High-Throughput Field Screening of Cassava Brown Streak Disease Resistance for Efficient and Cost-Saving Breeding Selection
<p>Introducing virus infection: (<b>a</b>) by side-grafting of scions from infected source plants to healthy cassava rootstocks; (<b>b</b>) observing development of symptoms on newly developing leaves of sprouting buds 3 weeks after grafting.</p> "> Figure 2
<p>Expression of cassava brown streak disease (CBSD) symptoms: leaves (<b>a</b>) and roots (<b>b</b>) of a susceptible variety.</p> "> Figure 3
<p>CBSD symptom evaluation in the root in the seed nursery after grafting CIAT population (G: grafted plants and NG: non-grafted plants).</p> "> Figure 4
<p>CBSD symptoms evaluation in the root in the Uganda SN after grafting at harvest (G: grafted plants and NG non-grafted plants).</p> "> Figure 5
<p>Correlation between CMD, CBSD, and yield in the DRC germplasm collection (<b>above</b>) and PYT Nigeria (<b>below</b>). Values in the figure represent the correlation coefficient.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cassava Trials
2.1.1. Land Preparation
2.1.2. Field Conditions
2.1.3. Planting Materials
2.2. Virus Infections
2.3. Symptom Assessment
2.4. Uganda Cassava Brown Streak Virus and Cassava Brown Streak Virus (U/CBSV) Detection Using a One-Step (RT-qPCR) TaqMan Assay
2.5. Statistical Analysis
3. Results
3.1. Virus Infection of Cassava
3.2. Field Screening
3.3. Reliability of Field Screening
3.4. Relationship Between Yield and Cassava Diseases
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spencer, D.S.C.; Ezedinma, C. Cassava cultivation in sub-Saharan Africa. Achiev. Sustain. Cultiv. 2017, 1, 123–148. [Google Scholar]
- De Andrade, C.J.; Simiqueli, A.P.R.; de Lima, F.A.; da Silva, J.B.; de Andrade, L.M.; Fai, A.E.C. Cassava Wastewater as Substrate in Biotechnological Processes. Encycl. Plant Sci. 2020, 12, 3133–3162. [Google Scholar]
- Muchira, M.M. Challenges in the Uptake of Pension Backed Home Loans for Public Sector Employees in Kenya. 2019. Available online: https://erepository.uonbi.ac.ke/bitstream/handle/11295/106845/Muchira%20M_llenges%20in%20the%20Uptake%20of%20Pension%20Backed%20Home%20Loans%20for%20Public%20Sector%20Employees%20in%20Kenya.pdf?sequence=1 (accessed on 30 June 2023).
- Adebayo, W.G. Cassava production in Africa: A panel analysis of the drivers and trends. Heliyon 2023, 9, e19939. [Google Scholar] [CrossRef] [PubMed]
- Hauser, S.; Bakelana, Z.; Bungu, D.M.; Mwangu, M.K.; Ndonda, A. Storage Root Yield Response to Leaf Harvest of Improved and Local Cassava Varieties in DR Congo. Arch. Agron. Soil Sci. 2020, 67, 1634–1648. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Organization of the United Nations: Statistical Database; FAO: Rome, Italy, 2023; Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 19 February 2024).
- Legg, J.P.; Shirima, R.; Tajebe, L.S.; Guastella, D.; Boniface, S.; Jeremiah, S.; Nsami, E.; Chikoti, P.; Rapisarda, C. Biology and management of Bemisia whitefly vectors of cassava virus pandemics in Africa. Pest Manag. Sci. 2014, 70, 1446–1453. [Google Scholar] [CrossRef] [PubMed]
- Sikirou, M.; Mwangu, K.M.; Kayondo, S.I.; Agre, A.P.; Tata-Hangy, W.; Bakelana, T.; Adetoro, N.A. Assessing cassava breeding clones in two agroecologies in the Democratic Republic of Congo. Rev. Ivoir. Sci. Technol. 2022, 40, 57–75. [Google Scholar]
- Hillocks, R.J.; Raya, M.D.; Mtunda, K.; Kiozia, H. Effects of brown streak virus disease on yield and quality of cassava in Tanzania. J. Phytopathol. 2001, 149, 389–394. [Google Scholar] [CrossRef]
- Storey, H.H. Virus Diseases of East African Plants. East Afr. Agric. J. 1936, 1, 333–337. [Google Scholar]
- Masinde, E.A.; Mkamillo, G.; Ogendo, O.J.; Hillocks, R.; Mulwa, M.S.R.; Kimata, B.; Maruthi, M.N. Genotype by environment interactions in identifying cassava (Manihot esculenta Crantz) resistant to cassava brown streak disease. Field Crops Res. 2018, 215, 39–48. [Google Scholar] [CrossRef]
- Sheat, S.; Zhang, X.; Winter, S. High-Throughput Virus Screening in Crosses of South American and African Cassava Germplasm Reveals Broad-Spectrum Resistance against Viruses Causing Cassava Brown Streak Disease and Cassava Mosaic Virus Disease. Agronomy 2022, 12, 1055. [Google Scholar] [CrossRef]
- Sheat, S.; Fuerholzner, B.; Stein, B.; Winter, S. Resistance against cassava brown streak viruses from africa in cassava germplasm from South America. Front. Plant Sci. 2019, 10, 2–18. [Google Scholar] [CrossRef] [PubMed]
- Winter, S.; Koerbler, M.; Stein, B.; Pietruszka, A.; Paape, M.; Butgereitt, A. Analysis of cassava brown streak viruses reveals the presence of distinct virus species causing cassava brown streak disease in East Africa. J. Gen. Virol. 2010, 91, 1365–1372. [Google Scholar] [CrossRef]
- Anjanappa, R.B.; Mehta, D.; Maruthi, M.N.; Kanju, E.; Gruissem, W.; Vanderschuren, H. Characterization of brown streak virus-resistant cassava. Mol. Plant-Microbe Interact. 2016, 29, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Adams, I.P.; Abidrabo, P.; Miano, D.W.; Alicai, T.; Kinyua, Z.M.; Clarke, J.; Macarthur, R.; Weekes, R.; Laurenson, L.; Hany, U.; et al. High throughput real-time RT-PCR assays for specific detection of cassava brown streak disease causal viruses, and their application to testing of planting material. Plant Pathol. 2013, 62, 233–242. [Google Scholar] [CrossRef]
- Kaweesi, T.; Kawuki, R.; Kyaligonza, V.; Baguma, Y.; Tusiime, G.; Ferguson, M.E. Field evaluation of selected cassava genotypes for cassava brown streak disease based on symptom expression and virus load. Virol. J. 2014, 1, 216. [Google Scholar] [CrossRef] [PubMed]
- Cullis, B.R.; Smith, A.B.; Coombes, N.E. On the design of early generation variety trials with correlated data. J. Agric. Biol. Environ. Stat. 2006, 11, 381–393. [Google Scholar] [CrossRef]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environmental for Statistical Computing. 2023. Available online: http://www.r-project.org (accessed on 6 August 2024).
- Sheat, S.; Winter, S. Developing broad-spectrum resistance in cassava against viruses causing the cassava mosaic and the cassava brown streak diseases. Front. Plant Sci. 2023, 14, 1042701. [Google Scholar] [CrossRef]
- Shirima, R.R.; Wosula, E.N.; Hamza, A.A.; Mohammed, N.A.; Mouigni, H.; Nouhou, S.; Mchinda, N.M.; Ceasar, G.; Amour, M.; Njukwe, E.; et al. Epidemiological analysis of cassava mosaic and brown streak diseases, and Bemisia tabaci in the Comoros islands. Viruses 2022, 14, 2165. [Google Scholar] [CrossRef]
- Sichalwe, K.L.; Kayondo, S.I.; Edema, R.; Omari, M.A.; Kulembeka, H.; Rubaihayo, P.; Kanju, E. Unlocking Cassava Brown Streak Disease Resistance in Cassava: Insights from Genetic Variability and Combining Ability. Agronomy 2024, 14, 2122. [Google Scholar] [CrossRef]
- Mbewe, W.; Kumar, P.L.; Changadeya, W.; Ntawuruhunga, P.; Legg, J. Diversity, Distribution and Effects on Cassava Cultivars of Cassava Brown Streak Viruses in Malawi. J. Phytopathol. 2015, 163, 433–443. [Google Scholar] [CrossRef]
- Shirima, R.R.; Legg, J.P.; Maeda, D.G.; Tumwegamire, S.; Mkamilo, G.; Mtunda, K.; Kulembeka, H.; Ndyetabula, I.; Kimata, B.P.; Matondo, D.G.; et al. Genotype by environment cultivar evaluation for cassava brown streak disease resistance in Tanzania. Virus Res. 2020, 286, 198017. [Google Scholar] [CrossRef]
- Legg, J.P.; Thresh, J.M. Cassava mosaic virus disease in East Africa: A dynamic disease in a changing environment. Virus Res. 2000, 71, 135–149. [Google Scholar] [CrossRef] [PubMed]
- Sserubombwe, W.S.; Briddon, R.W.; Baguma, Y.K.; Ssemakula, G.N.; Bull, S.E.; Bua, A.; Alicai, T.; Omongo, C.; Otim-Nape, G.W.; Stanley, J. Diversity of begomoviruses associated with mosaic disease of cultivated cassava (Manihot esculenta Crantz) and its wild relative (Manihot glaziovii Müll. Arg.) in Uganda. J. Gen. Virol. 2008, 89, 1759–1769. [Google Scholar] [CrossRef] [PubMed]
- Bangthong, P.; Vuttipongchaikij, S.; Kongsil, P.; Ceballos, H.; Kittipadakul, P. Evaluation of Manihot glaziovii scion-cassava understock grafting for cassava growth and root yield during rainy and dry seasons. J. Crop. Improv. 2022, 36, 193–206. [Google Scholar] [CrossRef]
Cassava Materials | Number Plants/Clones | Experimental Design | Date of Planting | Number of Plants/Clones Grafted |
---|---|---|---|---|
Seed Nursery—Uganda | 473 | Unreplicated | 3 December 2022 | 143 |
Seed Nursery—CIAT | 637 | Unreplicated | 3 March 2023 | 96 |
Preliminary Yield Trial—Nigeria | 26 | RCBD 3 replications | 3 March 2023 | 11 |
Germplasm collection—DRC | 375 | Alpha lattice 2 replications | 5 March 2023 | 150 |
Total plants | 1511 | 400 |
Ugandan Cassava Brown Streak Virus (UCBSV) | UCBSV Forward | GATYAARAAGACITTCAAGCCTCCAAA | [16] |
UCBSV reverse | AATTACATCAGGRGTTAGRTTRTCCCTT | [16] | |
UCBSV probe | FAM-TCAGCTTACATTTGGATTCCACGCTCTCA-TAMRA | [16] | |
Cassava brown streak virus (CBSV) | CBSV forward | GCCAACTARAACTCGAAGTCCATT | [16] |
CBSV reverse | TTCAGTTGTTTAAGCAGTTCGTTCA | [16] | |
CBSV probe | FAM- AGTCAAGGAGGCTTCGTGCYCCTC-BHQ1 | [16] | |
Cytochrome oxidase | COX forward | CGTCGCATTCCAGATTATCCA | [16] |
COX reverse | CAACTACGGATATATAAGRRCCRRAACTG | [17] | |
COX probe | FAM-AGGGCATTCCATCCAGCGTAAGCA-TAMRA | [17] |
Repetition | Clones | Tissue | # CMD Sev6MAP | * CMD Inc6MAP | # CBSD Sev6MAP | * CBSD Inc6MAP | RT-qPCR CBSV | RT-qPCR UCBSV | Decision to CBSD |
---|---|---|---|---|---|---|---|---|---|
Rep1 | MVZ2016290 | leaf | 4 | 50 | 3 | 100 | - | - | Non-selected |
Rep2 | MVZ2016290 | leaf | 1 | 0 | 3 | 100 | - | + | |
Rep1 | DSC260 | leaf | 5 | 100 | 4 | 100 | - | - | Selected |
Rep2 | DSC260 | leaf | 4 | 100 | 1 | 0 | - | - | |
Rep | DSC260 | tuber | - | - | 1 | 0 | - | - | |
Rep1 | Kinuani | leaf | 4 | 40 | 3 | 100 | + | - | Non-selected |
Rep2 | Kinuani | leaf | 3 | 60 | 1 | 1 | - | - | |
Rep | Kinuani | tuber | - | 2 | 77.7 | + | - | ||
Rep1 | 91204 | leaf | 1 | 0 | 5 | 0 | + | - | Non-selected |
Rep2 | 91204 | leaf | 1 | 0 | 3 | 0 | - | - | |
Rep | 91204 | tuber | - | - | 1 | 0 | - | - | |
Rep1 | Glaziovii20210006 | leaf | 3 | 100 | 1 | 0 | - | - | Selected |
Rep2 | Glaziovii20210006 | leaf | 4 | 100 | 1 | 0 | - | - | |
Rep1 | Glaziovii20210005 | leaf | 4 | 100 | 1 | 0 | - | - | Selected |
Rep2 | Glaziovii20210005 | leaf | 3 | 100 | 1 | 0 | - | - | |
Rep1 | MVZ2017095 | leaf | 1 | 0 | 3 | 100 | - | + | Non-Selected |
Rep | MVZ2017095 | tuber | - | - | 0 | 0 | - | - | |
Rep1 | MLG2019095 | leaf | 3 | 100 | 3 | 100 | + | - | Non-selected |
Rep2 | MLG2019095 | leaf | 4 | 100 | 3 | 100 | - | - | |
Rep | MLG2019095 | tuber | - | - | 3 | 100 | + | - |
Parameters | CBSD_Sev3MAP | CBSD_Inc3MAP | CBSD_Sev6MAP | CBSD_Inc6MAP | CBSD_Sev9MAP | CBSD_Inc9MAP | CMD Sev3MAP | CMD_Inc3MAP | CBSD_SevRoot | CBSD_IncRoot | Yield |
---|---|---|---|---|---|---|---|---|---|---|---|
DRC Germplasm Collection | |||||||||||
Mean | 3.35 | 93.62 | 3.26 | 91.66 | 3.36 | 92.57 | 1.42 | 11.24 | 3.24 | 57.26 | 8.92 |
Min | 2.68 | 72.88 | 2.39 | 57.20 | 2.53 | 77.52 | 1.0 | 0.0 | 2.40 | 36.25 | 3.28 |
Max | 3.84 | 95.90 | 3.89 | 99.39 | 4.01 | 95.65 | 3.73 | 69.41 | 3.93 | 74.52 | 30.23 |
SE | 0.33 | 7.75 | 0.36 | 10.62 | 0.37 | 7.06 | 0.49 | 13.31 | 0.56 | 14.43 | 3.99 |
H2 | 0.43 | 0.89 | 0.42 | 0.89 | 0.41 | 0.88 | 0.78 | 0.69 | 0.23 | 0.22 | 0.48 |
Preliminary Yield Trial (Nigeria) | |||||||||||
Mean | 2.17 | 20.08 | 2.99 | 73.02 | 1.58 | 21.19 | 0.44 | 2.14 | 2.83 | 35.01 | 13.87 |
Min | 1.91 | 0.19 | 2.64 | 34.78 | 1.40 | 0.06 | 1.0 | 0.0 | 2.32 | 0.57 | 6.80 |
Max | 2.6 | 74.07 | 3.43 | 95.37 | 2.54 | 96.08 | 4.58 | 22.33 | 3.5 | 99.48 | 22.88 |
SE | 0.43 | 6.17 | 0.43 | 15.13 | 0.42 | 4.77 | 0.79 | 0.69 | 0.55 | 3.60 | 3.09 |
H2 | 0.53 | 0.66 | 0.27 | 0.95 | 0.68 | 0.63 | 0.45 | 0.75 | 0.29 | 0.97 | 0.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sikirou, M.; Adetoro, N.; Sheat, S.; Musungayi, E.; Mungangan, R.; Pierre, M.; Fowobaje, K.; Dieng, I.; Bamba, Z.; Rabbi, I.; et al. High-Throughput Field Screening of Cassava Brown Streak Disease Resistance for Efficient and Cost-Saving Breeding Selection. Agronomy 2025, 15, 425. https://doi.org/10.3390/agronomy15020425
Sikirou M, Adetoro N, Sheat S, Musungayi E, Mungangan R, Pierre M, Fowobaje K, Dieng I, Bamba Z, Rabbi I, et al. High-Throughput Field Screening of Cassava Brown Streak Disease Resistance for Efficient and Cost-Saving Breeding Selection. Agronomy. 2025; 15(2):425. https://doi.org/10.3390/agronomy15020425
Chicago/Turabian StyleSikirou, Mouritala, Najimu Adetoro, Samar Sheat, Eric Musungayi, Romain Mungangan, Miafuntila Pierre, Kayode Fowobaje, Ibnou Dieng, Zoumana Bamba, Ismail Rabbi, and et al. 2025. "High-Throughput Field Screening of Cassava Brown Streak Disease Resistance for Efficient and Cost-Saving Breeding Selection" Agronomy 15, no. 2: 425. https://doi.org/10.3390/agronomy15020425
APA StyleSikirou, M., Adetoro, N., Sheat, S., Musungayi, E., Mungangan, R., Pierre, M., Fowobaje, K., Dieng, I., Bamba, Z., Rabbi, I., Mushoriwa, H., & Winter, S. (2025). High-Throughput Field Screening of Cassava Brown Streak Disease Resistance for Efficient and Cost-Saving Breeding Selection. Agronomy, 15(2), 425. https://doi.org/10.3390/agronomy15020425