93 | 0.87 |
1fsp-6fspW | 0.87 | 0.87 | 1 | 0.93 | 0.8 | 1 | 0.8 | 0.93 | 0.93 | 1 |
1fsp-2fspW | 0.93 | 0.87 | 1 | 0.93 | 0.8 | 1 | 0.8 | 1 | 0.87 | 1 |
1fsp-1fspW | 1 | 1 | 1 | 1 | 0.73 | 1 | 1 | 1 | 0.8 | 1 |
10fspW-6fspW | 0.93 | 0.93 | 0.87 | 0.93 | 0.87 | 1 | 1 | 1 | 1 | 0.87 |
10fspW-2fspW | 0.73 | 0.93 | 0.87 | 0.93 | 0.87 | 1 | 1 | 0.93 | 0.8 | 0.87 |
10fspW-1fspW | 0.8 | 0.8 | 0.87 | 0.87 | 0.93 | 1 | 0.8 | 0.93 | 0.87 | 0.87 |
6fspW-2fspW | 0.8 | 1 | 1 | 1 | 0.87 | 1 | 1 | 0.93 | 0.8 | 1 |
6fspW-1fspW | 0.87 | 0.87 | 1 | 0.93 | 0.8 | 1 | 0.8 | 0.93 | 0.87 | 1 |
2fspW-1fspW | 0.93 | 0.87 | 1 | 0.93 | 0.93 | 1 | 0.8 | 1 | 0.93 | 1 |
Extension Phases in Sagittal Plane | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 |
---|---|---|---|---|---|---|---|---|---|---|
10esp-6esp | 0.87 | 1 | 1 | 1 | 1 | 1 | 0.93 | 0.87 | 0.93 | 0.93 |
10esp-2esp | 0.87 | 0.93 | 0.8 | 1 | 0.87 | 0.87 | 0.93 | 0.8 | 0.67 | 0.87 |
10esp-1esp | 0.73 | 0.93 | 0.8 | 0.93 | 0.8 | 0.87 | 0.73 | 0.73 | 0.8 | 0.8 |
10esp-10espW | 0.73 | 0.67 | 0.93 | 1 | 0.93 | 0.87 | 1 | 1 | 0.8 | 0.8 |
10esp-6espW | 0.8 | 0.67 | 1 | 1 | 0.87 | 0.87 | 0.93 | 0.93 | 0.73 | 0.8 |
10esp-2espW | 0.8 | 0.87 | 0.93 | 0.93 | 0.73 | 0.87 | 0.93 | 0.93 | 0.87 | 0.87 |
10esp-1espW | 0.67 | 0.93 | 0.87 | 1 | 0.87 | 0.87 | 0.8 | 0.8 | 0.87 | 0.67 |
6esp-2espW | 0.87 | 0.93 | 0.8 | 1 | 0.87 | 0.87 | 1 | 0.8 | 0.73 | 0.93 |
6esp-1espW | 0.73 | 0.93 | 0.8 | 0.93 | 0.8 | 0.87 | 0.8 | 0.73 | 0.87 | 0.87 |
6esp-10espW | 0.87 | 0.67 | 0.93 | 1 | 0.93 | 0.87 | 0.93 | 0.87 | 0.87 | 0.73 |
6esp-6espW | 0.8 | 0.67 | 1 | 1 | 0.87 | 0.87 | 1 | 0.93 | 0.8 | 0.73 |
6esp-2espW | 0.93 | 0.87 | 0.93 | 0.93 | 0.73 | 0.87 | 1 | 0.93 | 0.93 | 0.8 |
6esp-1espW | 0.8 | 0.93 | 0.87 | 1 | 0.87 | 0.87 | 0.87 | 0.8 | 0.93 | 0.73 |
2esp-1espW | 0.87 | 0.87 | 1 | 0.93 | 0.93 | 1 | 0.8 | 0.67 | 0.87 | 0.93 |
2esp-10espW | 0.73 | 0.73 | 0.73 | 1 | 0.93 | 1 | 0.93 | 0.8 | 0.73 | 0.8 |
2esp-6espW | 0.8 | 0.73 | 0.8 | 1 | 1 | 1 | 1 | 0.87 | 0.67 | 0.8 |
2esp-2espW | 0.93 | 0.8 | 0.73 | 0.93 | 0.87 | 1 | 1 | 0.87 | 0.8 | 0.87 |
2esp-1elspW | 0.8 | 0.87 | 0.8 | 1 | 1 | 1 | 0.87 | 0.73 | 0.8 | 0.8 |
1esp-10espW | 0.6 | 0.6 | 0.73 | 0.93 | 0.87 | 1 | 0.73 | 0.73 | 0.87 | 0.73 |
1esp-6espW | 0.67 | 0.6 | 0.8 | 0.93 | 0.93 | 1 | 0.8 | 0.8 | 0.8 | 0.73 |
1esp-2espW | 0.8 | 0.8 | 0.73 | 0.87 | 0.93 | 1 | 0.8 | 0.8 | 0.93 | 0.8 |
1esp-1espW | 0.8 | 0.86 | 0.8 | 0.93 | 0.93 | 1 | 0.93 | 0.93 | 0.93 | 0.73 |
10espW-6espW | 0.93 | 1 | 0.93 | 1 | 0.93 | 1 | 0.93 | 0.93 | 0.93 | 1 |
10espW-2espW | 0.8 | 0.8 | 0.87 | 0.93 | 0.8 | 1 | 0.93 | 0.93 | 0.93 | 0.93 |
10espW-1espW | 0.67 | 0.73 | 0.93 | 1 | 0.93 | 1 | 0.8 | 0.8 | 0.93 | 0.87 |
6espW-2espW | 0.73 | 0.8 | 0.93 | 0.93 | 0.87 | 1 | 1 | 1 | 0.87 | 0.93 |
6espW-1espW | 0.6 | 0.73 | 0.87 | 1 | 1 | 1 | 0.87 | 0.87 | 0.87 | 0.87 |
2espW-1espW | 0.87 | 0.93 | 0.8 | 0.93 | 0.87 | 1 | 0.87 | 0.87 | 1 | 0.8 |
ICrA Detected PC between Flexion Phases | ICrA Detected PC between Extension Phases | Detected Consonance | Tasks for Further Consideration |
---|---|---|---|
10fsp-6fsp | 10esp-6esp | strong PC, PC | TASK 3–TASK 4 |
10fsp-2fsp | |||
6fsp-2fspW | |||
1fsp-6fspW | |||
1fsp-2fspW | |||
10fspW-6fspW | 10espW-6espW | strong PC, PC | TASK LOAD 7–TASK LOAD 8 |
10fspW-1fspW | |||
10espW-2espW | |||
6fspW-2fspW | |||
6fspW-1fspW | |||
2fspW-1fspW | 2espW-1espW | strong PC, PC, weak PC | TASK LOAD 9–TASK LOAD 10 |
Full EP | Runtime [min] | Optimized EP | Runtime [min] |
---|---|---|---|
TASK 1 | 1 | TASK 1 | 1 |
TASK 2 | 1 | TASK 2 | 1 |
TASK 3 | 1 | - | - |
TASK 4 | 1 | TASK 4 | 1 |
TASK 5 | 1 | TASK 5 | 1 |
TASK 6 | 1 | TASK 6 | 1 |
TASK LOAD 7 | 1 | - | - |
TASK LOAD 8 | 1 | TASK LOAD 8 | 1 |
TASK LOAD 9 | 1 | - | - |
TASK LOAD 10 | 1 | TASK LOAD 10 | 1 |
Total runtime, [min] | 10 | Total runtime, [min] | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angelova, M.; Angelova, S.; Raikova, R. How to Optimize the Experimental Protocol for Surface EMG Signal Measurements Using the InterCriteria Decision-Making Approach. Appl. Sci. 2024, 14, 5436. https://doi.org/10.3390/app14135436
Angelova M, Angelova S, Raikova R. How to Optimize the Experimental Protocol for Surface EMG Signal Measurements Using the InterCriteria Decision-Making Approach. Applied Sciences. 2024; 14(13):5436. https://doi.org/10.3390/app14135436
Chicago/Turabian StyleAngelova, Maria, Silvija Angelova, and Rositsa Raikova. 2024. "How to Optimize the Experimental Protocol for Surface EMG Signal Measurements Using the InterCriteria Decision-Making Approach" Applied Sciences 14, no. 13: 5436. https://doi.org/10.3390/app14135436
APA StyleAngelova, M., Angelova, S., & Raikova, R. (2024). How to Optimize the Experimental Protocol for Surface EMG Signal Measurements Using the InterCriteria Decision-Making Approach. Applied Sciences, 14(13), 5436. https://doi.org/10.3390/app14135436