Wearable Sensors Technology as a Tool for Discriminating Frailty Levels During Instrumented Gait Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Assessment of Frailty Criteria
2.4. Physical Performance Tests
2.5. Sensor-Based Assessment of Gait
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- O’Caoimh, R.; Galluzzo, L.; Rodríguez-Laso, Á.; Van Der Heyden, J.; Ranhoff, A.H.; Lamprini-Koula, M.; Ciutan, M.; Samaniego, L.L.; Carcaillon-Bentata, L.; Kennelly, S.; et al. Prevalence of frailty at population level in European ADVANTAGE Joint Action Member States: A systematic review and meta-analysis. Ann. Dell’Istituto Super. Sanita 2018. [Google Scholar] [CrossRef]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. Ser. A Biol. Sci. Med Sci. 2001, 56. [Google Scholar] [CrossRef] [PubMed]
- Rockwood, K.; Mitnitski, A. Frailty in relation to the accumulation of deficits. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gill, T.M.; Gahbauer, E.A.; Allore, H.G.; Han, L. Transitions between frailty states among community-living older persons. Arch. Intern. Med. 2006. [Google Scholar] [CrossRef]
- Lang, P.O.; Michel, J.P.; Zekry, D. Frailty syndrome: A transitional state in a dynamic process. Gerontology 2009, 55, 539–549. [Google Scholar] [CrossRef]
- Woo, J. Designing fit for purpose health and social services for ageing populations. Int. J. Environ. Res. Public Health 2017, 14, 457. [Google Scholar] [CrossRef]
- Rodríguez Mañas, L.; García-Sánchez, I.; Hendry, A.; Bernabei, R.; Roller-Wirnsberger, R.; Gabrovec, B.; Liew, A.; Carriazo, A.M.; Redon, J.; Galluzzo, L.; et al. Key Messages for a Frailty Prevention and Management Policy in Europe from the Advantage Joint Action Consortium. J. Nutr. Health Aging 2018. [Google Scholar] [CrossRef]
- Dent, E.; Lien, C.; Lim, W.S.; Wong, W.C.; Wong, C.H.; Ng, T.P.; Woo, J.; Dong, B.; de la Vega, S.; Hua Poi, P.J.; et al. The Asia-Pacific Clinical Practice Guidelines for the Management of Frailty. J. Am. Med. Dir. Assoc. 2017. [Google Scholar] [CrossRef]
- Da Câmara, S.M.A.; Alvarado, B.E.; Guralnik, J.M.; Guerra, R.O.; Maciel, Á.C.C. Using the Short Physical Performance Battery to screen for frailty in young-old adults with distinct socioeconomic conditions. Geriatr. Gerontol. Int. 2013. [Google Scholar] [CrossRef]
- Kiely, D.K.; Cupples, L.A.; Lipsitz, L.A. Validation and comparison of two frailty indexes: The MOBILIZE Boston study. J. Am. Geriatr. Soc. 2009. [Google Scholar] [CrossRef] [Green Version]
- Melzer, D.; Lan, T.Y.; Tom, B.D.; Deeg, D.J.; Guralnik, J.M. Variation in thresholds for reporting mobility disability between national population subgroups and studies. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2004. [Google Scholar] [CrossRef] [Green Version]
- Tudor-Locke, C.E.; Myers, A.M. Challenges and opportunities for measuring physical activity in sedentary adults. Sport. Med. 2001. [Google Scholar] [CrossRef] [PubMed]
- Rothman, M.D.; Leo-Summers, L.; Gill, T.M. Prognostic significance of potential frailty criteria. J. Am. Geriatr. Soc. 2008, 56, 2211–2216. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.; Patel, T.; Costa, A.; Bryce, E.; Hillier, L.M.; Slonim, K.; Hunter, S.W.; Heckman, G.; Molnar, F. Screening for frailty in primary care Accuracy of gait speed and hand-grip strength. Can. Fam. Physician 2017, 63, e51–e57. [Google Scholar] [PubMed]
- Schwenk, M.; Howe, C.; Saleh, A.; Mohler, J.; Grewal, G.; Armstrong, D.; Najafi, B. Frailty and technology: A systematic review of gait analysis in those with frailty. Gerontology 2013, 60, 79–89. [Google Scholar] [CrossRef] [Green Version]
- Montero-Odasso, M.; Muir, S.W.; Hall, M.; Doherty, T.J.; Kloseck, M.; Beauchet, O.; Speechley, M. Gait variability is associated with frailty in community-dwelling older adults. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2011. [Google Scholar] [CrossRef]
- Beauchet, O.; Dubost, V.; Herrmann, F.; Rabilloud, M.; Gonthier, R.; Kressig, R.W. Relationship between dual-task related gait changes and intrinsic risk factors for falls among transitional frail older adults. Aging Clin. Exp. Res. 2005. [Google Scholar] [CrossRef] [Green Version]
- Kressig, R.W.; Gregor, R.J.; Oliver, A.; Waddell, D.; Smith, W.; O’Grady, M.; Curns, A.T.; Kutner, M.; Wolf, S.L. Temporal and spatial features of gait in older adults transitioning to frailty. Gait Posture 2004. [Google Scholar] [CrossRef]
- Verghese, J.; Holtzer, R.; Lipton, R.B.; Wang, C. Mobility stress test approach to predicting frailty, disability, and mortality in high-functioning older adults. J. Am. Geriatr. Soc. 2012. [Google Scholar] [CrossRef] [Green Version]
- Schwenk, M.; Mohler, J.; Wendel, C.; D’Huyvetter, K.; Fain, M.; Taylor-Piliae, R.; Najafi, B. Wearable sensor-based in-home assessment of gait, balance, and physical activity for discrimination of frailty status: Baseline results of the Arizona frailty cohort study. Gerontology 2015. [Google Scholar] [CrossRef] [Green Version]
- Pradeep Kumar, D.; Toosizadeh, N.; Mohler, J.; Ehsani, H.; Mannier, C.; Laksari, K. Sensor-based characterization of daily walking: A new paradigm in pre-frailty/frailty assessment. BMC Geriatr. 2020. [Google Scholar] [CrossRef]
- Dasenbrock, L.; Heinks, A.; Schwenk, M.; Bauer, J.M. Technology-based measurements for screening, monitoring and preventing frailty. Z. Gerontol. Geriatr. 2016. [Google Scholar] [CrossRef]
- Thiede, R.; Toosizadeh, N.; Mills, J.L.; Zaky, M.; Mohler, J.; Najafi, B. Gait and balance assessments as early indicators of frailty in patients with known peripheral artery disease. Clin. Biomech. 2016, 32, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- General Assembly of the World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. J. Am. Coll. Dent. 2014, 81, 14–18. [Google Scholar] [CrossRef] [Green Version]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Kempen, G.I.; Yardley, L.; Van Haastregt, J.C.; Zijlstra, G.A.; Beyer, N.; Hauer, K.; Todd, C. The Short FES-I: A shortened version of the falls efficacy scale-international to assess fear of falling. Age Ageing 2008, 37, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Orme, J.G.; Reis, J.; Herz, E.J. Factorial and discriminant validity of the center for epidemiological studies depression (CES-D) scale. J. Clin. Psychol. 1986, 42, 28–33. [Google Scholar] [CrossRef]
- Washburn, R.A.; Smith, K.W.; Jette, A.M.; Janney, C.A. The physical activity scale for the elderly (PASE): Development and evaluation. J. Clin. Epidemiol. 1993, 46, 153–162. [Google Scholar] [CrossRef]
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef]
- Savva, G.; Donoghue, O.; Horgan, F.; O’Regan, C.; Cronin, H.; Kenny, R.A. Timed-up-and-go and walking speed can identify frail members of the older population. J. Gerontol. A-Biol. 2013, 441–446. [Google Scholar] [CrossRef]
- Vander Linden, D.W. Shumway-Cook A, Wollacott MH. Motor Control: Theory and Practical Applications. Baltimore, Md; Neurology Report; Williams and Wilkins Inc.: Philadelphia, PA, USA, 1996. [Google Scholar] [CrossRef]
- Apóstolo, J.; Cooke, R.; Bobrowicz-Campos, E.; Santana, S.; Marcucci, M.; Cano, A.; Vollenbroek-Hutten, M.; Germini, F.; Holland, C. Predicting risk and outcomes for frail older adults: An umbrella review of frailty screening tools. JBI Database Syst. Rev. Implement. Rep. 2017, 15, 1154. [Google Scholar] [CrossRef] [Green Version]
- Maggio, M.; Ceda, G.P.; Ticinesi, A.; De Vita, F.; Gelmini, G.; Costantino, C.; Meschi, T.; Kressig, R.W.; Cesari, M.; Fabi, M.; et al. Instrumental and non-instrumental evaluation of 4-m walking speed in older individuals. PLoS ONE 2016, 11. [Google Scholar] [CrossRef]
- Greene, B.R.; McGrath, D.; O’Neill, R.; O’Donovan, K.J.; Burns, A.; Caulfield, B. An adaptive gyroscope-based algorithm for temporal gait analysis. Med. Biol. Eng. Comput. 2010. [Google Scholar] [CrossRef]
- Aminian, K.; Najafi, B.; Büla, C.; Leyvraz, P.F.; Robert, P. Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes. J. Biomech. 2002. [Google Scholar] [CrossRef]
- Rueterbories, J.; Spaich, E.G.; Andersen, O.K. Gait event detection for use in FES rehabilitation by radial and tangential foot accelerations. Med. Eng. Phys. 2014. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: New York, NY, USA, 1988. [Google Scholar] [CrossRef]
- Böhning, D. Multinomial logistic regression algorithm. Ann. Inst. Stat. Math. 1992. [Google Scholar] [CrossRef]
Characteristic * | Total Sample (n = 133) | Robust (n = 30) | Prefrail (n = 66) | Frail (n = 37) | p Value (F) Partial | p Value 95% CI [LL UL] | ||
---|---|---|---|---|---|---|---|---|
R vs. P | P vs. F | R vs. F | ||||||
Age, mean (±SD) | 75.1 ± 8 [73.71 76.46] | 73 ± 6.3 [70.69 75.38] | 73.9 ± 8.5 [71.78 75.94] | 78.9 ± 7.3 [76.48 81.36] | 0.002 (6.467) 0.09 | 1.000 [−5.15 −3.93] | 0.006 [−8.97 −1.14] | 0.020 [−10.7 −0.68] |
BMI, mean (±SD) | 27.6 ± 5.8 [26.6 28.6] | 28.9 ± 5.6 [26.8 30.9] | 27.7 ± 5.7 [26.3 29.1] | 26.5 ± 6.1 [24.4 28.5] | 0.244 (1.425) 0.021 | 1.000 [−2.07 4.71] | 0.900 [−1.67 4.18] | 0.289 [−1.16 6.30] |
RCC, cm, mean (±SD) | 35.1 ± 69.2 [339 362] | 38.3 ± 38.4 [369 397] | 34.3 ± 84.5 [322 364] | 33.7 ± 47.4 [321 353] | 0.012 (4.596) 0.067 | 0.071 [−2.39 83.2] | 1.000 [−22.7 51.8] | 0.017 [7.64 102.3] |
Number of comorbidities, mean (±SD) | 3.1 ± 1.7 [2.81 3.44] | 2.9 ± 2 [1.71 4.01] | 3 ± 1.6 [2.56 3.35] | 3.5 ± 1.8 [2.94 4.14] | 0.210 (1.580) 0.027 | 1.000 [−1.67 1.63] | 0.150 [−1.64 0.17] | 0.865 [−2.48 0.97] |
Number of medications, mean (±SD) | 3.4 ± 2.4 [3 3.89] | 3.7 ± 2.1 [2.49 4.94] | 3 ± 2.2 [2.48 3.55] | 4.1 ± 2.8 [3.18 5.05] | 0.078 (2.604) 0.044 | 1.000 [−1.77 3.36] | 0.050 [−2.72 0.00] | 1.000 [−3.23 2.10] |
MMSE score, mean (±SD) | 27.5 ± 2.2 [27.1 27.8] | 28.1 ± 1.9 [27.3 28.8] | 27.6 ± 1.8 [27.2 28.1] | 26.6 ± 2.6 [25.8 27.5] | 0.068 (2.752) 0.061 | 1.000 [−1.25 1.18] | 0.078 [−0.08 2.02] | 0.277 [−0.40 2.27] |
PASE score, mean (±SD) | 97.9 ± 52.7 [88.8 107] | 109.9 ± 31.3 [98.2 122] | 106.6 ± 61 [91.5 122] | 72.9 ± 42.3 [58.8 87] | 0.002 (6.312 ) 0.061 | 1.000 [−29.10 30.97] | 0.006 [7.81 59.60] | 0.036 [1.68 67.59] |
FES-I score, mean (±SD) | 22 ± 7.4 [20.7 23.36] | 17.6 ± 3.3 [16.4 18.9] | 23.3 ± 7.3 [21.4 25.1] | 23.5 ± 8.7 [20.5 26.4] | 0.001 (7.519) 0.106 | 0.002 [−10.50 −1.99] | 1.000 [−4.28 3.21] | 0.002 [−11.53 −2.03] |
Gender and Falls History | Total Sample (n = 133) | Robust (n = 30) | Prefrail (n = 66) | Frail (n = 37) | p Value |
---|---|---|---|---|---|
Women, n (%) | 86 (67.7) | 20 (83.3) | 41 (62.1) | 25 (67.6) | 0.16 |
History of falls in the last 12 months, n (%) | 60 (47.6) | 5 (20.8) | 33 (50.8) | 22 (59.5) | 0.01 |
History of falls in the last 3 months, n (%) | 28 (22.2) | 3 (12.5) | 13 (20.0) | 12 (32.4) | 0.155 |
Reported fear of falling, n (%) | 73 (56.2) | 9 (9.0) | 43 (66.2) | 21 (60.0) | 0.004 |
Frailty criteria, n (%) Slow gait velocity Low physical activity Low hand grip Weight loss Exhaustion | 89 (70.1) | 0 | 54 (81.8) | 35 (94.6) | <0.001 |
39 (30.7) | 0 | 22 (33.3) | 17 (45.9) | 0.001 | |
26 (20.5) | 0 | 4 (6.1) | 22 (59.5) | <0.001 | |
25 (19.7) | 0 | 4 (6.1) | 21 (56.8) | <0.001 | |
52 (40.9) | 0 | 19 (28.8) | 33 (89.2) | <0.001 |
Variable | Total Sample (n = 133) | Robust (n = 30) | Prefrail (n = 66) | Frail (n = 37) | p Value (F) | Partial | p Value 95% CI [LL UL] | ||
---|---|---|---|---|---|---|---|---|---|
R vs. P | P vs. F | R vs. F | |||||||
TUG, s | 12.34 ± 5.03 | 7.68 ± 1.86 | 12.71 ± 4.56 | 15.56 ± 4.87 | <0.001 (29.195) | 0.238 | <0.001 [−7.23 −2.84] | 0.004 [2.84 7.23] | <0.001 [−10.3 −5.41] |
DGI, score | 16.25 ± 4.04 | 18.90 ± 3.63 | 16.12 ± 3.52 | 14.32 ± 4.15 | <0.001 (12.547) | 0.139 | 0.003 [0.83 4.73] | 0.053 [−0.02 3.61] | <0.001 [2.4 6.75] |
Gait speed, m/s | 0.68 ± 0.22 | 0.98 ± 0.17 | 0.63 ± 0.13 | 0.52 ± 0.13 | <0.001 (96.334) | 0.374 | <0.001 [0.275 0.42] | <0.001 [0.045 0.18] | <0.001 [0.38 0.54] |
Stride time, s | 1.31 ± 0.24 | 1.06 ± 0.16 | 1.35 ± 0.16 | 1.46 ± 0.25 | <0.001 (39.415) | 0.274 | <0.001 [−0.38 −0.19] | 0.010 [−0.206 −0.023] | <0.001 [−0.51 −0.29] |
Swing time, s | 0.49 ± 0.08 | 0.44 ± 0.06 | 0.51 ± 0.08 | 0.50 ± 0.09 | <0.001 (8.562) | 0.104 | <0.001 [−0.109 −0.028] | 0.92 [−0.033 0.043] | 0.003 [−0.108 −0.018] |
Stance time, s | 0.83 ± 0.19 | 0.63 ± 0.11 | 0.84 ± 0.13 | 0.96 ± 0.21 | <0.001 (41.763) | 0.281 | <0.001 [−0.29 −0.14] | 0.001 [−0.19 −0.05] | <0.001 [−0.42 −0.25] |
Swing phase,% | 37.58 ± 4.97 | 41.29 ± 3.35 | 37.59 ± 4.40 | 34.53 ± 5.05 | <0.001 (19.685) | 0.189 | 0.001 [1.41 5.99] | 0.003 [0.93 5.2] | <0.001 [4.21 9.32] |
Stance phase,% | 62.42 ± 4.97 | 58.71 ± 3.35 | 62.40 ± 4.40 | 65.47 ± 5.05 | <0.001 (19.685) | 0.189 | 0.001 0.90 [−5.99 −1.41] | 0.003 0.66 [−5.2 −0.93] | <0.001 1.55 [−9.32 −4.21] |
DS time, s | 0.15 ± 0.08 | 0.08 ± 0.04 | 0.15 ± 0.07 | 0.20 ± 0.09 | <0.001 (27.098) | 0.227 | <0.001 [−0.106 −0.033] | <0.001 [−0.09 −0.023] | <0.001 [−0.17 −0.085] |
Cad., step/min | 95.38 ± 17.29 | 117.17 ± 13.18 | 91.35 ± 11.92 | 84.89 ± 12.71 | <0.001 (62.697) | 0.329 | <0.001 [19.32 32.3] | 0.033 [0.41 12.52] | <0.001 [25.04 39.52] |
Variable * | Prefrail vs. Robust | Frail vs. Robust | ||||
---|---|---|---|---|---|---|
OR | 95% CI | p Value | OR | 95% CI | p Value | |
TUG time, s | 2.36 | 1.68–3.31 | <0.001 | 2.67 | 1.89–3.78 | <0.001 |
Dynamic gait index, score | 0.80 | 0.70–0.92 | 0.001 | 0.71 | 0.60–0.83 | <0.001 |
Gait speed, cm/s | 0.93 | 0.90–0.95 | <0.001 | 0.92 | 0.89–0.95 | <0.001 |
Stride time, ms | 1.006 | 1.003–1.009 | <0.001 | 1.006 | 1.003–1.009 | <0.001 |
Swing phase time, ms | 1.007 | 1.001–1.013 | 0.028 | 1.008 | 1.001–1.015 | 0.024 |
Stance phase time, ms | 1.009 | 1.005–1.013 | <0.001 | 1.008 | 1.004–1.012 | <0.001 |
Swing phase,% | 0.80 | 0.71–0.91 | 0.001 | 0.69 | 0.60–0.90 | <0.001 |
Stance phase,% | 1.24 | 1.10–1.41 | 0.001 | 1.44 | 1.25–1.67 | <0.001 |
Double support time, ms | 1.02 | 1.01–1.03 | <0.001 | 1.01 | 1.01–1.02 | 0.002 |
Cadence, steps per min | 0.87 | 0.83–0.92 | <0.001 | 0.83 | 0.78–0.89 | <0.001 |
Variables * | Frail vs. Prefrail or Robust | Prefrail or Frail vs. Robust | ||||||
---|---|---|---|---|---|---|---|---|
AUC | Cut-Off Value | Sens. (%) | Spec. (%) | AUC | Cut-Off Value | Sens. (%) | Spec. (%) | |
TUG test time, s | 0.790 | 11.60 | 86.1 | 65.6 | 0.929 | 9.27 | 89.2 | 86.7 |
DGI, score | 0.675 | 15.00 | 54.1 | 75.0 | 0.735 | 19.0 | 73.8 | 56.7 |
Ch. gait speed, m/s | 0.801 | 0.59 | 83.8 | 68.8 | 0.969 | 0.74 | 91.3 | 90.0 |
S. gait speed, m/s | 0.810 | 0.60 | 78.4 | 75.0 | 0.958 | 0.82 | 94.2 | 86.7 |
Stride time, s | 0.740 | 1.27 | 91.9 | 51.0 | 0.915 | 1.19 | 90.3 | 86.7 |
Stance time, s | 0.773 | 0.80 | 83.8 | 62.5 | 0.923 | 0.68 | 96.1 | 73.3 |
Swing time, s | 0.569 | 0.48 | 59.5 | 57.3 | 0.759 | 0.48 | 58.3 | 86.7 |
Stance phase,% | 0.749 | 63.15 | 75.7 | 68.8 | 0.788 | 63.27 | 53.4 | 96.7 |
Swing phase,% | 0.749 | 36.85 | 75.7 | 68.8 | 0.790 | 36.73 | 53.4 | 96.7 |
DS time, s | 0.778 | 0.16 | 70.3 | 76.0 | 0.858 | 0.14 | 62.1 | 96.7 |
Cad., step/min | 0.724 | 99.54 | 94.6 | 44.8 | 0.930 | 101.22 | 84.4 | 90.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apsega, A.; Petrauskas, L.; Alekna, V.; Daunoraviciene, K.; Sevcenko, V.; Mastaviciute, A.; Vitkus, D.; Tamulaitiene, M.; Griskevicius, J. Wearable Sensors Technology as a Tool for Discriminating Frailty Levels During Instrumented Gait Analysis. Appl. Sci. 2020, 10, 8451. https://doi.org/10.3390/app10238451
Apsega A, Petrauskas L, Alekna V, Daunoraviciene K, Sevcenko V, Mastaviciute A, Vitkus D, Tamulaitiene M, Griskevicius J. Wearable Sensors Technology as a Tool for Discriminating Frailty Levels During Instrumented Gait Analysis. Applied Sciences. 2020; 10(23):8451. https://doi.org/10.3390/app10238451
Chicago/Turabian StyleApsega, Andrius, Liudvikas Petrauskas, Vidmantas Alekna, Kristina Daunoraviciene, Viktorija Sevcenko, Asta Mastaviciute, Dovydas Vitkus, Marija Tamulaitiene, and Julius Griskevicius. 2020. "Wearable Sensors Technology as a Tool for Discriminating Frailty Levels During Instrumented Gait Analysis" Applied Sciences 10, no. 23: 8451. https://doi.org/10.3390/app10238451
APA StyleApsega, A., Petrauskas, L., Alekna, V., Daunoraviciene, K., Sevcenko, V., Mastaviciute, A., Vitkus, D., Tamulaitiene, M., & Griskevicius, J. (2020). Wearable Sensors Technology as a Tool for Discriminating Frailty Levels During Instrumented Gait Analysis. Applied Sciences, 10(23), 8451. https://doi.org/10.3390/app10238451