Influence of the Road Model on the Optimal Maneuver of a Racing Motorcycle
<p>The ribbon frame <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>O</mi> </mrow> <mrow> <mi>t</mi> <mi>n</mi> <mi>m</mi> </mrow> </msub> </mrow> </semantics></math> and the vehicle frame <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>A</mi> </mrow> <mrow> <mover accent="true"> <mrow> <mi>x</mi> </mrow> <mo stretchy="false">^</mo> </mover> <mover accent="true"> <mrow> <mi>y</mi> </mrow> <mo stretchy="false">^</mo> </mover> <mover accent="true"> <mrow> <mi>z</mi> </mrow> <mo stretchy="false">^</mo> </mover> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 2
<p>Vehicle positioning on the three-dimensional road.</p> "> Figure 3
<p>Generalized rigid-body motorcycle model. <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>F</mi> </mrow> <mrow> <mi>x</mi> </mrow> </msub> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>F</mi> </mrow> <mrow> <mi>y</mi> </mrow> </msub> <mo>,</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>N</mi> </mrow> </semantics></math> are the longitudinal, lateral, and vertical forces acting on the front (subscript <math display="inline"><semantics> <mrow> <mi>f</mi> </mrow> </semantics></math>) and the rear (subscript <math display="inline"><semantics> <mrow> <mi>r</mi> </mrow> </semantics></math>) tire. <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>F</mi> </mrow> <mrow> <mi>d</mi> </mrow> </msub> </mrow> </semantics></math> is the drag force. The center of gravity and center of pressure are indicated by the acronyms CoG and CoP, respectively.</p> "> Figure 4
<p>Vehicle performance envelope: (<b>a</b>) exemplary g-g diagram of motorcycle at selected speed <math display="inline"><semantics> <mrow> <mi>V</mi> </mrow> </semantics></math> modified by road camber <math display="inline"><semantics> <mrow> <mi>ϕ</mi> </mrow> </semantics></math>, road inclination <math display="inline"><semantics> <mrow> <mi>μ</mi> </mrow> </semantics></math> and road normal curvature variations represented by the term <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi>ω</mi> </mrow> <mo stretchy="false">^</mo> </mover> </mrow> <mrow> <mi>y</mi> </mrow> </msub> <mi>V</mi> </mrow> </semantics></math>; (<b>b</b>) hypersurfaces of the adhesion radius generated for various values of apparent gravity <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <mi mathvariant="normal">g</mi> </mrow> <mo stretchy="false">~</mo> </mover> </mrow> </semantics></math>.</p> "> Figure 5
<p>Enlarged view of turn 12. Measured points on track edges (circles), with the reconstructed track boundaries using penalty factor <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>w</mi> </mrow> <mrow> <mi>θ</mi> </mrow> </msub> </mrow> </semantics></math> equal to <math display="inline"><semantics> <mrow> <mn>4</mn> <mo>×</mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mn>4</mn> </mrow> </msup> </mrow> </semantics></math> (thick line in light blue) and <math display="inline"><semantics> <mrow> <mn>4</mn> <mo>×</mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mn>6</mn> </mrow> </msup> </mrow> </semantics></math> (thin line in purple). The dashed lines symbolize the calculated spine curves.</p> "> Figure 6
<p>Track reconstruction results: (<b>a</b>) plain view of Road Atlanta circuit, (<b>b</b>) track curvatures.</p> "> Figure 7
<p>Track boundaries altitude: (<b>a</b>) left edge, (<b>b</b>) right edge.</p> "> Figure 8
<p>Height difference between track boundaries.</p> "> Figure 9
<p>Comparison of the Euler angles: (<b>a</b>) road camber <math display="inline"><semantics> <mrow> <mi>ϕ</mi> </mrow> </semantics></math> (<b>b</b>) road inclination <math display="inline"><semantics> <mrow> <mi>μ</mi> </mrow> </semantics></math>.</p> "> Figure 10
<p>Discrepancies in the road geometry between 3D-local and 3D-global cases: (<b>a</b>) track sector between turns 5 and 8, (<b>b</b>) turn 11 and chicane composed of corners 10a and 10b. The z-axis is exaggerated by a factor of three to emphasize the differences between the models.</p> "> Figure 11
<p>Track width in particular road models.</p> "> Figure 12
<p>Plots related to the vehicle powertrain: (<b>a</b>) engine torque and power measured at the rear wheel, (<b>b</b>) driving force for gears 2–6 and total resistance force.</p> "> Figure 13
<p>Velocity profiles (<b>top</b>) and time difference (<b>bottom</b>) as a function of elapsed distance: (<b>a</b>) comparison between experimental data and 3D-local case, (<b>b</b>) comparison between GPS speed and vehicle speed computed in 3D-global and 2D cases.</p> "> Figure 14
<p>Longitudinal acceleration (<b>top</b>) and lateral acceleration (<b>bottom</b>). Experimental data compared with (<b>a</b>) 3D-local simulation, (<b>b</b>) 3D-global and 2D cases.</p> "> Figure 15
<p>g-g diagrams. Experimentally measured accelerations compared with (<b>a</b>) 3D-local simulation, (<b>b</b>) 3D-global simulation, (<b>c</b>) 2D road case.</p> "> Figure 16
<p>Comparison of (<b>a</b>) vehicle lateral position, (<b>b</b>) radius of curvature modulus.</p> "> Figure 17
<p>Comparison of the optimal trajectories; enlarged view of (<b>a</b>) turn 11, (<b>b</b>) chicane 10a–10b.</p> "> Figure 18
<p>From top to bottom: vertical force acting on the front wheel, front suspension deflection and (in blue) wheel speed, throttle position.</p> "> Figure 19
<p>Total vertical force depending on the adopted road model.</p> "> Figure 20
<p>Enlarged view of the track section including turn 5 and the straight between turns 5 and 6 (<b>left</b>). The right side of the figure shows (from top to bottom) vehicle speed, longitudinal acceleration, lateral acceleration, radius of curvature modulus, throttle position, front brake pressure, engine speed, and gear selected.</p> ">
Abstract
:1. Introduction
2. Road Modeling
2.1. Track Identification OCP
2.2. Acquiring and Preparing the Input Dataset
- Global DEMs covering large areas of the world, typically characterized by a resolution of 30 m or less;
- Local DEMs provided by individual countries or regions, often with a high resolution of 5 m, 1 m, or even higher.
3. Three-Dimensional Free-Trajectory Quasi-Steady-State MLTS
3.1. Vehicle Positioning on the Three-Dimensional Road and Formulation of the Minimum Lap Time Problem
3.2. Vehicle Model and Related Vehicle Performance Constraint
4. Results of Track Reconstruction
Comparison between Results Obtained Using Local and Global DEMs
- In the first model, later referred to as 3D-local, the elevation of the points was determined using a local DEM provided in TIFF file format by the United States Geological Survey [43]. This database has a resolution of 1 m and 0.1 m root mean square elevation error;
- In the second model, hereafter referred to as 3D-global, the elevation data were assigned using a tool available at [44]. The assigned elevation data were derived from the NED1 global DEM, characterized by 1 arc-second horizontal resolution;
- In the third case, the simple two-dimensional track model was built—later referred to as 2D. It was obtained by omitting variables in the state vector and in the control vector in the track identification OCP formulated in Section 2.1.
5. Optimal Maneuver Simulation Results
5.1. Comparison of Simulation Results on Adopted Road Models
5.2. Analysis of Tire Vertical Load
5.3. Detailed Analysis of Selected Track Segment
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CoG | center of gravity |
CoP | center of pressure |
DEM | digital elevation model |
MLTS | minimum lap time simulation |
MPC | model predictive control |
OCP | optimal control problem |
QSS | quasi-steady-state |
List of symbols: | |
longitudinal acceleration | |
longitudinal acceleration in generalized vehicle model | |
lateral acceleration | |
lateral acceleration in generalized vehicle model | |
longitudinal position of CoG | |
drag area coefficient | |
drag force | |
longitudinal force acting on the front and rear wheel, respectively | |
lateral force acting on the front and rear wheel, respectively | |
standard gravity | |
apparent gravity | |
height of CoG | |
height of CoP | |
gear ratio | |
primary transmission ratio | |
secondary transmission ratio | |
longitudinal jerk constraint for positive gradients of the longitudinal vehicle acceleration | |
longitudinal jerk constraint for negative gradients of the longitudinal vehicle acceleration | |
lateral jerk constraint | |
longitudinal jerk | |
lateral jerk | |
cost function | |
track length | |
total mass (vehicle + rider) | |
vertical force acting on the front and rear wheel, respectively | |
lateral vehicle position with respect to the track spine curve | |
engine speed | |
rotation matrix | |
tire rolling radius | |
curvilinear abscissa | |
start and end track length | |
elapsed distance | |
speed of travelling along the spine curve | |
start and end time of control | |
track width | |
control vectors | |
absolute velocity along the trajectory | |
wheelbase | |
weights in the cost function in the track reconstruction problem | |
state vectors | |
spine curve cartesian coordinates | |
left road border cartesian coordinates | |
right road border cartesian coordinates | |
angular coordinate (orientation) | |
coefficients used in jerks’ constraints | |
yaw (track heading) | |
pitch (road inclination) | |
longitudinal friction coefficient | |
lateral friction coefficient | |
radius of curvature | |
air density | |
adherence radius | |
maximum value of adherence radius | |
roll (road camber) | |
vehicle roll angle relative to the road surface | |
relative orientation of vehicle speed with respect to the tangent to the track spine curve | |
ribbon frame angular velocity | |
relative torsion | |
normal curvature | |
geodesic curvature | |
vehicle frame angular velocity |
References
- Siegler, B.; Deakin, A. Lap Time Simulation: Comparison of Steady State, Quasi-Static and Transient Racing Car Cornering Strategies. In Proceedings of the 2000 SAE Motorsports Engineering Conference and Exposition, Dearborn, MI, USA, 13 November 2000. [Google Scholar] [CrossRef]
- Brayshaw, D.L.; Harrison, M.L. Use of numerical optimization to determine the effect of the roll stiffness distribution on race car performance. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2005, 219, 1141–1151. [Google Scholar] [CrossRef]
- Brayshaw, D.L.; Harrison, M.L. A quasi steady state approach to race car lap simulation in order to understand the effects of racing line and centre of gravity location. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2005, 219, 725–739. [Google Scholar] [CrossRef]
- Völkl, T.; Muehlmeier, M.; Winner, H. Extended Steady State Lap Time Simulation for Analyzing Transient Vehicle Behavior. SAE Int. J. Passeng. Cars–Mech. Syst. 2013, 6, 283–292. [Google Scholar] [CrossRef]
- Cossalter, V.; Da Lio, M.; Lot, R.; Fabbri, L. A General Method for the Evaluation of Vehicle Manoeuvrability with Special Emphasis on Motorcycles. Veh. Syst. Dyn. 1999, 31, 113–135. [Google Scholar] [CrossRef]
- Bobbo, S.; Cossalter, V.; Massaro, M.; Peretto, M. Application of the “Optimal Maneuver Method” for Enhancing Racing Motorcycle Performance. SAE Int. J. Passeng. Cars–Mech. Syst. 2009, 1, 1311–1318. [Google Scholar] [CrossRef]
- Casanova, D.; Sharp, R.S.; Symonds, P. Minimum Time Manoeuvring: The Significance of Yaw Inertia. Veh. Syst. Dyn. 2000, 34, 77–115. [Google Scholar] [CrossRef]
- Cossalter, V.; Lot, R.; Tavernini, D. Optimization of the centre of mass position of a racing motorcycle in dry and wet track by means of the “Optimal Maneuver Method”. In Proceedings of the 2013 IEEE International Conference on Mechatronics (ICM), Vicenza, Italy, 27 March 2013; pp. 412–417. [Google Scholar] [CrossRef]
- Lot, R.; Evangelou, S.A. Lap Time Optimization of a Sports Series Hybrid Electric Vehicle. In Proceedings of the World Congress on Engineering, London, UK, 3–5 July 2013. [Google Scholar] [CrossRef]
- Lot, R.; Biral, F. A Curvilinear Abscissa Approach for the Lap Time Optimization of Racing Vehicles. IFAC Proc. Vol. 2014, 47, 7559–7565. [Google Scholar] [CrossRef]
- Limebeer, D.J.N.; Perantoni, G.; Rao, A.V. Optimal control of Formula One car energy recovery systems. Int. J. Control 2014, 87, 2065–2080. [Google Scholar] [CrossRef]
- Perantoni, G.; Limebeer, D.J.N. Optimal control for a Formula One car with variable parameters. Veh. Syst. Dyn. 2014, 52, 653–678. [Google Scholar] [CrossRef]
- Perantoni, G.; Limebeer, D.J.N. Optimal Control of a Formula One Car on a Three-Dimensional Track—Part 1: Track Modeling and Identification. J. Dyn. Syst. Meas. Control 2015, 137, 051018. [Google Scholar] [CrossRef]
- Perantoni, G.; Limebeer, D.J.N. Optimal Control of a Formula One Car on a Three-Dimensional Track—Part 2: Optimal Control. J. Dyn. Syst. Meas. Control 2015, 137, 051019. [Google Scholar] [CrossRef]
- Dal Bianco, N.; Lot, R.; Gadola, M. Minimum time optimal control simulation of a GP2 race car. J. Automob. Eng. 2018, 232, 1180–1195. [Google Scholar] [CrossRef]
- Massaro, M.; Marconi, E. The effect of engine spin direction on the dynamics of powered two wheelers. Veh. Syst. Dyn. 2018, 56, 604–620. [Google Scholar] [CrossRef]
- Leonelli, L.; Limebeer, D.J.N. Optimal control of a road racing motorcycle on a three-dimensional closed track. Veh. Syst. Dyn. 2020, 58, 1285–1309. [Google Scholar] [CrossRef]
- Marconi, E.; Massaro, M. The Effect of Suspensions and Racetrack Three-Dimensionality on the Minimum Lap Time of Motorcycles. In Advances in Dynamics of Vehicles on Roads and Tracks; Klomp, M., Bruzelius, F., Nielsen, J., Hillemyr, A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1368–1377. [Google Scholar] [CrossRef]
- Limebeer, D.J.N.; Bastin, M.; Warren, E.; Fensham, H.G. Optimal control of a NASCAR—Specification race car. Veh. Syst. Dyn. 2022, 61, 1210–1235. [Google Scholar] [CrossRef]
- Veneri, M.; Massaro, M. A free-trajectory quasi-steady-state optimal-control method for minimum lap-time of race vehicles. Veh. Syst. Dyn. 2020, 58, 933–954. [Google Scholar] [CrossRef]
- Lovato, S.; Massaro, M.; Limebeer, D.J.N. Curved-ribbon-based track modelling for minimum lap-time optimisation. Meccanica 2021, 56, 2139–2152. [Google Scholar] [CrossRef]
- Lovato, S.; Massaro, M. A three-dimensional free-trajectory quasi-steady-state optimal-control method for minimum-lap-time of race vehicles. Veh. Syst. Dyn. 2022, 60, 1512–1530. [Google Scholar] [CrossRef]
- Rowold, M.; Ögretmen, L.; Kasalowsky, U.; Lohmann, B. Online Time-Optimal Trajectory Planning on Three-Dimensional Race Tracks. In Proceedings of the 2023 IEEE Intelligent Vehicles Symposium (IV), Anchorage, AK, USA, 4–7 June 2023; pp. 1–8. [Google Scholar] [CrossRef]
- Biniewicz, J.; Pyrz, M. A quasi-steady-state minimum lap time simulation of race motorcycles using experimental data. Veh. Syst. Dyn. 2024, 62, 372–394. [Google Scholar] [CrossRef]
- Biral, F.; Lot, R. An interpretative model of g-g diagrams of racing motorcycle. In Proceedings of the 3rd ICMEM International Conference on Mechanical Engineering and Mechanics, Beijing, China, 21–23 October 2009. [Google Scholar]
- Timings, J.P.; Cole, D.J. Vehicle trajectory linearization to enable efficient optimisation of the constant speed racing line. Veh. Syst. Dyn. 2012, 50, 883–901. [Google Scholar] [CrossRef]
- Timings, J.P.; Cole, D.J. Minimum maneuver time calculation using convex optimization. J. Dyn. Syst. Meas. Control 2013, 135, 031015-1–031015-9. [Google Scholar] [CrossRef]
- Timings, J.P.; Cole, D.J. Robust lap-time simulation. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2014, 228, 1200–1216. [Google Scholar] [CrossRef]
- Anderson, J.; Ayalew, B. Modelling minimum-time manoeuvering with global optimisation of local receding horizon control. Veh. Syst. Dyn. 2018, 56, 1508–1531. [Google Scholar] [CrossRef]
- Kanchwala, H. Path Planning and Tracking of an Autonomous Car With High Fidelity Vehicle Dynamics Model and Human Driver Trajectories. In Proceedings of the 2019 IEEE 10th International Conference on Mechanical and Aerospace Engineering (ICMAE 2019), Brussels, Belgium, 22–25 July 2019; pp. 306–313. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, H.; Jiang, Z. Path Planning and Tracking Control for Automatic Driving Obstacle Avoidance. In Proceedings of the 2019 International Conference on Robotics, Intelligent Control and Artificial Intelligence (RICAI 2019), Shanghai, China, 20–22 September 2019; pp. 300–304. [Google Scholar] [CrossRef]
- Tan, Z.; Wei, J.; Dai, N. Real-time Dynamic Trajectory Planning for Intelligent Vehicles Based on Quintic Polynomial. In Proceedings of the 2022 IEEE 21st International Conference on Ubiquitous Computing and Communications (IUCC/CIT/DSCI/SmartCNS), Chongqing, China, 19–21 December 2022; pp. 51–56. [Google Scholar] [CrossRef]
- Pan, R.; Jie, L.; Zhao, X.; Wang, H.; Yang, J.; Song, J. Active Obstacle Avoidance Trajectory Planning for Vehicles Based on Obstacle Potential Field and MPC in V2P Scenario. Sensors 2023, 23, 3248. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yao, J.; Tian, S. Model Predictive Control for Trajectory Planning Considering Constraints on Vertical Load Variation. Electronics 2024, 13, 1488. [Google Scholar] [CrossRef]
- Massaro, M.; Limebeer, D.J.N. Minimum-lap-time optimisation and simulation. Veh. Syst. Dyn. 2021, 59, 1069–1113. [Google Scholar] [CrossRef]
- Limebeer, D.J.N.; Massaro, M. Dynamics and Optimal Control of Road Vehicles; Oxford University Press: Oxford, UK, 2018. [Google Scholar] [CrossRef]
- Dal Bianco, N.; Bertolazzi, E.; Biral, F.; Massaro, M. Comparison of direct and indirect methods for minimum lap time optimal control problems. Veh. Syst. Dyn. 2019, 57, 665–696. [Google Scholar] [CrossRef]
- Lovato, S.; Massaro, M. Three-dimensional fixed-trajectory approaches to the minimum-lap time of road vehicles. Veh. Syst. Dyn. 2022, 60, 3650–3667. [Google Scholar] [CrossRef]
- Limebeer, D.J.N.; Warren, E. A review of road models for vehicular control. Veh. Syst. Dyn. 2023, 61, 1449–1475. [Google Scholar] [CrossRef]
- Massaro, M.; Lovato, S.; Veneri, M. An optimal control approach to the computation of g-g diagrams. Veh. Syst. Dyn. 2024, 62, 448–462. [Google Scholar] [CrossRef]
- Patterson, M.A.; Rao, A.V. GPOPS-II: A MATLAB Software for Solving Multiple-Phase Optimal Control Problems Using hp-Adaptive Gaussian Quadrature Collocation Methods and Sparse Nonlinear Programming. ACM Trans. Math. Soft. (TOMS) 2014, 41, 1–37. [Google Scholar] [CrossRef]
- Weinstein, M.J.; Rao, A.V. Algorithm 984: ADiGator, a Toolbox for the Algorithmic Differentiation of Mathematical Functions in MATLAB Using Source Transformation via Operator Overloading. ACM Trans. Math. Soft. 2017, 44, 1–25. [Google Scholar] [CrossRef]
- United States Geological Survey. Available online: www.usgs.gov (accessed on 6 April 2024).
- GPS Visualizer. Available online: www.gpsvisualizer.com (accessed on 6 April 2024).
- Snyder, J.P. Map Projections: A Working Manual; U.S. Government Printing Office: Washington, DC, USA, 1987.
- Nolan “Indy” Lamkin. Available online: www.nolanlamkinracing.com (accessed on 6 April 2024).
Symbol | Description | Value |
---|---|---|
Standard gravity | 9.81 m/s2 | |
Total mass (vehicle + rider) | 255 kg | |
Wheelbase | 1.40 m | |
Longitudinal position of CoG | 0.69 m | |
Height of CoG | 0.66 m | |
Height of CoP | 0.66 m | |
Rolling resistance coefficient | 0.02 | |
Drag area coefficient | 0.28 m2 | |
Air density | 1.20 kg/m3 | |
Longitudinal friction coefficient | 1.18 | |
Lateral friction coefficient | 1.13 | |
Primary transmission ratio | 2.07 | |
Second gear ratio | 2.00 | |
Third gear ratio | 1.67 | |
Fourth gear ratio | 1.44 | |
Fifth gear ratio | 1.29 | |
Sixth gear ratio | 1.15 | |
Secondary transmission ratio | 2.88 | |
Tire rolling radius | 0.330 m |
Symbol | Value |
---|---|
15.440 | |
−0.148 | |
−28.440 | |
0.148 | |
32.559 | |
−0.378 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biniewicz, J.; Pyrz, M. Influence of the Road Model on the Optimal Maneuver of a Racing Motorcycle. Appl. Sci. 2024, 14, 4006. https://doi.org/10.3390/app14104006
Biniewicz J, Pyrz M. Influence of the Road Model on the Optimal Maneuver of a Racing Motorcycle. Applied Sciences. 2024; 14(10):4006. https://doi.org/10.3390/app14104006
Chicago/Turabian StyleBiniewicz, Jan, and Mariusz Pyrz. 2024. "Influence of the Road Model on the Optimal Maneuver of a Racing Motorcycle" Applied Sciences 14, no. 10: 4006. https://doi.org/10.3390/app14104006
APA StyleBiniewicz, J., & Pyrz, M. (2024). Influence of the Road Model on the Optimal Maneuver of a Racing Motorcycle. Applied Sciences, 14(10), 4006. https://doi.org/10.3390/app14104006