Evaluation of Selected Metasurfaces’ Sensitivity to Planar Geometry Distortions
<p>Evaluated metasurface unit elements with the following geometric parameters: (<b>a</b>) complementary cross, (<b>b</b>) complementary Jerusalem cross, (<b>c</b>) complementary split-ring resonator, and (<b>d</b>) designed metasurfaces (dimensions in mm; the gray color is the copper cladding, the white color is the lack of copper cladding).</p> "> Figure 2
<p>Numerical model of a metasurface: (<b>a</b>) model geometry and description and (<b>b</b>) computational mesh shown on the selected model boundaries.</p> "> Figure 3
<p>External mechanical load application (in a <span class="html-italic">y</span>-direction).</p> "> Figure 4
<p>Experimental setup for metasurfaces measurements: (<b>a</b>) photo of test stand and (<b>b</b>) photo of exemplary metasurfaces and reference conductive plate.</p> "> Figure 5
<p>Exemplary results of simulations—normalized electric field distribution (in case of resonant frequency) and frequency characteristics of scattering parameters <span class="html-italic">s</span><sub>11</sub> and <span class="html-italic">s</span><sub>21</sub> in the case of base structures (dimensions shown in <a href="#applsci-10-00261-t001" class="html-table">Table 1</a>): (<b>a</b>) cross cell geometry, (<b>b</b>) Jerusalem cross cell geometry, and (<b>c</b>) split ring resonator cell geometry.</p> "> Figure 6
<p>Comparison of the simulated and measured frequency responses of the selected metasurfaces.</p> "> Figure 7
<p>Resonant frequency, <span class="html-italic">f</span><sub>r</sub>, distribution as a function of slot width, <span class="html-italic">w</span>; resonator to resonator distance, <span class="html-italic">d;</span> and dielectric laminate thickness, <span class="html-italic">t</span>; in cases of cross (CR) cell geometry: (<b>a</b>) <span class="html-italic">t</span> = 0.5 mm, (<b>b</b>) <span class="html-italic">t</span> = 1.0 mm, (<b>c</b>) <span class="html-italic">t</span> = 1.5 mm, (<b>d</b>) <span class="html-italic">t</span> = 2.0 mm, (<b>e</b>) <span class="html-italic">t</span> = 2.5 mm.</p> "> Figure 8
<p>Resonant frequency, <span class="html-italic">f</span><sub>r</sub>, distribution as a function of the slot width, <span class="html-italic">w</span>; resonator to resonator distance, <span class="html-italic">d;</span> and dielectric laminate thickness, <span class="html-italic">t</span>, in cases of Jerusalem cross (JCR) cell geometry: (<b>a</b>) <span class="html-italic">t</span> = 0.5 mm, (<b>b</b>) <span class="html-italic">t</span> = 1.0 mm, (<b>c</b>) <span class="html-italic">t</span> = 1.5 mm, (<b>d</b>) <span class="html-italic">t</span> = 2.0 mm, and (<b>e</b>) <span class="html-italic">t</span> = 2.5 mm.</p> "> Figure 9
<p>Resonant frequency, <span class="html-italic">f</span><sub>r</sub>, distribution as a function of slot width, <span class="html-italic">w</span>; resonator to resonator distance, <span class="html-italic">d;</span> and dielectric laminate thickness. <span class="html-italic">t</span>, in cases of split ring resonator (SRR) cell geometry: (<b>a</b>) <span class="html-italic">t</span> = 0.5 mm, (<b>b</b>) <span class="html-italic">t</span> = 1.0 mm, (<b>c</b>) <span class="html-italic">t</span> = 1.5 mm, (<b>d</b>) <span class="html-italic">t</span> = 2.0 mm, and (<b>e</b>) <span class="html-italic">t</span> = 2.5 mm.</p> "> Figure 10
<p>Reflection coefficient modulus in the resonance state |<span class="html-italic">s</span><sub>11</sub>(<span class="html-italic">f</span><sub>r</sub>)| distribution as a function of slot width, <span class="html-italic">w</span>; and resonator to resonator distance, <span class="html-italic">d</span>, in cases of dielectric laminate thickness <span class="html-italic">t</span> = 1.5 mm: (<b>a</b>) cross cell geometry, (<b>b</b>) Jerusalem cross cell geometry, and (<b>c</b>) split-ring resonator cell geometry.</p> "> Figure 11
<p>Resonant frequency, <span class="html-italic">f</span><sub>r</sub>, as a function of the strain caused by mechanical excitation (dielectric laminate thickness <span class="html-italic">t</span> = 1.5 mm).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Metasurfaces Design
2.2. Simulation
2.3. Metasurface Fabrication
- 8 × 6 of cross-unit elements,
- 12 × 9 of Jerusalem cross-unit elements,
- 15 × 11 of split ring resonator unit elements.
2.4. Measuring System
2.5. Description of the Experiment
- slot width w change in the range of 0.3–1.5 mm,
- resonator to resonator distance d change in the range of 2–10 mm,
- dielectric laminate thickness t change in the range of 0.5–2.5 mm,
- mechanical deformation in the x-direction—constant strain up to 1% (external mechanical force F = 8.2764 kN in case of CR, F = 5.4615 kN in case of JCR, and F = 4.3098 kN in case of SRR),
- mechanical deformation in the y-direction—constant strain up to 1%.
3. Results and Discussion
3.1. Study of Geometric Parameter Distortion
- The resonant frequency, fr, increases with the increase of the slot width. In the case of the SRR structure, the relation is quasi-linear, contrary to other evaluated structures (CR and JCR), especially if the laminate thickness t is bigger than the optimal one.
- In the case of the SRR, the influence of the element to element distance d was negligible. For the CR structure, the fr slightly (for lower w values) and noticeably (for higher w values) increased with the increase of the d parameter. In the case of the JCR, independent of the w value, fr increased with the increase of distance d.
- whole parameters space is utilized (t Є ‹0.5–2.5› mm, w Є ‹0.3–1.5› mm, and d Є ‹2–10› mm);
- dielectric substrate thickness is restricted to t = 1.5 mm (w Є ‹0.3–1.5› mm and d Є ‹2–10› mm).
3.2. Study of Metasurface Mechanical Deformations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Oliveri, G.; Werner, D.H.; Massa, A. Reconfigurable electromagnetics through metamaterials—A review. Proc. IEEE 2015, 103, 1034–1056. [Google Scholar] [CrossRef] [Green Version]
- Withayachumnankul, W.; Abbott, D. Metamaterials in the Terahertz Regime. IEEE Photonics J. 2009, 1, 99–118. [Google Scholar] [CrossRef]
- Hsiao, H.H.; Chu, C.H.; Tsai, D.P. Fundamentals and Applications of Metasurfaces. Small Methods 2017, 1, 1600064. [Google Scholar] [CrossRef] [Green Version]
- Achouri, K.; Caloz, C. Design, concepts, and applications of electromagnetic metasurfaces. Nanophotonics 2018, 7, 1095–1116. [Google Scholar] [CrossRef] [Green Version]
- Alù, A.; Engheta, N. Pairing an Epsilon-Negative Slab with a Mu-Negative Slab: Resonance, Tunneling and Transparency. IEEE Trans. Antennas Propag. 2003, 51, 2558–2571. [Google Scholar] [CrossRef] [Green Version]
- Tretyakov, S.A. Metasurfaces for general transformations of electromagnetic fields. Philos. Trans. R. Soc. A 2015, 373, 20140362. [Google Scholar] [CrossRef] [PubMed]
- Saleh, A.A.; Abdullah, A.S. High Gain Circular Patch Antenna Using Metamaterial Supperstrate for DSRS System Applications. J. Telecommun. 2014, 27, 1–6. [Google Scholar]
- McVay, J.; Hoorfar, A.; Engheta, N. Peano high-impedance surfaces. Radio Sci. 2005, 40, RS6S03. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Withayachumnankul, W.; Al-Sarawi, S.; Abbott, D. High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization. IEEE Sens. J. 2014, 14, 1345–1351. [Google Scholar] [CrossRef] [Green Version]
- Saghati, A.P.; Batra, J.S.; Kameoka, J.; Entesari, K. A metamaterial-inspired wideband microwave interferometry sensor for dielectric spectroscopy of liquid chemicals. IEEE Trans. Microw. Theory Tech. 2017, 65, 2558–2571. [Google Scholar] [CrossRef]
- Kim, Y.J.; Hwang, J.S.; Khuyen, B.X.; Tung, B.S.; Kim, K.W.; Rhee, J.Y.; Chen, L.Y.; Lee, Y.P. Flexible ultrathin metamaterial absorber for wide frequency band, based on conductive fibers. Sci. Technol. Adv. Mater. 2018, 19, 711–717. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, J.; Cao, J.; Mao, B. Microwave Metamaterial Absorber for Non-Destructive Sensing Applications of Grain. Sensors 2018, 18, 1912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radi, Y.; Simovski, C.R.; Tretyakov, S.A. Thin perfect absorbers for electromagnetic waves: Theory, design, and realizations. Phys. Rev. Appl. 2015, 3, 037001. [Google Scholar] [CrossRef]
- Badloe, T.; Mun, J.; Rho, J. Metasurfaces-Based Absorption and Reflection Control: Perfect Absorbers and Reflectors. J. Nanomater. 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Qing, A.; Meng, Y.; Song, Z.; Lin, C. Dual-band Circular Polarizer Based on Simultaneous Anisotropy and Chirality in Planar Metamaterial. Sci. Rep. 2018, 8, 1729. [Google Scholar] [CrossRef] [Green Version]
- Sauviac, B.; Simovski, C.R.; Tretyakov, S.A. Double Split-Ring Resonators: Analytical Modeling and Numerical Simulations. Electromagnetics 2004, 24, 317–338. [Google Scholar] [CrossRef]
- Savin, A.; Steigmann, R.; Bruma, A.; Sturm, R. An Electromagnetic Sensor with a Metamaterial Lens for Nondestructive Evaluation of Composite Materials. Sensors 2015, 15, 15903–15920. [Google Scholar] [CrossRef] [Green Version]
- Khorasaninejad, M.; Chen, W.T.; Devlin, R.C.; Oh, J.; Zhu, A.Y.; Capasso, F. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 2016, 352, 1190–1194. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Feng, Y.; Monticone, F.; Zhao, J.; Zhu, B.; Jiang, T.; Zhang, L.; Kim, Y.; Ding, X.; Zhang, S.; et al. A reconfigurable active Huygens’ metalens. Adv. Mater. 2017, 29, 1606422. [Google Scholar] [CrossRef] [Green Version]
- Gargari, A.M.; Zarifi, M.H.; Markley, L. Passive Matched Mushroom Structure for a High Sensitivity Low Profile Antenna-Based Material Detection System. IEEE Sens. J. 2019, 19, 6154–6162. [Google Scholar] [CrossRef]
- Ramya, S.; Srinivasa Rao, I. An Ultra-Thin Compact Wideband Metamaterial Absorber. Radioengineering 2018, 27, 364–372. [Google Scholar] [CrossRef]
- Ahamed, E.; Hasan, M.M.; Faruque, M.R.I.; Mansor, M.F.B.; Abdullah, S.; Islam, M.T. Left-handed metamaterial inspired by joint T-D geometry on flexible NiAl2O4 substrate. PLoS ONE 2018, 13, e0199150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butrylo, B.; Steckiewicz, A. Characterization of properties and magnetic field distribution in conductive thin-film laminar materials. In Proceedings of the Conference on Fundamentals of Electrotechnics and Circuits Theory, Gliwice Ustron, Poland, 16–19 May 2018. [Google Scholar]
- Wang, J.; Qu, S.; Xu, Z.; Ma, H.; Yang, Y.; Gu, C. A Controllable Magnetic Metamaterial: Split-Ring Resonator with Rotated Inner Ring. IEEE Trans. Antennas Propag. 2008, 56, 2018–2022. [Google Scholar] [CrossRef]
- Gomon, D.; Sedykh, E.; Rodríguez, S.; Idelfonso, T.M.; Zaitsev, K.; Vozianova, A.; Khodzitsky, M.A. Influence of the geometric parameters of the electrical ring resonator metasurface on the performance of metamaterial absorbers for terahertz applications. Chin. Optics 2018, 11, 47–59. [Google Scholar]
- Herbko, M.; Lopato, P. Double patch sensor for identification of stress level and direction. Int. J. RF Microw. Comput. Aided Eng. 2019, 29. [Google Scholar] [CrossRef]
- Duran-Sindreu, M.; Naqui, J.; Paredes, F.; Bonache, J.; Martin, F. Electrically Small Resonators for Planar Metamaterial, Microwave Circuit and Antenna Design: A Comparative Analysis. Appl. Sci. 2012, 2, 375–395. [Google Scholar] [CrossRef] [Green Version]
- Marques, R.; Martin, F.; Sorolla, M. Metamaterials with Negative Parameters—Theory, Design and Microwave Applications; John Wiley Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Marwaha, A. An Accurate Approach of Mathematical Modelling of SRR and SR for Metamaterials. J. Eng. Sci. Technol. Rev. 2016, 9, 82–86. [Google Scholar]
Parameter | Cross Unit Cell | Jerusalem-Cross Unit Cell | Split Ring Resonator Unit Cell |
---|---|---|---|
d [mm] | 6 | 6 | 6 |
w [mm] | 0.9 | 0.9 | 0.9 |
l, l1 [mm] | 19.08 | 8.75 | − |
l2 [mm] | − | 6.87 | − |
r [mm] | − | − | 3.53 |
Parameter | Cross Unit Cell | Jerusalem-Cross Unit Cell | Split Ring Resonator Unit Cell | |
---|---|---|---|---|
fr max [GHz] | 6.020 | 6.156 | 6.600 | |
t Є ‹0.5–2.5› mm | fr min [GHz] | 4.626 | 4.486 | 4.358 |
Δfr [GHz] | 1.394 | 1.670 | 2.243 | |
fr max [GHz] | 5.181 | 5.236 | 5.698 | |
t = 1.5 mm | fr min [GHz] | 4.825 | 4.675 | 4.455 |
Δfr [GHz] | 0.356 | 0.561 | 1.243 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopato, P.; Herbko, M. Evaluation of Selected Metasurfaces’ Sensitivity to Planar Geometry Distortions. Appl. Sci. 2020, 10, 261. https://doi.org/10.3390/app10010261
Lopato P, Herbko M. Evaluation of Selected Metasurfaces’ Sensitivity to Planar Geometry Distortions. Applied Sciences. 2020; 10(1):261. https://doi.org/10.3390/app10010261
Chicago/Turabian StyleLopato, Przemyslaw, and Michal Herbko. 2020. "Evaluation of Selected Metasurfaces’ Sensitivity to Planar Geometry Distortions" Applied Sciences 10, no. 1: 261. https://doi.org/10.3390/app10010261
APA StyleLopato, P., & Herbko, M. (2020). Evaluation of Selected Metasurfaces’ Sensitivity to Planar Geometry Distortions. Applied Sciences, 10(1), 261. https://doi.org/10.3390/app10010261