Case Study and Risk Assessment of Water Inrush Disaster in Qingdao Metro Line 4
<p>The location of Jing-sha section.</p> "> Figure 2
<p>Geological profile of Jing-sha section.</p> "> Figure 3
<p>Tunnel section and support parameters (unit: mm).</p> "> Figure 4
<p>Location of the disaster.</p> "> Figure 5
<p>Ground collapse.</p> "> Figure 6
<p>Evolution process of the disaster.</p> "> Figure 7
<p>Tunnel after cleaning.</p> "> Figure 8
<p>Rainfall in Shazikou area.</p> "> Figure 9
<p>Numerical model of tunnel.</p> "> Figure 10
<p>Settlement of the ground.</p> "> Figure 11
<p>Cave-in zone in model.</p> "> Figure 12
<p>Distribution of monitoring points.</p> "> Figure 13
<p>Surface settlement.</p> "> Figure 14
<p>Surface deformation at monitoring points.</p> "> Figure 15
<p>Settlement of the tunnel vault.</p> "> Figure 16
<p>Groundwater seepage.</p> "> Figure 17
<p>Negative pressure zone.</p> "> Figure 18
<p>Improved RBF neural network.</p> ">
Abstract
:1. Introduction
2. Description of the Project and the Collapse
2.1. Project Overview
2.2. Geological Conditions
2.3. Excavation and Support Methods
2.4. Details of the Collapse
3. Analysis on the Causes of the Collapse
3.1. Factors Leading to the Collapse
3.2. Numerical Simulation for the Collapse
3.2.1. Establishment of Numerical Models
3.2.2. Analysis of Settlement Results
3.2.3. Analysis of Seepage Results
4. Water Inrush Risk Assessment
4.1. Evaluation Index System for Water Inrush Risk
4.2. A Novel Risk Assessment Method
4.3. Application of Proposed Model
4.3.1. Training of Improved RBF Neural Network
4.3.2. Water Inrush Risk Assessment of Jing-Sha Section
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xie, H.; Leung, C.; Wang, J.; Li, X. Advancing deep underground research through integration of engineering and science. Deep Undergr. Sci. Eng. 2022, 1, 1–2. [Google Scholar] [CrossRef]
- Hu, L.; Wang, J.; Karrech, A.; Li, X.; Zhao, P.; Liu, L. Exploring the frontiers of deep underground sciences and Engineer-ing—China Yunlong Lake Laboratory is striving to be the best. Deep Undergr. Sci. Eng. 2022, 1, 130–136. [Google Scholar] [CrossRef]
- Sousa, R.L.; Einstein, H.H. Lessons from accidents during tunnel construction. Tunn. Undergr. Space Technol. 2021, 113, 103916. [Google Scholar] [CrossRef]
- Liu, J.; Sun, Y.; Li, C.; Yuan, H.; Chen, W.; Liu, X.; Zhou, X. Field monitoring and numerical analysis of tunnel water inrush and the environmental changes. Tunn. Undergr. Space Technol. 2022, 122, 104360. [Google Scholar] [CrossRef]
- Li, S.; Gao, C.; Zhou, Z.; Li, L.; Wang, M.; Yuan, Y.; Wang, J. Analysis on the precursor information of water inrush in karst tunnels: A true triaxial model test study. Rock Mech. Rock Eng. 2019, 52, 373–384. [Google Scholar] [CrossRef]
- Yang, W.; Yang, X.; Fang, Z.; Shi, S.; Wang, H.; Bu, L.; Li, L.; Zhou, Z. Model test for water inrush caused by karst caves filled with confined water in tunnels. Arab. J. Geosci. 2019, 12, 749. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, S.; Li, L.; Shi, S.; Zhang, Q.; Chen, D.; Song, S. 3D fluid-solid coupled model test on water-inrush in tunnel due to seepage from filled karst conduit. Chin J Rock Mech Eng 2015, 34, 1739–1749. [Google Scholar]
- Wang, Y.; Chen, F.; Li, X.; Yin, X.; Lei, Y. The variable-mass seepage law of broken porous rock: An experimental study. Geomat. Nat. Hazards Risk 2020, 11, 1991–2005. [Google Scholar] [CrossRef]
- Li, G.; Wang, K.; Gong, B.; Tao, Z.G.; Du, K. A multi-temporal series high-accuracy numerical manifold method for transient thermoelastic fracture problems. Int. J. Solids Struct. 2021, 230–231, 111151. [Google Scholar] [CrossRef]
- Wang, Y.; Gong, B.; Zhang, Y.; Yang, X.; Tang, C. Progressive fracture behavior and acoustic emission release of CJBs affected by joint distance ratio. Mathematics 2022, 10, 4149. [Google Scholar] [CrossRef]
- Fu, M.; Zhao, G.F. High-performance computing of 3D blasting wave propagation in underground rock cavern by using4D-LSM on TianHe-3 prototype E class supercomputer. Deep Undergr. Sci. Eng. 2022, 1, 87–100. [Google Scholar] [CrossRef]
- Chen, T.T.; Foulger, G.R.; Tang, C.A.; Mathias, S.A.; Gong, B. Numerical investigation on origin and evolution of polygonal cracks on rock surfaces. Eng. Geol. 2022, 311, 106913. [Google Scholar] [CrossRef]
- Li, S.; Liu, H.; Li, L.; Zhang, Q.; Wang, K.; Wang, K. Large scale three-dimensional seepage analysis model test and numerical simulation research on undersea tunnel. Appl. Ocean Res. 2016, 59, 510–520. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhou, P.; Zhou, F.; Lin, J.; Li, J.; Lin, M.; Yongli, Q.; Wang, Z. Failure analysis and control measures for tunnel faces in water-rich sandy dolomite formations. Eng. Fail. Anal. 2022, 138, 106350. [Google Scholar] [CrossRef]
- Fan, H.; Li, L.; Chen, G.; Liu, H.; Gao, J.; Li, C.; Peng, X.; Zhou, S. Analysis method of the water inrush and collapse in jointed rock mass tunnels: A case study. Eng. Anal. Bound. Elem. 2023, 146, 838–850. [Google Scholar]
- Yan, F.; Qiu, W.; Sun, K.; Jiang, S.; Huang, H.; Hong, Y.; Hou, Z. Investigation of a large ground collapse, water inrush and mud outburst, and countermeasures during subway excavation in Qingdao: A case study. Tunn. Undergr. Space Technol. 2021, 117, 104127. [Google Scholar] [CrossRef]
- Huang, Z.; Zhao, K.; Li, X.; Zhong, W.; Wu, Y. Numerical characterization of groundwater flow and fracture-induced water inrush in tunnels. Tunn. Undergr. Space Technol. 2021, 116, 104119. [Google Scholar] [CrossRef]
- Kavvadas, M.J. Monitoring ground deformation in tunnelling: Current practice in transportation tunnels. Eng. Geol. 2005, 79, 93–113. [Google Scholar] [CrossRef]
- Masini, L.; Gaudio, D.; Rampello, S.; Romani, E. Observed Performance of a Deep Excavation in the Historical Center of Rome. J. Geotech. Geoenvironmental Eng. 2021, 147, 05020015. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, Y.; Ma, T.; Tang, C.A. Observed performance of a deep excavation of Qingdao Metro Line 4 in China. Tunn. Undergr. Space Technol. 2022, 123, 104445. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Wang, Z.F.; Chang, H. Structural failures and geohazards caused by mountain tunnel construction in fault zone and its treatment measures: A case study in Shaanxi. Eng. Fail. Anal. 2022, 138, 106386. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Z.; Wang, Y.; Bai, X.; Lai, J. Characteristics and failure analysis of a railway tunnel collapse influenced by cavity in phyllite strata. Eng. Fail. Anal. 2022, 142, 106794. [Google Scholar] [CrossRef]
- Liu, J.; Li, Z.; Zhang, X.; Weng, X. Analysis of Water and Mud Inrush in Tunnel Fault Fracture Zone—A Case Study of Yonglian Tunnel. Sustainability 2021, 13, 9585. [Google Scholar] [CrossRef]
- Liu, N.; Pei, J.; Cao, C.; Liu, X.; Huang, Y.; Mei, G. Geological investigation and treatment measures against water inrush hazard in karst tunnels: A case study in Guiyang, southwest China. Tunn. Undergr. Space Technol. 2022, 124, 104491. [Google Scholar] [CrossRef]
- Cheng, S.; Li, S.; Li, L.; Shi, S.; Zhou, Z.; Wang, J. Study on energy band characteristic of microseismic signals in water inrush channel. J. Geophys. Eng. 2018, 15, 1826–1834. [Google Scholar] [CrossRef] [Green Version]
- Gong, B.; Liang, Z.Z.; Liu, X.X. Nonlinear deformation and failure characteristics of horseshoe-shaped tunnel under varying principal stress direction. Arab. J. Geosci. 2022, 15, 475. [Google Scholar] [CrossRef]
- Wang, Y.; Gong, B.; Tang, C. Numerical investigation on anisotropy and shape effect of mechanical properties of columnar jointed basalts containing transverse joints. Rock Mech. Rock Eng. 2022, 55, 7191–7222. [Google Scholar] [CrossRef]
- Chen, G.; Liu, X.; Song, D. Research on in situ stress inversion of deep-buried tunnel based on pressure/tension axis mechanism and geological structure. Deep Undergr. Sci. Eng. 2023, 2, 1–13. [Google Scholar] [CrossRef]
- Feng, X.H.; Gong, B.; Cheng, X.F.; Zhang, H.H.; Tang, C.A. Anisotropy and microcrack-induced failure precursor of shales under dynamic splitting. Geomat. Nat. Hazards Risk 2022, 13, 2864–2889. [Google Scholar] [CrossRef]
- Guillermo Federico, S.L. Stochastic and Economic Evaluation of Adaptability in Tunneling Design and Construction. Ph.D. Dissertation, Massachusetts Institute of Technology, Cambridge, MA, USA, 1983. [Google Scholar]
- Nilsen, B.; Palmström, A.; Stille, H. Quality control of a sub-sea tunnel project in complex ground conditions. In Proceedings of the ITA World Tunnel Congress, Oslo, Norway, 31 May–3 June 1999; pp. 137–145. [Google Scholar]
- Kampmann, J.; Eskesen, S.D.; Summers, J.W. Risk assessment helps select the contractor for the Copenhagen Metro System. In Proceedings of the World Tunnel Congress 1998, São Paulo, Brazil, 25–30 April 1998; pp. 123–128. [Google Scholar]
- Wu, Q.; Liu, Y.; Liu, D.; Zhou, W. Prediction of floor water inrush: The application of GIS-based AHP vulnerable index method to Donghuantuo coal mine, China. Rock Mech. Rock Eng. 2011, 44, 591–600. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, L.; Tiong, R.L.K. A novel learning cloud Bayesian network for risk measurement. Appl. Soft Comput. 2020, 87, 105947. [Google Scholar] [CrossRef]
- Sousa, R.L.; Einstein, H.H. Risk analysis during tunnel construction using Bayesian Networks: Porto Metro case study. Tunn. Undergr. Space Technol. 2012, 27, 86–100. [Google Scholar] [CrossRef]
- Zhou, Z.; Goh, Y.M.; Shi, Q.; Qi, H.; Liu, S. Data-driven determination of collapse accident patterns for the mitigation of safety risks at metro construction sites. Tunn. Undergr. Space Technol. 2022, 127, 104616. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, L. Mitigating tunnel-induced damages using deep neural networks. Autom. Constr. 2022, 138, 104219. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, C. Fuzzy comprehensive Bayesian network-based safety risk assessment for metro construction projects. Tunn. Undergr. Space Technol. 2017, 70, 330–342. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, L.; Li, Z.; Ding, L. Improved fuzzy Bayesian network-based risk analysis with interval-valued fuzzy sets and D–S evidence theory. IEEE Trans. Fuzzy Syst. 2019, 28, 2063–2077. [Google Scholar] [CrossRef]
- Wang, X.; Li, S.; Xu, Z.; Lin, P.; Hu, J.; Wang, W. Analysis of factors influencing floor water inrush in coal mines: A nonlinear fuzzy interval assessment method. Mine Water Environ. 2019, 38, 81–92. [Google Scholar] [CrossRef]
- Kim, J.; Kim, C.; Kim, G.; Kim, I.; Abbas, Q.; Lee, J. Probabilistic tunnel collapse risk evaluation model using analytical hierarchy process (AHP) and Delphi survey technique. Tunn. Undergr. Space Technol. 2022, 120, 104262. [Google Scholar] [CrossRef]
- Aalianvari, A.; Katibeh, H.; Sharifzadeh, M. Application of fuzzy Delphi AHP method for the estimation and classification of Ghomrud tunnel from groundwater flow hazard. Arab. J. Geosci. 2012, 5, 275–284. [Google Scholar] [CrossRef]
- Wang, X.; Li, S.; Xu, Z.; Li, X.; Lin, P.; Lin, C. An interval risk assessment method and management of water inflow and inrush in course of karst tunnel excavation. Tunn. Undergr. Space Technol. 2019, 92, 103033. [Google Scholar] [CrossRef]
- Xue, Y.; Kong, F.; Li, S.; Qiu, D.; Su, M.; Li, Z.; Zhou, B. Water and mud inrush hazard in underground engineering: Genesis, evolution and prevention. Tunn. Undergr. Space Technol. 2021, 114, 103987. [Google Scholar] [CrossRef]
E/kPa | e | K/(m/Day) | C/kPa | φ | ||
---|---|---|---|---|---|---|
Plain fall | 8000 | 0.2 | 0.9 | 30 | 0 | 15 |
Silty clay | 5671 | 0.33 | 0.718 | 0.05 | 8.2 | 12 |
Sand | 6070 | 0.33 | 0.5 | 0.05 | 13.9 | 12.5 |
Strongly weathered tuff | 20,000 | 0.3 | 0.8 | 5.1 | 3.0 | 30 |
Moderately weathered tuff | 50,000 | 0.25 | 0.8 | 1.728 | 3000 | 45 |
Slightly weathered tuff | 5.00 × 106 | 0.22 | 0.09 | 0.026 | 11,500 | 55 |
Interval Mileage | Construction Method | Segment Length |
---|---|---|
ZDK24+739.400~ZDK25+075.900 | shield method | 336.500 m |
ZDK25+075.900~ZDK25+090.900 | The mining method is used as the initial support of the tunnel, and the secondary lining is poured. After the shield enters this section, it is reassembled and debugged, and the second launch is carried out in the mine method tunnel | 15.000 m |
ZDK25+090.900~ZDK25+528.000 | The mine method is used as the initial support of the tunnel, and the second lining is poured after the shield tunnel passes through the | 437.100 m |
ZDK25+528.000~ZDK25+879.000 | shield method | 351.000 m |
YDK24+739.400~YDK25+063.200 | shield method | 323.800 m |
YDK25+063.200~YDK25+078.200 | The mining method is used as the initial support of the tunnel, and the secondary lining is poured. After the shield enters this section, it is reassembled and debugged, and the second launch is carried out in the mine method tunnel | 15.000 m |
YDK25+078.200~YDK25+568.000 | The mine method is used as the initial support of the tunnel, and the second lining is poured after the shield tunnel passes through | 489.800 m |
YDK25+568.000~YDK25+879.000 | shield method | 311.000 m |
E/kPa | e | K/(m/Day) | C/kPa | φ | ||
---|---|---|---|---|---|---|
Plain fall | 8000 | 0.2 | 0.9 | 30 | 0 | 15 |
Silty clay | 5671 | 0.33 | 0.718 | 0.05 | 8.2 | 12 |
Sand | 6070 | 0.33 | 0.5 | 0.05 | 13.9 | 12.5 |
Strongly weathered tuff | 20,000 | 0.3 | 0.8 | 5.1 | 3.0 | 30 |
Moderately weathered tuff | 50,000 | 0.25 | 0.8 | 1.728 | 3000 | 45 |
Slightly weathered tuff | 5.00 × 106 | 0.22 | 0.09 | 0.026 | 11,500 | 55 |
C25 concrete | 2.20 × 107 | 0.2 | 0.01 | 8.64 × 10−5 | 20,000 | 60 |
Level 1 Indicators | Secondary Indicators | Levels of Danger | |||
---|---|---|---|---|---|
C4 (Low Risk) | C3 (Medium Risk) | C2 (High Risk) | C1 (Very High Risk) | ||
Tunnel and surrounding rock conditions I1 | Tunnel excavation width I11 | <8.5 | [8.5, 12) | [12, 14) | ≥14 |
Tunnel depth I12 | <10 | [10, 30) | [30, 50) | ≥50 | |
Rock integrity I13 | whole | broken | Broken | extremely broken | |
Rock saturated uniaxial compressive strength I14 | >60 | (30, 60] | (15, 30] | ≤15 | |
Degree of crack expansion I15 | underdeveloped | development | more developed | very developed | |
Basic quality grade of rock mass I16 | I, II | III | IV | V | |
Geological structure and surface factors I2 | Fault fracture zone width I21 | <50 | [50, 100) | [100, 300) | ≥300 |
Catchment area/%I22 | <20 | [20, 40) | [40, 60) | ≥60 | |
Topography I23 | flat | slope | steep terraces, valleys | denuded mounds, eroded plains | |
Composite ratio of soft and hard formations/%I24 | <25 | [25, 50) | [50, 75) | ≥75 | |
Hydrological conditions I3 | Water richness of groundwater I31 | no water | slightly watery | watery | rich in water |
Elevation difference of groundwater I32 | <10 | [10, 30) | [30, 60) | ≥60 | |
Permeability coefficient I33 | <0.01 | [0.01, 1) | [1, 10) | ≥10 | |
Average monthly rainfall I34 | <60 | [60, 80) | [80, 100) | ≥100 |
Tunnel Name | Sample | Grade | I11/m | I12/m | I13 | I14/MPa | I15 | I16 | I21/% | I22 | I23/% | I31 | I32/m | I33/md−1 | I34/mm |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Kaisheng Section of Qingdao Metro Line 1 | 1 | I | 6.2 | 12.6 | whole | 44.23 | underdeveloped | II | 41.35 | flat | 39.68 | slightly watery | 3.01 | 0.0043 | 59.5 |
2 | II | 6.2 | 12.8 | broken | 44.23 | more developed | IV | 69 | flat | 84.4 | rich in water | 8.84 | 2.8512 | 59.5 | |
3 | IV | 6.2 | 14 | extremely broken | 11.97 | development | V | 77.21 | flat | 85.7 | rich in water | 12 | 4.4928 | 59.5 | |
4 | IV | 6.2 | 13.95 | extremely broken | 10.8 | very developed | VI | 75 | slope | 91 | rich in water | 10.47 | 25.92 | 59.5 | |
Wunan section of Qingdao Metro Line 2 | 5 | II | 5.2 | 11.6 | broken | 137.3 | more developed | IV | 11 | slope | 34.48 | slightly watery | 1.28 | 0.0013 | 57.9 |
6 | IV | 5.2 | 11.5 | extremely broken | 28.2 | very developed | V | 28.43 | slope | 69.56 | watery | 3.27 | 5.184 | 57.9 | |
7 | II | 5.2 | 11 | broken | 28.2 | very developed | V | 0.1 | flat | 21.8 | no water | 0.1 | 0.0042 | 57.9 | |
8 | II | 5.2 | 10.4 | broken | 137.3 | more developed | V | 31.25 | flat | 53.84 | slightly watery | 3.25 | 5.184 | 57.9 | |
Shimiao section of Qingdao Metro Line 2 | 9 | IV | 6.4 | 13.6 | broken | 15.6 | development | VI | 77.43 | slope | 94.12 | rich in water | 9.73 | 15 | 57.9 |
10 | III | 6.4 | 16 | broken | 26 | more developed | V | 74.5 | flat | 93.75 | rich in water | 11.92 | 0.1 | 57.9 | |
11 | I | 6.4 | 9.8 | whole | 57.3 | underdeveloped | IV | 1.63 | denudation mound | 32.65 | slightly watery | 0.16 | 0.01 | 57.9 | |
12 | IV | 6.4 | 15.6 | extremely broken | 6.5 | very developed | VI | 84.1 | flat | 91.76 | rich in water | 13.12 | 0.5 | 57.9 |
Quantitative Index Value | I11 | I12 | I13 | I14 | I15 | I16 | I21 | I22 | I23 | I31 | I32 | I33 | I34 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Correlation | 0.848 | 0.862 | 0.925 | 0.675 | 0.923 | 0.878 | 0.831 | 0.825 | 0.900 | 0.892 | 0.817 | 0.718 | 0.832 |
Sample | Risk Level | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Test-out | 1 | 2 | 4 | 4 | 2 | 4 | 2 | 2 | 4 | 3 | 1 | 4 |
Sam-out | I | II | IV | IV | II | IV | II | II | IV | III | I | IV |
Sample | Risk Level | I11/m | I12/m | I13 | I14/MPa | I15 | I16 | I21/% | I22 | I23/% | I31 | I32/m | I33/md−1 | I34/mm |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | I | 7.4 | 16.2 | whole | 93.22 | underdeveloped | II | 21.6 | flat | 16.2 | watery | 1.4 | 0.0026 | 118.6 |
2 | III | 7.4 | 17.74 | broken | 45.3 | development | IV | 77.2 | flat | 87.4 | rich in water | 15.94 | 0.5184 | 118.6 |
3 | IV | 7.4 | 16.6 | broken | 45.3 | development | VI | 95.6 | flat | 98 | rich in water | 15.88 | 0.5184 | 118.6 |
Sample | Risk Level | Model Prediction | ||
---|---|---|---|---|
Gray Relational PAM Improves RBF | RBF | BP | ||
1 | I | I | I | I |
2 | III | III | IV | III |
3 | IV | IV | IV | III |
mean square error | 0.0461 | 0.2500 | 0.7787 |
I11/m | I12/m | I13 | I14/MPa | I15 | I16 | I21/% | I22 | I23/% | I31 | I32/m | I33/md−1 | I34/mm |
---|---|---|---|---|---|---|---|---|---|---|---|---|
7.4 | 16.2 | whole | 93.22 | underdeveloped | II | 21.6 | flat | 16.2 | slightly watery | 1.4 | 0.0026 | 118.6 |
7.4 | 17.74 | broken | 45.3 | development | IV | 77.2 | flat | 87.4 | rich in water | 15.94 | 0.5184 | 118.6 |
7.4 | 16.6 | broken | 45.3 | development | VI | 95.6 | flat | 98 | rich in water | 15.88 | 0.5184 | 118.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhang, W.; Xia, H.; Gong, B.; Liu, F.; Zhang, J.; Liu, K. Case Study and Risk Assessment of Water Inrush Disaster in Qingdao Metro Line 4. Appl. Sci. 2023, 13, 3384. https://doi.org/10.3390/app13063384
Zhang Y, Zhang W, Xia H, Gong B, Liu F, Zhang J, Liu K. Case Study and Risk Assessment of Water Inrush Disaster in Qingdao Metro Line 4. Applied Sciences. 2023; 13(6):3384. https://doi.org/10.3390/app13063384
Chicago/Turabian StyleZhang, Yongjun, Weiguo Zhang, Huangshuai Xia, Bin Gong, Fei Liu, Jiahui Zhang, and Kai Liu. 2023. "Case Study and Risk Assessment of Water Inrush Disaster in Qingdao Metro Line 4" Applied Sciences 13, no. 6: 3384. https://doi.org/10.3390/app13063384
APA StyleZhang, Y., Zhang, W., Xia, H., Gong, B., Liu, F., Zhang, J., & Liu, K. (2023). Case Study and Risk Assessment of Water Inrush Disaster in Qingdao Metro Line 4. Applied Sciences, 13(6), 3384. https://doi.org/10.3390/app13063384