Machine Learning Approach in Heterogeneous Group of Algorithms for Transport Safety-Critical System
<p>Distribution of tasks in MARTS.</p> "> Figure 2
<p>Step-by-step estimates of the transport table.</p> "> Figure 3
<p>Convergence of the discrepancy of estimates of the transport table.</p> "> Figure 4
<p>Pseudocode creation scheme.</p> "> Figure 5
<p>Staking of heterogeneous groups of algorithms.</p> ">
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
- The SCS should effectively solve the distribution problem with some regular or random periodicity [28].
- The external environment of SCS creates situations that require adoption, which in this context means the need to assign tasks between algorithms. Under specific conditions, the initiator of the assignment may be SCS itself [29]. An example is when the charge level of an energy source has reached a critical threshold [30].
- The efficiency of the SCS cannot be set a priori for the whole planned period of the RTS when the task at hand is the only scalar indicator [31,32] and the entire required set of performance indicators cannot be identified. Flax and formalized a priori, i.e., at the stage of design, adjustment, preparation items to perform the task [33,34].
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Arenas-Garcia, J.; Meng, A.; Petersen, K.B.; Lehn-Schioler, T.; Hansen, L.K.; Larsen, J. Unveiling Music Structure via PLSA Similarity Fusion. In Proceedings of the 2006 16th IEEE Signal Processing Society Workshop on Machine Learning for Signal Processing, Maynooth, Ireland, 6–8 September 2006; pp. 419–424. [Google Scholar]
- Suncion, A.; Newman, D. UCI Machine Learning Repository; University of California, School of Information and Computer Science: Irvine, CA, USA, 2007. [Google Scholar]
- Baumgartner, D.; Serpen, G. Large experiment and evaluation tool for WEKA classifiers. In Proceedings of the 2009 International Conference on Data Mining, DMIN 2009, Las Vegas, NV, USA, 13–16 July 2009; pp. 340–346. [Google Scholar]
- Baumgartner, D.; Serpen, G. A design heuristic for hybrid ensembles. Intell. Data Anal. 2011, 16, 233–246. [Google Scholar] [CrossRef]
- Banfield, R.E.; Hall, L.O.; Bowyer, K.; Kegelmeyer, W. A Comparison of Decision Tree Ensemble Creation Techniques. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 29, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Biggio, B.; Fumera, G.; Roli, F. Multiple classifier systems for robust classifier design in adversarial environments. Int. J. Mach. Learn. Cybern. 2010, 1, 27–41. [Google Scholar] [CrossRef]
- Bian, S.; Wang, W. On diversity and accuracy of homogeneous and heterogeneous ensembles. Int. J. Hybrid Intell. Syst. 2007, 4, 103–128. [Google Scholar] [CrossRef]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Brown, G.; Wyatt, J.; Harris, R.; Yao, X. Diversity creation methods: A survey and categorisation. Inf. Fusion 2005, 6, 5–20. [Google Scholar] [CrossRef]
- Caruana, R.; Niculescu-Mizil, A.; Crew, G.; Ksikes, A. Ensemble selection from libraries of models. In Proceedings of the Twenty-first international conference on Machine learning-ICML ’04, Banff, AB, Canada, 4 July 2004; Association for Computing Machinery (ACM): New York, NY, USA, 2004; p. 18. [Google Scholar]
- Caruana, R.; Niculescu-Mizil, A. Data mining in metric space. In Proceedings of the the 2004 ACM SIGKDD International Conference, Seattle, WA, USA, 22–25 August 2004; Association for Computing Machinery (ACM): New York, NY, USA, 2004; pp. 69–78. [Google Scholar]
- Canuto, A.M.P.; Da Costa-Abreu, M.; Oliveira, L.D.M.; Xavier, J.C.; Santos, A.D.M. Investigating the influence of the choice of the ensemble members in accuracy and diversity of selection-based and fusion-based methods for ensembles. Pattern Recognit. Lett. 2007, 28, 472–486. [Google Scholar] [CrossRef]
- Cawley, G.; Talbot, N. Miscellaneous Matlab Software. Available online: http://theoval.sys.uea.ac.uk/*gcc/matlab/default.html (accessed on 20 March 2020).
- Denisova, V. Energy efficiency as a way to ecological safety: Evidence from russia. Int. J. Energy Econ. Policy 2019, 9, 32–37. [Google Scholar] [CrossRef]
- Dietterich, T.G. Ensemble Methods in Machine Learning. In Computer Vision; Springer Science and Business Media LLC: Berlin, Germany, 2000; Volume 1857, pp. 1–15. [Google Scholar]
- Dunn, O. Multiple comparisons among means. Am. Stat. Assoc. 1961, 56, 52–64. [Google Scholar] [CrossRef]
- Džeroski, S.; Ženko, B. Is Combining Classifiers with Stacking Better than Selecting the Best One? Mach. Learn. 2004, 54, 255–273. [Google Scholar] [CrossRef] [Green Version]
- Freund, Y.; Schapire, R. Experiments with a new boosting algorithm. In Proceedings of the 13th international conference on machine learning, Bari, Italy, 3–6 June 1996; pp. 148–156. [Google Scholar]
- Friedman, M. A Comparison of Alternative Tests of Significance for the Problem of m rankings. Ann. Math. Stat. 1940, 11, 86–92. [Google Scholar] [CrossRef]
- Goldberg, D.; Nichols, D.; Oki, B.M.; Terry, D. Using collaborative filtering to weave an information tapestry. Commun. ACM 1992, 35, 61–70. [Google Scholar] [CrossRef]
- Gorodetsky, V.; Samoylov, V.; Serebryakov, S. Ontology–based context–dependent personalization technology. In Proceedings of the 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Toronto, ON, Canada, 31 August–3 September 2010; pp. 278–283. [Google Scholar]
- Hand, D.J.; Vinciotti, V. Local Versus Global Models for Classification Problems. Am. Stat. 2003, 57, 124–131. [Google Scholar] [CrossRef]
- Iman, R.L.; Davenport, J.M. Approximations of the critical region of the fbietkan statistic. Commun. Stat. Theory Methods 1980, 9, 571–595. [Google Scholar] [CrossRef]
- Lopatin, E. METHODOLOGICAL APPROACHES TO RESEARCH RESOURCE SAVING INDUSTRIAL ENTERPRISES. Int. J. Energy Econ. Policy 2019, 9, 181–187. [Google Scholar] [CrossRef]
- Lopatin, E. Assessment of Russian banking system performance and sustainability. Banks Bank Syst. 2019, 14, 202–211. [Google Scholar] [CrossRef]
- Meynkhard, A. Priorities of russian energy policy in russian-chinese relations. Int. J. Energy Econ. Policy 2020, 10, 65–71. [Google Scholar] [CrossRef]
- Meynkhard, A. Energy efficient development model for regions of the russian federation: Evidence of crypto mining. Int. J. Energy Econ. Policy 2019, 9, 16–21. [Google Scholar] [CrossRef]
- Meynkhard, A. Fair market value of bitcoin: Halving effect. Invest. Manag. Financ. Innov. 2019, 16, 72–85. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, T.; Buchanan, B.; DeJong, G.; Dietterich, T.; Rosenbloom, P.; Waibel, A. Machine Learning. Annu. Rev. Comput. Sci. 1990, 4, 417–433. [Google Scholar] [CrossRef]
- Thrun, S. Self-Driving Cars-An AI-Robotics Challenge. In Proceedings of the FLAIRS Conference, Key West, FL, USA, 7–9 May 2007; p. 12. [Google Scholar]
- Abdi, H. The method of least squares. In Encyclopedia of Measurement and Statistics; SAGE Publishing: Thousand Oaks, CA, USA, 2007. [Google Scholar]
- Adomavicius, G.; Mobasher, B.; Ricci, F.; Tuzhilin, A. Context-Aware Recommender Systems. AI Mag. 2011, 32, 67. [Google Scholar] [CrossRef]
- Aha, D.; Kibler, D. Instance-based learning algorithms. Mach. Learn. 1991, 6, 37–66. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.; Kanagal, B.; Pandey, S.; Josifovski, V.; Pueyo, L.G.; Yuan, J. Latent factor models with additive and hierarchically-smoothed user preferences. In Proceedings of the Sixth ACM International Conference, Rome, Italy, 4–8 February 2013; Association for Computing Machinery (ACM): New York, NY, USA; p. 385. [Google Scholar]
- Álvarez, S.A.; Ruiz, C.; Kawato, T.; Kogel, W. Neural expert networks for faster combined collaborative and content-based recommendation. J. Comput. Methods Sci. Eng. 2011, 11, 161–172. [Google Scholar] [CrossRef]
- An, J.; Dorofeev, M.; Zhu, S. DEVELOPMENT OF ENERGY COOPERATION BETWEEN RUSSIA AND CHINA. Int. J. Energy Econ. Policy 2020, 10, 134–139. [Google Scholar] [CrossRef]
- Apte, C. The role of machine learning in business optimization. In Proceedings of the 27th International Conference on Machine Learning (ICML10), Haifa, Israel, 21–24 June 2010; pp. 1–2. [Google Scholar]
Algorithm | 1 | 2 | 3 |
---|---|---|---|
Task 1 | 4 | 2 | 3 |
Task 2 | 1 | 5 | 4 |
Record Number | X | sX | Pr (X < 8.0) | Pr (X > 40.0) | 90 Percent Interval | XREAL |
---|---|---|---|---|---|---|
1 | 7.5901 | 1.1125 | 0.638447 | 0.0 | 5.6189 | 6.04 |
2 | 8.9423 | 4.5804 | 0.421507 | 1.241341 × 10−6 | 0.8266 | 8.50 |
3 | 10.4178 | 1.2074 | 0.032779 | 5.551115 × 10−16 | 8.2784 | 10.64 |
4 | 22.3606 | 1.3488 | 1.415263 × 10−9 | 4.545264 × 10−11 | 19.9708 | 23.75 |
5 | 22.3789 | 4.6541 | 0.003560 | 7.687263 × 10−4 | 14.1326 | 24.77 |
6 | 36.9891 | 1.5087 | 5.122037 × 10−14 | 0.033197 | 34.3159 | 36.45 |
7 | 39.7402 | 0.9383 | 1.519116 × 10−18 | 0.394970 | 38.0776 | 39.04 |
8 | 39.7640 | 1.0177 | 6.820442 × 10−18 | 0.411707 | 37.9608 | 39.83 |
9 | 43.1567 | 0.9128 | 1.334947 × 10−19 | 0.998410 | 41.5394 | 41.73 |
Correl. Coef | RMSE | Time | Correct | Intervals | Ratio |
---|---|---|---|---|---|
0.999317 | 0.7364 | 67.3 | 7440 | 7620 | 0.9764 |
0.998838 | 0.7929 | 65.7 | 7572 | 7770 | 0.9745 |
0.999166 | 0.7501 | 60.8 | 7707 | 7920 | 0.9731 |
0.998847 | 0.7848 | 56.3 | 7886 | 8070 | 0.9772 |
0.998761 | 0.7919 | 51.7 | 7969 | 8220 | 0.9695 |
0.998387 | 0.8271 | 47.1 | 8065 | 8370 | 0.9636 |
0.998571 | 0.8058 | 42.8 | 8246 | 8520 | 0.9678 |
0.998135 | 0.8442 | 39.5 | 8392 | 8670 | 0.9679 |
0.997246 | 0.9321 | 35.0 | 8496 | 8820 | 0.9633 |
0.998015 | 0.8550 | 31.5 | 8615 | 8970 | 0.9604 |
0.997539 | 0.9104 | 28.4 | 8736 | 9120 | 0.9579 |
0.997075 | 0.9581 | 25.0 | 8759 | 9270 | 0.9449 |
0.997196 | 0.9439 | 22.0 | 8973 | 9420 | 0.9525 |
0.996817 | 0.9785 | 18.9 | 9079 | 9570 | 0.9487 |
0.994856 | 1.1462 | 16.2 | 9237 | 9720 | 0.9503 |
0.989257 | 1.3735 | 13.7 | 9143 | 9870 | 0.9263 |
0.989170 | 1.3626 | 11.2 | 9263 | 10,020 | 0.9245 |
0.974928 | 1.9311 | 9.6 | 9122 | 10,170 | 0.8970 |
0.976517 | 1.9920 | 7.6 | 9103 | 10,320 | 0.8821 |
Method | R2 | RMSE | Training Time (MPa) | Testing Speed (obs/s) |
---|---|---|---|---|
Decision Tree | 0.912 | 0.133 | 1.092 | 140,000 |
Gaussian Process | 0.921 | 0.125 | 156.89 | 18,200 |
Random Forest | 0.903 | 0.104 | 3.79 | 31,300 |
Quadratic SVM | 0.867 | 0.188 | 141.93 | 26,000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, J.; Mikhaylov, A.; Kim, K. Machine Learning Approach in Heterogeneous Group of Algorithms for Transport Safety-Critical System. Appl. Sci. 2020, 10, 2670. https://doi.org/10.3390/app10082670
An J, Mikhaylov A, Kim K. Machine Learning Approach in Heterogeneous Group of Algorithms for Transport Safety-Critical System. Applied Sciences. 2020; 10(8):2670. https://doi.org/10.3390/app10082670
Chicago/Turabian StyleAn, Jaehyung, Alexey Mikhaylov, and Keunwoo Kim. 2020. "Machine Learning Approach in Heterogeneous Group of Algorithms for Transport Safety-Critical System" Applied Sciences 10, no. 8: 2670. https://doi.org/10.3390/app10082670
APA StyleAn, J., Mikhaylov, A., & Kim, K. (2020). Machine Learning Approach in Heterogeneous Group of Algorithms for Transport Safety-Critical System. Applied Sciences, 10(8), 2670. https://doi.org/10.3390/app10082670