A Hybrid Strategy Improved SPEA2 Algorithm for Multi-Objective Web Service Composition
<p>An example of web service composition.</p> "> Figure 2
<p>Overview of MSPEA2+.</p> "> Figure 3
<p>Example of encoding and decoding.</p> "> Figure 4
<p>Example of double-point crossover in WSCP.</p> "> Figure 5
<p>An Example of Mutation in MPSEA2+.</p> "> Figure 6
<p>Mean IGD over generation for different archive sizes: (<b>a</b>) WSC-0803; (<b>b</b>) WSC-0804.</p> "> Figure 7
<p>Mean IGD over generation for non-dominated set: (<b>a</b>) WSC-0801; (<b>b</b>) WSC-0802.</p> ">
Abstract
:1. Introduction
- The application of the SPEA2 to the IOM-based WSCP;
- Investigation of the impact of archive size on SPEA2 through conducting experiments on datasets of different sizes;
- Father–child merging, neighborhood crossover, and preference crossover merging in SPEA2 to enhance iteration efficiency and prevent the population from converging to local optima.
- Evaluation of the improved MSPEA2+ algorithm through conducting experiments on the WSC-08 dataset and comparing its performance with SPEA2, SPEA2+, and NSGA2, demonstrating the effectiveness of MSPEA2+.
2. Related Work
3. Background and Problem Formulation
3.1. Running Example
3.2. Preliminaries
3.2.1. Problem Formulation
- Web services (services for short) ;
- For each service, a set of service inputs and a set of service outputs ;
- The set of all candidate services CS;
- SWCP task with input and required output ;
- Two special nodes, start node and end node ;
- A group of web services with the same ontology called service resporsity ;
- Ontology . is the sub-semantic of ontology, which connects the hierarchical relationship of ontology.
3.2.2. Solution Architecture
- Individual , where g is the generation of optimization;
- Each individual represents the composition result of candidate services ;
- The set of individuals in each generation called population ;
- The size of population ;
- Non-dominated solution: the solution which is at least as good as other solutions on at least one objective, and better than other solutions on other objectives;
- Pareto optimal: the solution compared with which no other solution can achieve better results on all objectives at the same time;
- Pareto frontier: the boundary of all Pareto optimal solutions.
3.3. QoS Evalutation
4. Algorithm
4.1. Greedy Search for Initialization and Decoding
- We started from and formed a collection with currently available output ;
- was used as input for the subsequent search;
- All unused service were traversed and matching services added to the next layer;
- The process was terminated when there was no unused available service.
4.2. Breeding
Algorithm 1 MSPEA2+ Main Loop |
Input: (Population size); (Archive size); (Maximum number of generations); Output: A (Non-dominated set);
|
4.3. Crossover
Algorithm 2 Crossover in MSPEA2+ |
|
4.4. Mutation
5. Experiment and Discussion
5.1. Experiment Setting
5.2. Comparison of the Archive Size
5.3. Comparison of the Convergence Rate
5.4. Comparison of the IGD and Execution Time
6. Conclusions
6.1. Contributions of Our Work
6.2. Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oh, S.C.; Lee, D.; Kumara, S.R.T. Effective web service composition in diverse and large-scale service networks. IEEE Trans. Serv. Comput. 2008, 1, 15–32. [Google Scholar] [CrossRef]
- Jula, A.; Sundararajan, E.; Othman, Z. Cloud computing service composition: A systematic literature review. Expert Syst. Appl. 2014, 41, 3809–3824. [Google Scholar] [CrossRef]
- Asghari, P.; Rahmani, A.M.; Javadi, H.H.S. Service composition approaches in IoT: A systematic review. J. Netw. Comput. Appl. 2018, 120, 61–77. [Google Scholar] [CrossRef]
- Wang, P.; Ding, Z.; Jiang, C.; Zhou, M. Web service composition techniques in a health care service platform. In Proceedings of the 2011 IEEE International Conference on Web Services, Washington, DC, USA, 4–9 July 2011; pp. 355–362. [Google Scholar]
- Sadeghiram, S.; Ma, H.; Chen, G. A novel repair-based multi-objective algorithm for QoS-Constrained distributed data-intensive Web service composition. In Web Information Systems Engineering–WISE 2020, Proceedings of the 21st International Conference, Amsterdam, The Netherlands, 20–24 October 2020; Proceedings, Part I 21; Springer International Publishing: Cham, Switzerland, 2020; pp. 489–502. [Google Scholar]
- Chifu, V.R.; Pop, C.B.; Salomie, I.; Dinsoreanu, M.; Niculici, A.N.; Suia, D.S. Selecting the optimal web service composition based on a multi-criteria bee-inspired method. In Proceedings of the 12th International Conference on Information Integration and Web-Based Applications & Services, Paris, France, 8–10 November 2010; pp. 40–47. [Google Scholar]
- Yao, Y.; Chen, H. Qos-aware service composition using NSGA-II1. In Proceedings of the 2nd International Conference on Interaction Sciences: Information Technology, Culture and Human, Seoul, Republic of Korea, 24–26 November 2009; pp. 358–363. [Google Scholar]
- George, T.; George, B. OWL-S: Semantic Markup for Web Services; Computer Science Department University of Crete: Heraklion, Greece, 2004. [Google Scholar]
- Rhayem, A.; Mhiri, M.B.A.; Gargouri, F. Semantic web technologies for the internet of things: Systematic literature review. Internet Things 2020, 11, 100206. [Google Scholar] [CrossRef]
- Wang, C.; Ma, H.; Chen, G.; Hartmann, S. Using an estimation of distribution algorithm to achieve multitasking semantic web service composition. IEEE Trans. Evol. Comput. 2023, 27, 490–504. [Google Scholar] [CrossRef]
- Singh, J. A review and comparison of two archive based Algorithms: SPEA2 and PAES. AIP Conf. Proc. 2023, 2819, 090003. [Google Scholar]
- Cremene, M.; Suciu, M.; Pallez, D.; Dumitrescu, D. Comparative analysis of multi-objective evolutionary algorithms for QoS-aware web service composition. Appl. Soft Comput. 2016, 39, 124–139. [Google Scholar] [CrossRef]
- Zitzler, E.; Laumanns, M.; Thiele, L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm; TIK Report; ETH Zurich: Zurich, Switzerland, 2001; Volume 103. [Google Scholar]
- Gabrel, V.; Manouvrier, M.; Murat, C. Optimal and automatic transactional web service composition with dependency graph and 0–1 linear programming. In Service-Oriented Computing, Proceedings of the 12th International Conference, ICSOC 2014, Paris, France, 3–6 November 2014; Proceedings 12; Springer: Berlin/Heidelberg, Germany, 2014; pp. 108–122. [Google Scholar]
- Chattopadhyay, S.; Banerjee, A.; Banerjee, N. A fast and scalable mechanism for web service composition. ACM Trans. Web 2017, 11, 26. [Google Scholar] [CrossRef]
- Sha, M.; Alameen, A. Functionality Aware Dynamic Composition of Web Services. Comput. Syst. Sci. Eng. 2021, 36, 201–211. [Google Scholar] [CrossRef]
- Barkat, A.; Kazar, O.; Seddiki, I. Framework for web service composition based on QoS in the multi cloud environment. Int. J. Inf. Technol. 2021, 13, 459–467. [Google Scholar] [CrossRef]
- Li, J.; Zheng, X.-L.; Chen, S.-T.; Song, W.-W.; Chen, D.-R. An efficient and reliable approach for quality-of-service-aware service composition. Inf. Sci. 2014, 269, 238–254. [Google Scholar] [CrossRef]
- Arunachalam, N.; Amuthan, A. Integrated probability multi-search and solution acceptance rule-based artificial bee colony optimization scheme for web service composition. Nat. Comput. 2021, 20, 23–38. [Google Scholar] [CrossRef]
- Huo, Y.; Zhuang, Y.; Gu, J.; Ni, S.; Xue, Y. Discrete gbest-guided artificial bee colony algorithm for cloud service composition. Appl. Intell. 2015, 42, 661–678. [Google Scholar] [CrossRef]
- Li, T.; He, T.; Wang, Z.; Zhang, Y. SDF-GA: A service domain feature-oriented approach for manufacturing cloud service composition. J. Intell. Manuf. 2020, 31, 681–702. [Google Scholar] [CrossRef]
- Chen, M.; Wang, Q.; Sun, W.; Song, X.; Chu, N. GA for QoS satisfaction degree optimal web service composition selection model. In Proceedings of the 2019 6th International Conference on Behavioral, Economic and Socio-Cultural Computing (BESC), Beijing, China, 28–30 October 2019; pp. 1–4. [Google Scholar]
- Kashyap, N.; Kumari, A.C.; Chhikara, R. Service Composition in IoT using Genetic algorithm and Particle swarm optimization. Open Comput. Sci. 2020, 10, 56–64. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, X.; Xiao, Y.; Cao, Z. Large-scale Web service composition based on optimized grey wolf optimizer. J. Comput. Appl. 2022, 42, 3162. [Google Scholar]
- Jalal, S.; Yadav, D.K. Transaction and QoS-Driven Composition of Web Services Using Modified Grey Wolf Optimization with TOPSIS and AHP. In Advances in Distributed Computing and Machine Learning: Proceedings of ICADCML 2022; Springer Nature: Singapore, 2022; pp. 109–119. [Google Scholar]
- Dahan, F.; El Hindi, K.; Ghoneim, A.; Alsalman, H. An enhanced ant colony optimization based algorithm to solve QoS-aware web service composition. IEEE Access 2021, 9, 34098–34111. [Google Scholar] [CrossRef]
- El Allali, N.; Fariss, M.; Asaidi, H.; Bellouki, M. Semantic web services composition model using ant colony optimization. In Proceedings of the 2020 Fourth International Conference On Intelligent Computing in Data Sciences (ICDS), Fez, Morocco, 21–23 October 2020; pp. 1–5. [Google Scholar]
- Ibrahim, G.J.; Rashid, T.A.; Akinsolu, M.O. An energy efficient service composition mechanism using a hybrid meta-heuristic algorithm in a mobile cloud environment. J. Parallel Distrib. Comput. 2020, 143, 77–87. [Google Scholar] [CrossRef]
- Ju, C.; Ding, H.; Hu, B. A hybrid strategy improved whale optimization algorithm for web service composition. Comput. J. 2023, 66, 662–677. [Google Scholar] [CrossRef]
- Azouz, Y.; Boughaci, D. Multi-objective memetic approach for the optimal web services composition. Expert Syst. 2023, 40, e13084. [Google Scholar] [CrossRef]
- Hosseini Shirvani, M. Bi-objective web service composition problem in multi-cloud environment: A bi-objective time-varying particle swarm optimisation algorithm. J. Exp. Theor. Artif. Intell. 2021, 33, 179–202. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, B.; Wang, S.; Jin, T.; Li, S. An enhanced multi-objective grey wolf optimizer for service composition in cloud manufacturing. Appl. Soft Comput. 2020, 87, 106003. [Google Scholar] [CrossRef]
- Sawczuk da Silva, A.; Mei, Y.; Ma, H.; Zhang, M. Particle swarm optimisation with sequence-like indirect representation for web service composition. In Evolutionary Computation in Combinatorial Optimization, Proceedings of the 16th European Conference, EvoCOP 2016, Porto, Portugal, 30 March–1 April 2016; Proceedings 16; Springer International Publishing: Cham, Switzerland, 2016; pp. 202–218. [Google Scholar]
- Ma, H.; Wang, A.; Zhang, M. A hybrid approach using genetic programming and greedy search for QoS-aware web service composition. In Transactions on Large-Scale Data- and Knowledge-Centered Systems XVIII: Special Issue on Database- and Expert-Systems Applications; Springer: Berlin/Heidelberg, Germany, 2015; pp. 180–205. [Google Scholar]
- Chattopadhyay, S.; Banerjee, A. QoS-aware automatic Web service composition with multiple objectives. ACM Trans. Web 2020, 14, 12. [Google Scholar] [CrossRef]
- Wang, C.; Ma, H.; Chen, G.; Hartmann, S. Memetic EDA-Based Approaches to QoS-Aware Fully Automated Semantic Web Service Composition. IEEE Trans. Evol. Comput. 2021, 26, 570–584. [Google Scholar] [CrossRef]
- Ruta, M.; Scioscia, F.; Bilenchi, I.; Gramegna, F.; Loseto, G.; Ieva, S.; Pinto, A. A multiplatform reasoning engine for the Semantic Web of Everything. J. Web Semant. 2022, 73, 100709. [Google Scholar] [CrossRef]
- Chalkiadakis, G.; Ziogas, I.; Koutsmanis, M.; Streviniotis, E.; Panagiotakis, C.; Papadakis, H. A novel hybrid recommender system for the tourism domain. Algorithms 2023, 16, 215. [Google Scholar] [CrossRef]
- Song, Y.; Fang, X. An Improved Strength Pareto Evolutionary Algorithm 2 with Adaptive Crossover Operator for Bi-Objective Distributed Unmanned Aerial Vehicle Delivery. Mathematics 2023, 11, 3327. [Google Scholar] [CrossRef]
- Kashyap, N.; Kumari, A.C.; Chhikara, R. Multi-objective Optimization using NSGA II for service composition in IoT. Procedia Comput. Sci. 2020, 167, 1928–1933. [Google Scholar] [CrossRef]
- Deb, K.; Agrawal, R.B. Simulated binary crossover for continuous search space. Complex Syst. 1995, 9, 115–148. [Google Scholar]
- Fan, Y.; Wang, Z.; Xiong, X.; Panchal, S.; Fraser, R.; Fowler, M. Multi-Objective Optimization Design and Experimental Investigation for a Prismatic Lithium-Ion Battery Integrated with a Multi-Stage Tesla Valve-Based Cold Plate. Processes 2023, 11, 1618. [Google Scholar] [CrossRef]
- Bansal, A.; Blake, M.B.; Kona, S.; Bleul, S.; Weise, T.; Jaeger, M.C. WSC-08: Continuing the web services challenge. In Proceedings of the 2008 10th IEEE Conference on E-Commerce Technology and the Fifth IEEE Conference on Enterprise Computing, E-Commerce and E-Services, Arlington, VA, USA, 21–24 July 2008; pp. 351–354. [Google Scholar]
- Mejía-de-Dios, J.A.; Rodríguez-Molina, A.; Mezura-Montes, E. Multiobjective Bilevel Optimization: A Survey of the State-of-the-Art. IEEE Trans. Syst. Man Cybern. Syst. 2023, 53, 5478–5490. [Google Scholar] [CrossRef]
QQS Attributes | Availability | Reliability | Time | Cost | SIM | MT |
---|---|---|---|---|---|---|
Sequential | ||||||
Parallel | ||||||
Choice |
Task\Size | 10% | 20% | 40% | 60% | 80% | 100% |
---|---|---|---|---|---|---|
0803 | 38.01 | 36.53 | 35.56 | 33.35 | 35.96 | 36.28 |
0804 | 1.76 | 1.92 | 1.63 | 1.59 | 2.20 | 2.21 |
Task/Method | MSPEA2+ | NSGA2 | SPEA2+ | SPEA2 |
---|---|---|---|---|
0801 | 0.001262 | 0.002450 | 0.003449 | 0.003957 |
0802 | 0.001771 | 0.003377 | 0.005384 | 0.004716 |
0803 | 0.000101 | 0.000289 | 0.000526 | 0.000561 |
0804 | 0.000921 | 0.003363 | 0.004302 | 0.004287 |
0805 | 0.000647 | 0.003731 | 0.001097 | 0.003540 |
0806 | 0.000182 | 0.003470 | 0.000764 | 0.000294 |
0807 | 0.000617 | 0.002081 | 0.000346 | 0.000740 |
0808 | 0.000264 | 0.002820 | 0.000671 | 0.002817 |
Method\Task | 0801 | 0802 | 0803 | 0804 | 0805 | 0806 | 0807 | 0808 |
---|---|---|---|---|---|---|---|---|
MSPEA2+ | 2.82 | 0.85 | 35.56 | 1.63 | 44.48 | 352.8 | 219.36 | 206.32 |
NSGA2 | 2.71 | 1.18 | 36.73 | 1.59 | 41.47 | 387.4 | 213.80 | 209.15 |
SPEA2+ | 2.88 | 0.86 | 37.32 | 1.65 | 45.62 | 357.6 | 203.35 | 197.90 |
SPEA2 | 2.87 | 0.87 | 37.53 | 1.56 | 45.62 | 349.3 | 210.86 | 195.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Du, Y.; Chen, F. A Hybrid Strategy Improved SPEA2 Algorithm for Multi-Objective Web Service Composition. Appl. Sci. 2024, 14, 4157. https://doi.org/10.3390/app14104157
Wang H, Du Y, Chen F. A Hybrid Strategy Improved SPEA2 Algorithm for Multi-Objective Web Service Composition. Applied Sciences. 2024; 14(10):4157. https://doi.org/10.3390/app14104157
Chicago/Turabian StyleWang, Hanting, Yugen Du, and Fan Chen. 2024. "A Hybrid Strategy Improved SPEA2 Algorithm for Multi-Objective Web Service Composition" Applied Sciences 14, no. 10: 4157. https://doi.org/10.3390/app14104157