Research on Segmentation and Classification of Heart Sound Signals Based on Deep Learning
<p>An example of a normal heart sound includes two heart sound cycles, and each cycle consists of the following heart sound components: S1, sys, S2, and dia.</p> "> Figure 2
<p>The diagram of auxiliary diagnosis system: preliminary screening and professional diagnosis.</p> "> Figure 3
<p>Diagram of the preprocessing method: normalization, filtering, and feature extraction.</p> "> Figure 4
<p>Diagram of the segmentation method: the division of training set and test set, model training.</p> "> Figure 5
<p>U-net architecture with a depth of 5, which was used for heart sound segmentation. The number in the boxes indicates the feature dimension of the corresponding layer. The number on the arrow of the diagram represents the filter size. The number on the right side of the diagram represents the length of the input and output of each convolutional layer.</p> "> Figure 6
<p>The process of convolution and zero padding. (<b>a</b>) presents the features before convolution. (<b>b</b>) presents the convolution kernel. (<b>c</b>) presents the features after convolution. (<b>d</b>) presents the feature after zero padding.</p> "> Figure 7
<p>Diagram of the proposed classification method: Adaboost classifier and CNN classifier.</p> "> Figure 8
<p>Diagram of the propose method: pre-processing phase, segmentation phase and classification phase.</p> "> Figure 9
<p>An example of the envelope extracted from a heart sound signal with a fixed length, which contains the following four heart sound features: Homomorphic envelogram, Hilbert envelope, Wavelet envelope, and PSD (Power Spectrum Density) envelope.</p> "> Figure 10
<p>Experimental results under different parameters: (<b>a</b>) Results under different fixed lengths; (<b>b</b>) Results under different optimizers; (<b>c</b>) Results under different network depths; (<b>d</b>) Results under different convolution kernel sizes.</p> "> Figure 10 Cont.
<p>Experimental results under different parameters: (<b>a</b>) Results under different fixed lengths; (<b>b</b>) Results under different optimizers; (<b>c</b>) Results under different network depths; (<b>d</b>) Results under different convolution kernel sizes.</p> "> Figure 11
<p>The segmentation results of an example of a normal heart sound includes two heart sound cycles, and each cycle consists of the following heart sound components: S1, sys, S2, and dia.</p> "> Figure 12
<p>The results under Adaboost classifier and CNN classifier.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pre-Processing of Signal
2.2. Segmentation of Signal
2.3. Classification
2.4. Network Model
3. Experiment
3.1. Data Sources
3.2. Data Pre-Processing
3.3. Evaluation Index
4. Results
4.1. Development Environment
4.2. Impact of Fixed Length on Performance Indicators
4.3. Impact of Optimizer on Performance Indicators
4.4. Impact of U-net Depth on Performance Indicators
4.5. Impact of Convolution Kernel Sizes on Performance Indicators
4.6. Determination of Segmentation Model Parameters
4.7. Application of Segmentation Model in Classification
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, D.K.; Carvalho, P.; Antunes, M.; Paiva, R.P.; Henriques, J. Noise detection during heart sound recording using periodicity signatures. Physiol. Meas. 2011, 32, 599–618. [Google Scholar] [CrossRef] [PubMed]
- Rangayyan, R.M.; Lehner, R.J. Phonocardiogram signal analysis: A review. Crit. Rev. Biomed. Eng. 1987, 15, 211–236. [Google Scholar] [PubMed]
- Dissanayake, T.; Fernando, T. Understanding the importance of heart sound segmentation for heart anomaly datec-tion. arXiv 2020, arXiv:2005.10480v1. [Google Scholar]
- Lehner, R.J.; Rangayyan, R.M. A Three-Channel Microcomputer System for Segmentation and Characterization of the Phonocardiogram. IEEE Trans. Biomed. Eng. 1987, BME-34, 485–489. [Google Scholar] [CrossRef] [PubMed]
- Ahlström, C.; Länne, T.; Ask, P.; Johansson, A. A method for accurate localization of the first heart sound and possible applications. Physiol. Meas. 2008, 29, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Ahlström, C.; Hult, P.; Rask, P.; Karlsson, J.-E.; Nylander, E.; Dahlström, U.; Ask, P. Feature Extraction for Systolic Heart Murmur Classification. Ann. Biomed. Eng. 2006, 34, 1666–1677. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.; Lukkarinen, S.; Hartimo, I. Heart sound segmentation algorithm based on heart sound envelo-gram. IEEE 1997, 24, 105–108. [Google Scholar]
- Huiying, L.; Sakari, L.; Iiro, H. A heart sound segmentation algorithm using wavelet decomposition and recon-struction. In Proceedings of the International Conference of the IEEE Engineering in Medicine & Biology Society, Chicago, IL, USA, 30 October–2 November 1997. [Google Scholar]
- Maglogiannis, I.; Loukis, E.; Zafiropoulos, E.; Stasis, A. Support Vectors Machine-based identification of heart valve diseases using heart sounds. Comput. Methods Programs Biomed. 2009, 95, 47–61. [Google Scholar] [CrossRef]
- Moukadem, A.; Dieterlen, A.; Hueber, N.; Brandt, C. Localization of Heart Sounds Based on S-Transform and Radial Basis Function Neural Network. XXVI Braz. Congr. Biomed. Eng. 2011, 34, 168–171. [Google Scholar]
- Moukadem, A.; Dieterlen, A.; Hueber, N.; Brandt, C. A robust heart sounds segmentation module based on S-transform. Biomed. Signal Process. Control 2013, 8, 273–281. [Google Scholar] [CrossRef] [Green Version]
- Naseri, H.; Homaeinezhad, M.R. Detection and boundary identification of phonocardiogram sounds using an expert frequency-energy based metric. Ann. Biomed. Eng. J. Biomed. Eng. Soc. 2013, 41, 279–292. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Carvalho, P.; Antunes, M.; Henriques, J.; Eugenio, L.; Schmidt, R.; Habetha, J. Detection of s1 and s2 heart sounds by high frequency signatures. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; pp. 1410–1416. [Google Scholar]
- Papadaniil, C.D.; Hadjileontiadis, L.J. Efficient heart sound segmentation and extraction using ensemble empir-ical mode decomposition and kurtosis features. IEEE J. Biomed. Health Inform. 2014, 18, 1138–1152. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Ma, K.; Liu, M. Temporal Convolutional Network Connected with an Anti-Arrhythmia Hidden Semi-Markov Model for Heart Sound Segmentation. Appl. Sci. 2020, 10, 7049. [Google Scholar] [CrossRef]
- Oskiper, T.; Watrous, R. Detection of the first heart sound using a time-delay neural network. Comput. Cardiol. 2003, 29, 537–540. [Google Scholar] [CrossRef]
- Gupta, C.N.; Palaniappan, R.; Swaminathan, S.; Krishnan, S.M. Neural network classification of homomorphic segmented heart sounds. Appl. Soft Comput. 2007, 7, 286–297. [Google Scholar] [CrossRef]
- Rajan, S.; Budd, E.; Stevenson, M.; Doraiswami, R. Unsupervised and uncued segmentation of the fundamental heart sounds in phonocardiograms using a time-scale representation. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; pp. 3732–3735. [Google Scholar]
- Renna, F.; Oliveira, J.H.; Coimbra, M.T. Deep convolutional neural networks for heart sound segmenta-tion. IEEE J. Biomed. Health Inform. 2019, 23, 2435–2445. [Google Scholar] [CrossRef]
- Messner, E.; Zhrer, M.; Pernkopf, F. Heart sound segmentation—an event detection approach using deep recur-rent neural networks. Biomed. Eng. IEEE Trans. 2018, 65, 1964–1974. [Google Scholar] [CrossRef]
- Nigam, V.; Priemer, R. Accessing heart dynamics to estimate durations of heart sounds. Physiol. Meas. 2005, 26, 1005–1018. [Google Scholar] [CrossRef]
- Sedighian, P.; Subudhi, A.W.; Scalzo, F.; Asgari, S. Pediatric heart sound segmentation using Hidden Markov Model. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; Volume 2014, pp. 5490–5493. [Google Scholar]
- Schmidt, S.E.; Holst-Hansen, C.; Graff, C.; Toft, E.; Struijk, J.J. Segmentation of heart sound recordings by a duration-dependent hidden Markov model. Physiol. Meas. 2010, 31, 513–529. [Google Scholar] [CrossRef] [Green Version]
- Springer, D.; Tarassenko, L.; Clifford, G.D. Logistic Regression-HSMM-based Heart Sound Segmentation. IEEE Trans. Biomed. Eng. 2015, 63, 1. [Google Scholar] [CrossRef]
- Potes, C.; Parvaneh, S.; Rahman, A.; Conroy, B.; Solutions, A.C. Ensemble of Feature-based and Deep learn-ing-based Classifiers for Detection of Abnormal Heart Sounds. In Proceedings of the 2016 Computing in Cardiology Conference (CinC), Vancouver, BC, Canada, 11–14 September 2016; pp. 621–624. [Google Scholar]
- Puri, C.; Ukil, A.; Bandyoapdhyay, S.; Singh, R.; Pal, A.; Mukherjee, A.; Mukherjee, D. Classification of Normal and Abnormal Heart Sound Recordings through Robust Feature Selection. In Proceedings of the 2016 Computing in Cardiology Conference (CinC), Vancouver, BC, Canada, 11–14 September 2016; Volume 43. [Google Scholar]
- Tang, H.; Chen, H.; Li, T.; Zhong, M. Classification of Normal/Abnormal Heart Sound Recordings based on Multi:Domain Features and Back Propagation Neural Network. In Proceedings of the 2016 Computing in Cardiology Conference (CinC), Vancouver, BC, Canada, 11–14 September 2016. [Google Scholar]
- Hamidi, M.; Khademi, G.; Imani, M. Classification of heart sound signal using curve fitting and fractal dimension. Biomed. Signal Process. Control. 2018, 39, 351–359. [Google Scholar] [CrossRef]
- Arora, V.; Leekha, R.; Singh, R.; Chana, I. Heart sound classification using machine learning and phonocardiogram. Mod. Phys. Lett. B 2019, 33. [Google Scholar] [CrossRef]
- Yaseen; Son, G.-Y.; Kwon, S. Classification of Heart Sound Signal Using Multiple Features. Appl. Sci. 2018, 8, 2344. [Google Scholar] [CrossRef] [Green Version]
- Narváez, P.; Gutierrez, S.; Percybrooks, W.S. Automatic Segmentation and Classification of Heart Sounds Using Modified Empirical Wavelet Transform and Power Features. Appl. Sci. 2020, 10, 4791. [Google Scholar] [CrossRef]
- Kucharski, D.; Grochala, D.; Kajor, M.; Kańtoch, E. A Deep Learning Approach for Valve Defect Recognition in Heart Acoustic Signal. Adv. Intell. Syst. Comput. V 2017, 655, 3–14. [Google Scholar]
- Li, F.; Tang, H.; Shang, S.; Mathiak, K.; Cong, F. Classification of Heart Sounds Using Convolutional Neural Network. Appl. Sci. 2020, 10, 3956. [Google Scholar] [CrossRef]
- Liu, C.; Springer, D.; Li, Q.; Moody, B.; Juan, R.A.; Chorro, F.J.; Castells, F.; Roig, J.M.; Silva, I.; Johnson, A.E.; et al. An open access database for the evaluation of heart sound algorithms. Physiol. Meas. 2016, 37, 2181–2213. [Google Scholar] [CrossRef]
- Khan, F.A.; Abid, A.; Khan, M.S. Automatic heart sound classification from segmented/unsegmented phono-cardiogram signals using time and frequency features. Physiol. Meas. 2020, 41, 055006. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation[C]. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Feng, K.; Pi, X.; Liu, H.; Sun, K. Myocardial Infarction Classification Based on Convolutional Neural Network and Recurrent Neural Network. Appl. Sci. 2019, 9, 1879. [Google Scholar] [CrossRef] [Green Version]
- Krizhevsky, A.; Sutskever, I.; Hinton, G. Imagenet classification with deep convolutional neural net-works. Adv. Neural Inf. Process. Syst. 2012, 25, 1106–1114. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Keskar, N.S.; Socher, R. Improving generalization performance by switching from adam to sgd. arXiv 2017, arXiv:1712.07628. [Google Scholar]
Length | 64 | 128 | 256 | 512 |
---|---|---|---|---|
Number | 8431 | 3936 | 1725 | 711 |
Length | PA | CPA | MPA |
---|---|---|---|
64 | 0.895 | [0.848 0.873 0.842 0.934] | 0.874 |
128 | 0.918 | [0.864 0.923 0.889 0.942] | 0.904 |
256 | 0.991 | [0.976 0.995 0.995 0.992] | 0.990 |
512 | 0.994 | [0.986 0.993 0.994 0.996] | 0.992 |
Optimizer | PA | CPA | MPA |
---|---|---|---|
SGD | 0.632 | [0.865 0.036 0.007 0.965] | 0.468 |
Adagrad | 0.943 | [0.912 0.935 0.848 0.942] | 0.980 |
RMSprop | 0.983 | [0.960 0.992 0.988 0.986] | 0.982 |
Aadm | 0.994 | [0.986 0.993 0.994 0.996] | 0.992 |
Depth | PA | CPA | MPA |
---|---|---|---|
5 | 0.994 | [0.986 0.993 0.994 0.996] | 0.992 |
6 | 0.994 | [0.985 0.996 0.996 0.997] | 0.993 |
7 | 0.995 | [0.989 0.993 0.996 0.998] | 0.994 |
8 | 0.995 | [0.987 0.995 0.996 0.996] | 0.994 |
Convolution Kernel | PA | CPA | MPA |
---|---|---|---|
5 × 4 | 0.994 | [0.986 0.993 0.994 0.996] | 0.992 |
9 × 4 | 0.996 | [0.991 0.996 0.996 0.997] | 0.995 |
15 × 4 | 0.995 | [0.987 0.997 0.996 0.996] | 0.994 |
31 × 4 | 0.996 | [0.991 0.995 0.994 0.998] | 0.995 |
Deep | Type | Type | Filter Number | Kernel Size | Output Shape |
---|---|---|---|---|---|
1 | Input | - | (8, 8) | 9 × 4 | 8 × 512 |
2 | Down1 | (Conv + Zero padding) × 2 + max pooling | (16, 16) | 9 × 4 | 16 × 512 |
3 | Down2 | (32, 32) | 9 × 4 | 32 × 512 | |
4 | Down3 | (64, 64) | 9 × 4 | 64 × 512 | |
5 | Down4 | (128, 128) | 9 × 4 | 128 × 512 | |
4 | Up1 | Up-sampling + Skip connection + (Conv + Zero padding) × 2 | (64, 64) | 9 × 4 | 64 × 512 |
3 | Up2 | (32, 32) | 9 × 4 | 32 × 512 | |
2 | Up3 | (16, 16) | 9 × 4 | 16 × 512 | |
1 | Up4 | Up-sampling + Skip connection + (Conv + Zero padding) × 3 | (8, 8, 4) | 9 × 4 | 8 × 512 |
1 | Output | Soft max | 4 | 9 × 4 | 4 × 512 |
Classifier | Se | Sp | Acc |
---|---|---|---|
Adaboost | 0.763 | 0.759 | 0.761 |
CNN | 0.964 | 0.781 | 0.873 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Li, W.; Zhang, W.; Zhang, S.; Pi, X.; Liu, H. Research on Segmentation and Classification of Heart Sound Signals Based on Deep Learning. Appl. Sci. 2021, 11, 651. https://doi.org/10.3390/app11020651
He Y, Li W, Zhang W, Zhang S, Pi X, Liu H. Research on Segmentation and Classification of Heart Sound Signals Based on Deep Learning. Applied Sciences. 2021; 11(2):651. https://doi.org/10.3390/app11020651
Chicago/Turabian StyleHe, Yi, Wuyou Li, Wangqi Zhang, Sheng Zhang, Xitian Pi, and Hongying Liu. 2021. "Research on Segmentation and Classification of Heart Sound Signals Based on Deep Learning" Applied Sciences 11, no. 2: 651. https://doi.org/10.3390/app11020651
APA StyleHe, Y., Li, W., Zhang, W., Zhang, S., Pi, X., & Liu, H. (2021). Research on Segmentation and Classification of Heart Sound Signals Based on Deep Learning. Applied Sciences, 11(2), 651. https://doi.org/10.3390/app11020651