Multiple Swarm Fruit Fly Optimization Algorithm Based Path Planning Method for Multi-UAVs
<p>(<b>a</b>,<b>c</b>,<b>e</b>) are the three-dimensional (3D) displays of the three simulation scenarios, which show the terrain and threat sources in the mission map; (<b>b</b>,<b>d</b>,<b>f</b>) are the corresponding 2D views of the simulation scenarios.</p> "> Figure 2
<p>Two-dimensional displays of the best unmanned aerial vehicle (UAV) paths obtained by (<b>a</b>) MSFOA, (<b>b</b>) FOA, (<b>c</b>) PSO, (<b>d</b>) DE, (<b>e</b>) ABC, (<b>f</b>) IFFO, and (<b>g</b>) MFOA in the first scenario.</p> "> Figure 2 Cont.
<p>Two-dimensional displays of the best unmanned aerial vehicle (UAV) paths obtained by (<b>a</b>) MSFOA, (<b>b</b>) FOA, (<b>c</b>) PSO, (<b>d</b>) DE, (<b>e</b>) ABC, (<b>f</b>) IFFO, and (<b>g</b>) MFOA in the first scenario.</p> "> Figure 3
<p>Two-dimensional displays of the best UAV paths obtained by (<b>a</b>) MSFOA, (<b>b</b>) FOA, (<b>c</b>) PSO, (<b>d</b>) DE, (<b>e</b>) ABC, (<b>f</b>) IFFO, and (<b>g</b>) MFOA in the second scenario.</p> "> Figure 3 Cont.
<p>Two-dimensional displays of the best UAV paths obtained by (<b>a</b>) MSFOA, (<b>b</b>) FOA, (<b>c</b>) PSO, (<b>d</b>) DE, (<b>e</b>) ABC, (<b>f</b>) IFFO, and (<b>g</b>) MFOA in the second scenario.</p> "> Figure 4
<p>Two-dimensional displays of the best UAV paths obtained by (<b>a</b>) MSFOA, (<b>b</b>) FOA, (<b>c</b>) PSO, (<b>d</b>) DE, (<b>e</b>) ABC, (<b>f</b>) IFFO, and (<b>g</b>) MFOA in the third scenario.</p> "> Figure 4 Cont.
<p>Two-dimensional displays of the best UAV paths obtained by (<b>a</b>) MSFOA, (<b>b</b>) FOA, (<b>c</b>) PSO, (<b>d</b>) DE, (<b>e</b>) ABC, (<b>f</b>) IFFO, and (<b>g</b>) MFOA in the third scenario.</p> "> Figure 5
<p>Convergence curves of the average best values for the first scenario.</p> "> Figure 6
<p>Convergence curves of the average best values for the second scenario.</p> "> Figure 7
<p>Convergence curves of the average best values for the third scenario.</p> ">
Abstract
:1. Introduction
2. Overview of Fruit Fly Optimization Algorithm
Algorithm 1: Process of the FOA | |
/*Initialization*/ | |
1 | Set the population size and the max number of iterations . Randomly initialize the fruit fly swarm’s location in the search space. |
/* Iterative search */ | |
2 | forn = 1: |
3 | /* Olfactory search */ |
for i = 1: | |
4 | + random(–1,1) |
5 | + random(–1,1) |
/* Calculate the smell concentration */ | |
6 | |
7 | |
8 | |
9 | end for /* Visual search */ |
10 | |
11 | if is smaller than of the fruit fly swarm’s location then |
12 | Fruit flies move to the location and update the smell concentration: |
13 | |
14 | |
15 | |
16 | end if |
17 | end for |
3. UAV Path Planning Method Based Modified Fruit Fly Optimization Algorithm
3.1. MSFOA
3.1.1. Motivation
3.1.2. Multi-Swarm with Multi-Tasks Strategy
3.1.3. Competitive Strategies of Offspring
3.1.4. The Process of MSFOA
Algorithm 2: MSFOA | |
/*Initialization*/ | |
1 | Set the number of the fruit fly population Mpop, the max number of iterations NC, swarms’ initial position [xbest, ybest], swarm number g, the threshold, genetic coefficient of hybridization coe1 and coe2, the parameter R. |
2 | fornc = 1: NC |
3 | for g = 1: G |
/* Multi-swarm with multi-task searching strategy */ | |
4 | for i = 1: Mpop/G |
5 | if is larger than threshold |
6 | |
7 | |
8 | else |
9 | |
10 | |
11 | end |
/* Calculate smell concentration */ | |
12 | = |
13 | |
/*Vision searching in old swarms*/ | |
14 | |
15 | end for |
16 | end for |
/*Competitive strategies of offspring*/ | |
17 | for g = 1: G |
18 | for i = 1: Mpop/G |
19 | |
20 | |
/* Vision searching in new swarms */ | |
21 | = |
22 | |
23 | |
24 | end for |
25 | end for |
/* Competitive strategy of offspring */ | |
26 | for g = 1: G |
27 | Competition of offspring and visual searching in each swarm by formulas (18) and (19) |
28 | end for |
29 | end for |
/*Output*/ | |
30 | Find the best individual from the G swarms and export it. |
3.2. MSFOA-Based Path Planning
3.2.1. Problem Modeling
3.2.2. Application of MSFOA to Multi-UAVs Path Planning
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
The x coordinate of the location of the g-th old swarm. | |
The y coordinate of the location of the g-th old swarm. | |
The x coordinate of the i-th fruit fly in the g-th old swarm. | |
The y coordinate of the i-th fruit fly in the g-th old swarm. | |
The smell concentration judgement of the i-th fruit fly in the g-th old swarm. | |
The smell concentration of the i-th fruit fly in the g-th old swarm. | |
The index of the fly with the best smell concentration in the g-th old swarm. | |
The x coordinate of the fly with the best smell concentration in the g-th old swarm. | |
The y coordinate of the fly with the best smell concentration in the g-th old swarm. | |
The x coordinate of the i-th fruit fly in the g-th new swarm. | |
The y coordinate of the i-th fruit fly in the g-th new swarm. | |
The smell concentration judgement of the i-th fruit fly in the g-th new swarm. | |
The smell concentration of the i-th fruit fly in the g-th new swarm. | |
The index of the fly with the best smell concentration in the g-th new swarm. | |
G | The number of swarms. |
References
- Zhang, X.Y.; Lu, X.Y.; Jia, S.; Li, X.Z. A novel phase angle-encoded fruit fly optimization algorithm with mutation adaptation mechanism applied to UAV path planning. Appl. Soft Comput. 2018, 70, 371–388. [Google Scholar] [CrossRef]
- Zheng, C.W.; Li, L.; Xu, F.J.; Sun, F.C.; Ding, M.Y. Evolutionary route planner for unmanned air vehicles. IEEE Trans. Robot. 2005, 21, 609–620. [Google Scholar] [CrossRef]
- Zhu, M.N.; Zhang, X.H.; Luo, H.; Wang, G.Q.; Zhang, B.B. Optimization dubins path of multiple UAVs for post-earthquake rapid-assessment. Appl. Sci. 2020, 10, 1388. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.D.; Luo, X.; Han, B.L.; Chen, Y.H.; Liang, G.H.; Zheng, K.L. Collision-free path planning method for robots based on an improved rapidly-exploring random tree algorithm. Appl. Sci. 2020, 10, 1381. [Google Scholar] [CrossRef] [Green Version]
- Roberge, V.; Tarbouchi, M.; Labonte, G. Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning. IEEE Trans. Ind. Inform. 2013, 9, 132–141. [Google Scholar] [CrossRef]
- Sababha, M.; Zohdy, M.; Kafafy, M. The Eehanced firefly algorithm based on modified exploitation and exploration mechanism. Electronics 2018, 7, 132. [Google Scholar] [CrossRef] [Green Version]
- Richter, C.; Bry, A.; Roy, N. Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments. Springer Tracts Adv. Robot. 2016, 114, 649–666. [Google Scholar]
- Li, Z.H.; Yang, X.J.; Sun, X.D.; Liu, G.; Hu, C. Improved artificial potential field based lateral entry guidance for waypoints passage and no-fly zones avoidance. Aerosp. Sci. Technol. 2019, 86, 119–131. [Google Scholar] [CrossRef]
- Xue, Y.; Sun, J.Q. Solving the path planning problem in mobile robotics with the multi-objective evolutionary algorithm. Appl. Sci. 2018, 8, 1425. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.Y.; Duan, H.B. An improved constrained differential evolution algorithm for unmanned aerial vehicle global route planning. Appl. Soft Comput. 2015, 26, 270–284. [Google Scholar] [CrossRef]
- Xu, C.F.; Duan, H.B.; Liu, F. Chaotic artificial bee colony approach to uninhabited combat air vehicle (UCAV) path planning. Aerosp. Sci. Technol. 2010, 14, 535–541. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Jia, S.M.; Li, X.Z.; Jian, M. Design of the fruit fly optimization algorithm based path planner for UAV in 3D environments. In Proceedings of the 2017 IEEE International Conference on Mechatronics and Automation, Takamatsu, Japan, 6–9 August 2017; pp. 381–386. [Google Scholar]
- Das, P.K.; Behera, H.S.; Das, S.; Tripathy, H.K.; Panigrahi, B.K.; Pradhan, S.K. A hybrid improved PSO-DV algorithm for multi-robot path planning in a clutter environment. Neurocomputing 2016, 207, 735–753. [Google Scholar] [CrossRef]
- Dorigo, M.; Maniezzo, V.; Colorni, A. Ant System: Optimization by a Colony of Cooperating Agents. IEEE Trans. Syst. 1996, 26, 29–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, H.B.; Zhang, X.Y.; Wu, J.; Ma, G.J. Max-min adaptive ant colony optimization approach to multi-UAVs coordinated trajectory replanning in dynamic and uncertain environments. J. Bionic Eng. 2009, 6, 161–173. [Google Scholar] [CrossRef]
- Masdari, M.; Salehi, F.; Jalali, M.; Bidaki, M. A survey of PSO-based scheduling algorithms in cloud computing. J. Netw. Syst. Manag. 2017, 25, 122–158. [Google Scholar] [CrossRef]
- Das, P.K.; Behera, H.S.; Panigrahi, B.K. A hybridization of an improved particle swarm optimization and gravitational search algorithm for multi-robot path planning. Swarm Evol. Comput. 2016, 28, 14–28. [Google Scholar] [CrossRef]
- Pan, W.T. A new fruit fly optimization algorithm: Taking the financial distress model as an example. Knowl. Based Syst. 2012, 26, 69–74. [Google Scholar] [CrossRef]
- Li, W.T.; Zhang, Y.D.; Shi, X.W. Advanced fruit fly optimization algorithm and its application to irregular subarray phased array antenna synthesis. IEEE Access 2019, 7, 165583–165596. [Google Scholar] [CrossRef]
- Li, H.Z.; Guo, S.; Li, C.J.; Sun, J.Q. A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm. Knowl. Based Syst. 2013, 37, 378–387. [Google Scholar] [CrossRef]
- Lin, S.M. Analysis of service satisfaction in web auction logistics service using a combination of fruit fly optimization algorithm and general regression neural network. Neural Comput. Appl. 2013, 22, 783–791. [Google Scholar] [CrossRef]
- Xing, Y.F. Design and optimization of key control characteristics based on improved fruit fly optimization algorithm. Kybernetes 2013, 42, 466–481. [Google Scholar] [CrossRef]
- Yuan, X.F.; Dai, X.S.; Zhao, J.Y.; He, Q. On a novel multi-swarm fruit fly optimization algorithm and its application. Appl. Math. Comput. 2014, 233, 260–271. [Google Scholar] [CrossRef]
- Pan, Q.K.; Sang, H.Y.; Duan, J.H.; Gao, L. An improved fruit fly optimization algorithm for continuous function optimization problem. Knowl. Based Syst. 2014, 62, 69–83. [Google Scholar] [CrossRef]
Algorithms | Population Size | Control Parameters |
---|---|---|
MSFOA | Mpop = 100 | The swarm amount G = 5, the mutation parameters coe1 = 0.8, coe2 = 0.2. |
FOA [18] | Mpop = 100 | No more parameters. |
PSO [13] | Mpar = 100 | The inertial weight coefficient w varies from 0.9 to 0.4, the acceleration coefficients c1 = c2 = 2. |
DE [10] | Msol = 100 | The scaling factor F is set as a random value in [0.2, 0.9], the crossover factor cr = 0.9. |
ABC [11] | Ne = 50, Nu = 50 | The largest local searching times Limit = 20. |
IFFO [24] | Mpop = 100 | The maximum radius = 0.5, the minimum radius = 0.01. |
MFOA [23] | Mpop = 100 | The multi-swarm amount M = 5. |
Algorithm | First Scenario | Second Scenario | Third Scenario | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
JUAV_1 | JUAV_2 | JUAV_3 | JUAV_1 | JUAV_2 | JUAV_3 | JUAV_1 | JUAV_2 | JUAV_3 | ||||
MSFOA | 133.21 | 138.09 | 145.66 | 404.37 | 128.79 | 125.52 | 149.90 | 382.95 | 152.48 | 145.19 | 156.85 | 440.71 |
FOA | 165.22 | 168.24 | 173.69 | 507.15 | 155.16 | 293.51 | 661.07 | 520.27 | 307.26 | 244.29 | 178.91 | 730.46 |
PSO | 146.27 | 137.72 | 201.16 | 485.14 | 123.72 | 112.26 | 171.77 | 520.27 | 228.07 | 238.56 | 162.09 | 628.71 |
DE | 158.20 | 184.94 | 218.39 | 561.53 | 232.28 | 235.97 | 187.56 | 655.81 | 207.78 | 244.22 | 212.59 | 664.59 |
ABC | 113.07 | 142.89 | 155.21 | 411.16 | 139.17 | 112.85 | 148.99 | 401.02 | 165.08 | 125.62 | 166.76 | 457.45 |
IFFO | 181.34 | 146.80 | 169.14 | 497.29 | 134.56 | 154.59 | 258.29 | 547.44 | 229.20 | 165.71 | 194.94 | 589.85 |
MFOA | 116.54 | 155.41 | 145.11 | 417.07 | 126.34 | 109.93 | 152.06 | 388.33 | 167.12 | 146.68 | 152.06 | 465.87 |
Algorithm | First Scenario | Second Scenario | Third Scenario | ||||||
---|---|---|---|---|---|---|---|---|---|
Best | Average | Median | Best | Average | Median | Best | Average | Median | |
MSFOA | 404.37 | 490.23 | 466.56 | 382.95 | 485.46 | 505.18 | 440.71 | 504.20 | 492.95 |
FOA | 507.15 | 708.73 | 698.53 | 520.27 | 755.35 | 693.81 | 730.46 | 1001.69 | 993.81 |
PSO | 485.14 | 797.76 | 754.04 | 520.27 | 755.35 | 693.81 | 628.71 | 953.93 | 954.92 |
DE | 561.53 | 674.52 | 665.62 | 655.81 | 761.37 | 768.37 | 664.59 | 809.74 | 815.48 |
ABC | 411.16 | 503.64 | 497.22 | 401.02 | 516.94 | 520.93 | 457.45 | 589.69 | 591.39 |
IFFO | 497.29 | 859.11 | 860.97 | 547.44 | 928.37 | 908.26 | 589.85 | 953.56 | 934.38 |
MFOA | 417.07 | 495.04 | 493.33 | 388.33 | 482.81 | 475.26 | 465.87 | 566.83 | 564.83 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, K.; Zhang, X.; Xia, S. Multiple Swarm Fruit Fly Optimization Algorithm Based Path Planning Method for Multi-UAVs. Appl. Sci. 2020, 10, 2822. https://doi.org/10.3390/app10082822
Shi K, Zhang X, Xia S. Multiple Swarm Fruit Fly Optimization Algorithm Based Path Planning Method for Multi-UAVs. Applied Sciences. 2020; 10(8):2822. https://doi.org/10.3390/app10082822
Chicago/Turabian StyleShi, Kunming, Xiangyin Zhang, and Shuang Xia. 2020. "Multiple Swarm Fruit Fly Optimization Algorithm Based Path Planning Method for Multi-UAVs" Applied Sciences 10, no. 8: 2822. https://doi.org/10.3390/app10082822
APA StyleShi, K., Zhang, X., & Xia, S. (2020). Multiple Swarm Fruit Fly Optimization Algorithm Based Path Planning Method for Multi-UAVs. Applied Sciences, 10(8), 2822. https://doi.org/10.3390/app10082822