Inverse Problem Protocol to Estimate Horizontal Groundwater Velocity from Temperature–Depth Profiles in a 2D Aquifer
<p>Physical scheme and boundary conditions.</p> "> Figure 2
<p>Block diagram of the inverse problem protocol.</p> "> Figure 3
<p>Location and limits of Agua Amarga coastal aquifer with wells P-3 and P-4 (Google Earth Pro).</p> "> Figure 4
<p>Cross-section of the aquifer on the line defined by wells P-3 and P-4.</p> "> Figure 5
<p>Real temperature–depth profiles measured in wells P-3 and P-4 of the Agua Amarga aquifer in March 2019.</p> "> Figure 6
<p>Vertical profiles of electrical conductivity recorded in March 2019 in boreholes P-3 and P-4.</p> ">
Abstract
:1. Introduction
2. Physical Scenario
3. The Inverse Problem, versus
4. Verification of the Protocol
5. Application to a Real Aquifer
6. Final Comments and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
constant (dimensionless) | |
volumetric heat capacity of the soil–fluid matrix (cal·m−3·°C−1) | |
volumetric heat capacity of the water, (cal·m−3·°C−1) | |
relative random error (%) | |
acceleration of gravity (m/s2) | |
height (total depth) of the domain (m) | |
thermal conductivity of the soil–fluid matrix (cal·s−1·m−1 °C−1) | |
length of the aquifer (m) | |
characteristic length in which temperature profiles develop (m) | |
number of experimental measurements for the inverse problem | |
P-3, P-4 | piezometers in Agua Amarga coastal aquifer |
time (s) | |
temperature (°C) | |
temperature at the soil surface (°C) | |
temperature at the bottom of the aquifer (°C) | |
temperature of the water at the inlet border (°C) | |
initial soil temperature (°C) | |
vertical temperature–depth profile (°C) | |
horizontal groundwater flow velocity (m/s) | |
Darcy velocity (m/s) | |
spatial coordinates (m) | |
, | horizontal locations within the interval [0, ] (m) |
− (m) | |
horizontal location in simulation (m) | |
thermal diffusivity of the soil–fluid matrix (m2/s), | |
(m2/s) | |
temperature increment at the inlet boundary (°C) | |
Δ | velocity increment used in inverse problem (m/s) |
Δ | increment of the horizontal location (m) |
ε | porosity (dimensionless) |
intrinsic permeability (m/s) | |
fluid dynamic viscosity (g/(m·s)) | |
wet bulk density of the soil–fluid matrix (g/m3) | |
fluid density of the water (g/m3) | |
Ψ | mathematical functional |
Subscripts
refers to xa and xb, respectively | |
refers to density-driven flow | |
refers to random error (%) | |
refers to horizontal and vertical components of v | |
= 1, 2, … N index of a particular temperature of the profile | |
= I, II, III, … index of the iteration for calculate the functional | |
refers to minimum value of the functional | |
refers to simulated results | |
related to spatial directions and , respectively | |
, | refers to horizontal locations (m) |
location simulated (m) | |
refers to the successive values of inlet temperature of the water |
References
- Suzuki, S. Percolation measurements based on heat flow through soil with special reference to paddy fields. J. Geophys. Res. 1960, 65, 2883–2885. [Google Scholar] [CrossRef]
- Stallman, R.W. Computation of ground-water velocity from temperature data. USGS Water Supply Pap. 1963, 1544, 36–46. [Google Scholar]
- Bredehoeft, J.D.; Papadopulos, I.S. Rates of vertical groundwater movement estimated from the Earth’s thermal profile. Water Resour. Res. 1965, 1, 325–328. [Google Scholar] [CrossRef]
- Lapham, W.W. Use of Temperature Profiles Beneath Streams to Determine Rates of Vertical Ground-Water Flow and Vertical Hydraulic Conductivity; Paper 2337; U.S. Geological Survey Water-Supply: Reston, VA, USA, 1989.
- Holzbecher, E. Inversion of temperature time series from near-surface porous sediments. J. Geophys. Eng. 2005, 2, 343–348. [Google Scholar] [CrossRef]
- Constantz, J. Heat as a tracer to determine streambed water exchanges. Water Resour. Res. 2008, 44, W00D10. [Google Scholar] [CrossRef]
- Szymkiewicz, A.; Tisler, W.; Burzyński, K. Examples of numerical simulations of two-dimensional unsaturated flow with VS2DI code using different interblock conductivity averaging schemes. Geologos 2015, 21, 161–167. [Google Scholar] [CrossRef]
- Duque, C.; Müller, S.; Sebok, E.; Haider, K.; Engesgaard, P. Estimating groundwater discharge to surface waters using heat as a tracer in low flux environments: The role of thermal conductivity. Hydrol. Process. 2016, 30, 383–395. [Google Scholar] [CrossRef]
- Bendjoudi, H.; Cheviron, B.; Guérin, R.; Tabbagh, A. Determination of upward/downward groundwater fluxes using transient variations of soil profile temperature: Test of the method with Voyons (Aube, France) experimental data. Hydrol. Process. Int. J. 2005, 19, 3735–3745. [Google Scholar] [CrossRef]
- Jiménez-Valera, J.A.; Alhama, F. Dimensionless Characterization to Estimate Horizontal Groundwater Velocity from Temperature–Depth Profiles in Aquifers. Mathematics 2022, 10, 2717. [Google Scholar] [CrossRef]
- Lu, N.; Ge, S. Effect of horizontal heat and fluid flow on the vertical temperature distribution in a semiconfining layer. Water Resour. Res. 1996, 32, 1449–1453. [Google Scholar] [CrossRef]
- Reiter, M. Using precision temperature logs to estimate horizontal and vertical groundwater flow components. Water Resour. Res. 2001, 37, 663–674. [Google Scholar] [CrossRef]
- Beck, J.V.; Blackwell, B.; Clair, C.R.S. Inverse Heat Conduction: Ill-Posed Problems; Wiley-Interscience: New York, NY, USA, 1985. [Google Scholar]
- Chantasiriwan, S. Inverse heat conduction problem of determining time-dependent heat transfer coefficient. Int. J. Heat Mass Transf. 1999, 42, 4275–4285. [Google Scholar] [CrossRef]
- Zueco, J.; Bég, O.A. Numerical Determination of the Temperature Dependent Thermophysical Properties in Solid Materials: Experimental Instrumentation. In Proceedings of the International Heat Transfer Conference, Washington, DC, USA, 8–13 August 2010; pp. 285–291. [Google Scholar]
- Sánchez-Pérez, J.F.; García-Ros, G.; Castro, E. Simultaneous determination of the position, release time and mass release rate of an unknown gas emission source in short-term emissions by inverse problem. Chem. Eng. J. 2022, 445, 136782. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, L.; Sun, X.; Jia, H. Solution to two-dimensional steady inverse heat transfer problems with interior heat source based on the conjugate gradient method. Math. Probl. Eng. 2017, 2017, 2861342. [Google Scholar] [CrossRef]
- Lebedev, L.P.; Vorovich, I.I.; Gladwell, G.M.L. Functional Analysis: Applications in Mechanics and Inverse Problems; Springer Science & Business Media: Dordrecht, The Netherlands, 2012; Volume 41. [Google Scholar]
- Ngspice. Open Source Mixed Mode, Mixed Level Circuit Simulator (Based on Berkeley’s Spice3f5). 2016. Available online: http://ngspice.sourceforge.net/ (accessed on 10 November 2023).
- Horno, J. Network Simulation Method; Research Signpost: Trivandrum, India, 2002. [Google Scholar]
- Bég, O.A.; Takhar, H.S.; Zueco, J.; Sajid, A.; Bhargava, R. Transient Couette flow in a rotating non-Darcian porous medium parallel plate configuration: Network simulation method solutions. Acta Mech. 2008, 200, 129–144. [Google Scholar] [CrossRef]
- Caravaca, M.; Sanchez-Andrada, P.; Soto, A.; Alajarin, M. The network simulation method: A useful tool for locating the kinetic–thermodynamic switching point in complex kinetic schemes. Phys. Chem. Chem. Phys. 2014, 16, 25409–25420. [Google Scholar] [CrossRef]
- Fernández-Gracía, M.; Sánchez-Pérez, J.F.; del Cerro, F.; Conesa, M. Mathematical Model to Calculate Heat Transfer in Cylindrical Vessels with Temperature-Dependent Materials. Axioms 2023, 12, 335. [Google Scholar] [CrossRef]
- Garratón, M.C.; del Carmen García-Onsurbe, M.; Soto-Meca, A. A new Network Simulation Method for the characterization of delay differential equations. Ain Shams Eng. J. 2023, 14, 102066. [Google Scholar] [CrossRef]
- Sánchez-Pérez, J.F.; Marín-García, F.; Castro, E.; García-Ros, G.; Conesa, M.; Solano-Ramírez, J. Methodology for Solving Engineering Problems of Burgers–Huxley Coupled with Symmetric Boundary Conditions by Means of the Network Simulation Method. Symmetry 2023, 15, 1740. [Google Scholar] [CrossRef]
- Solano, J.; Balibrea, F.; Moreno, J.A.; Marín, F. Dry Friction Analysis in Doped Surface by Network Simulation Method. Mathematics 2023, 11, 1341. [Google Scholar] [CrossRef]
- Alhama, I.; García-Ros, G.; González-Alcaraz, M.N.; Álvarez-Rogel, J. Long-term artificial seawater irrigation as a sustainable environmental management strategy for abandoned solar salt works: The case study of Agua Amarga salt marsh (SE Spain). Catena 2022, 217, 106429. [Google Scholar] [CrossRef]
- González-Alcaraz, M.N.; Aránega, B.; Tercero, M.C.; Conesa, H.M.; Álvarez-Rogel, J. Irrigation with seawater as a strategy for the environmental management of abandoned solar saltworks: A case-study in SE Spain based on soil–vegetation relationships. Ecol. Eng. 2014, 71, 677–689. [Google Scholar] [CrossRef]
- Alhama Manteca, I. Simulation and consequences of successive anthropogenic activity in the Agua Amarga coastal aquifer (southeast Spain). Hydrol. Sci. J. 2013, 58, 1072–1087. [Google Scholar] [CrossRef]
- Jiménez-Valera, J.A.; Alhama, I.; Duque, C. Advanced Type Curves for Vertical Groundwater Flow Estimation from Temperature Profiles; Applications to Real Scenarios; Mining and Civil Engineering Department, Technical University of Cartagena: Cartagena, Spain, 2023. [Google Scholar]
- Chapuis, R.P. Estimating the in situ porosity of sandy soils sampled in boreholes. Eng. Geol. 2012, 141, 57–64. [Google Scholar] [CrossRef]
- Bense, V.F.; Kooi, H. Temporal and spatial variations of shallow subsurface temperature as a record of lateral variations in groundwater flow. J. Geophys. Res. 2004, 9, B04103. [Google Scholar] [CrossRef]
y (m) | (°C) | (°C) | ||||
---|---|---|---|---|---|---|
Real | e = 1% | e = 2% | Real | e = 1% | e = 2% | |
0.11 | 0.797 | 0.798 | 0.790 | 0.868 | 0.876 | 0.863 |
0.23 | 0.595 | 0.597 | 0.583 | 0.725 | 0.729 | 0.719 |
0.35 | 0.431 | 0.434 | 0.425 | 0.588 | 0.583 | 0.590 |
0.48 | 0.309 | 0.308 | 0.306 | 0.459 | 0.458 | 0.454 |
0.60 | 0.219 | 0.221 | 0.222 | 0.340 | 0.342 | 0.346 |
0.72 | 0.148 | 0.149 | 0.151 | 0.230 | 0.232 | 0.228 |
0.84 | 0.083 | 0.083 | 0.083 | 0.128 | 0.128 | 0.128 |
0.96 | 0.019 | 0.019 | 0.019 | 0.029 | 0.029 | 0.029 |
(m/s) | (m) | (m) | |||
---|---|---|---|---|---|
2.0 × 10−6 | 0.0244 | 0.1059 | 0.1303 | 1.20 | 7.20 |
4.0 × 10−6 | 0.0066 | 0.0327 | 0.0939 | 2.40 | 8.40 |
4.5 × 10−6 | 0.0148 | 0.0156 | 0.0304 | 2.60 | 8.60 |
4.9 × 10−6 | 0.0047 | 0.0110 | 0.0157 | 3.00 | 9.00 |
5.1 × 10−6 | 0.0091 | 0.0127 | 0.0217 | 3.00 | 9.00 |
(m/s) | (m) | (m) | |||
---|---|---|---|---|---|
2.0 × 10−6 | 0.0084 | 0.1106 | 0.1190 | 1.20 | 7.20 |
4.0 × 10−6 | 0.0129 | 0.0374 | 0.0502 | 2.40 | 8.40 |
4.5 × 10−6 | 0.0088 | 0.0196 | 0.0284 | 2.60 | 8.60 |
4.9 × 10−6 | 0.0209 | 0.0134 | 0.0344 | 3.00 | 9.00 |
5.1 × 10−6 | 0.0120 | 0.0115 | 0.0235 | 3.00 | 9.00 |
(m/s) | (m) | (m) | |||
---|---|---|---|---|---|
2.0 × 10−5 | 0.0382 | 0.4397 | 0.4779 | 346.50 | 46.50 |
3.0 × 10−5 | 0.0421 | 0.3363 | 0.3785 | 373.50 | 73.50 |
4.0 × 10−5 | 0.0385 | 0.1410 | 0.1795 | 391.50 | 91.50 |
5.0 × 10−5 | 0.0385 | 0.0835 | 0.1220 | 415.50 | 115.5 |
6.0 × 10−5 | 0.0384 | 0.0505 | 0.0889 | 436.50 | 136.50 |
7.0 × 10−5 | 0.0384 | 0.0406 | 0.0790 | 472.50 | 172.50 |
8.0 × 10−5 | 0.0312 | 0.0431 | 0.0743 | 487.50 | 187.50 |
8.5 × 10−5 | 0.0385 | 0.0504 | 0.0889 | 493.50 | 193.50 |
9.0 × 10−5 | 0.0385 | 0.0577 | 0.0962 | 505.50 | 205.50 |
(°C) | (m) | (m) | |||
---|---|---|---|---|---|
20.20 | 0.0312 | 0.0431 | 0.0743 | 487.50 | 187.50 |
20.10 | 0.0312 | 0.0427 | 0.0739 | 454.50 | 154.50 |
20.00 | 0.0311 | 0.0406 | 0.0717 | 424.50 | 124.50 |
19.90 | 0.0532 | 0.0384 | 0.0916 | 400.50 | 100.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhama, F.; Jiménez-Valera, J.A.; Alhama, I. Inverse Problem Protocol to Estimate Horizontal Groundwater Velocity from Temperature–Depth Profiles in a 2D Aquifer. Appl. Sci. 2024, 14, 922. https://doi.org/10.3390/app14020922
Alhama F, Jiménez-Valera JA, Alhama I. Inverse Problem Protocol to Estimate Horizontal Groundwater Velocity from Temperature–Depth Profiles in a 2D Aquifer. Applied Sciences. 2024; 14(2):922. https://doi.org/10.3390/app14020922
Chicago/Turabian StyleAlhama, Francisco, José Antonio Jiménez-Valera, and Iván Alhama. 2024. "Inverse Problem Protocol to Estimate Horizontal Groundwater Velocity from Temperature–Depth Profiles in a 2D Aquifer" Applied Sciences 14, no. 2: 922. https://doi.org/10.3390/app14020922
APA StyleAlhama, F., Jiménez-Valera, J. A., & Alhama, I. (2024). Inverse Problem Protocol to Estimate Horizontal Groundwater Velocity from Temperature–Depth Profiles in a 2D Aquifer. Applied Sciences, 14(2), 922. https://doi.org/10.3390/app14020922