Preharvest Gibberellic Acid Treatment Increases Both Modulus of Elasticity and Resistance in Sweet Cherry Fruit (cv. ‘Bing’ and ‘Lapins’) at Harvest and Postharvest During Storage at 0 °C
<p>Colour expression of sweet cherry, cv. ‘Bing’ and ‘Lapins’, at 77 and 79 days after full bloom, respectively, for fruit treated with GA. T0: control and T60: GA at 30 ppm applied at pit-hardening and straw-colour stages.</p> "> Figure 2
<p>Growth in fruit diameter during development for control and gibberellic acid (GA)-treated fruit of cv. ‘Bing’ and ‘Lapins’ sweet cherries. Treatments: T0 (control), 0 ppm GA; T30, 15 + 15 ppm GA (pit-hardening + straw-colour); T45, 25 + 20 ppm GA (pit-hardening + straw-colour); T60, 30 + 30 ppm GA (pit-hardening + straw-colour). Different letters for each day show significantly different mean values for Fisher’s LSD test, with <span class="html-italic">p</span>-value < 0.05. NS: non-significant at <span class="html-italic">p</span>-value < 0.05.</p> "> Figure 2 Cont.
<p>Growth in fruit diameter during development for control and gibberellic acid (GA)-treated fruit of cv. ‘Bing’ and ‘Lapins’ sweet cherries. Treatments: T0 (control), 0 ppm GA; T30, 15 + 15 ppm GA (pit-hardening + straw-colour); T45, 25 + 20 ppm GA (pit-hardening + straw-colour); T60, 30 + 30 ppm GA (pit-hardening + straw-colour). Different letters for each day show significantly different mean values for Fisher’s LSD test, with <span class="html-italic">p</span>-value < 0.05. NS: non-significant at <span class="html-italic">p</span>-value < 0.05.</p> "> Figure 3
<p>Fruit size distribution at harvest for cv. ‘Bing’ and ‘Lapins’ sweet cherries depends on the rate of gibberellic acid (GA) application. Treatments: T0 (control), 0 ppm GA; T30, 15 + 15 ppm GA (pit-hardening + straw-colour); T45, 25 + 20 ppm GA (pit-hardening + straw-colour); T60, 30 + 30 ppm GA (pit-hardening + straw-colour). Different letters for each size show significantly different mean values for Fisher’s LSD test, with <span class="html-italic">p</span>-value < 0.05. NS: non-significant at <span class="html-italic">p</span>-value < 0.05.</p> "> Figure 3 Cont.
<p>Fruit size distribution at harvest for cv. ‘Bing’ and ‘Lapins’ sweet cherries depends on the rate of gibberellic acid (GA) application. Treatments: T0 (control), 0 ppm GA; T30, 15 + 15 ppm GA (pit-hardening + straw-colour); T45, 25 + 20 ppm GA (pit-hardening + straw-colour); T60, 30 + 30 ppm GA (pit-hardening + straw-colour). Different letters for each size show significantly different mean values for Fisher’s LSD test, with <span class="html-italic">p</span>-value < 0.05. NS: non-significant at <span class="html-italic">p</span>-value < 0.05.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Design
2.2. Storage and Fruit Quality Postharvest
2.3. Fruit Growth and Evolution of Maturity Parameters
2.4. Rheological Properties and Increased Sensitivity to Damage
2.5. Statistical Analysis
3. Results
3.1. Crop Yield, Fruit Growth and Quality Parameters at Harvest
3.2. Rheological Properties at Harvest and Postharvest
3.3. Effect of Maturity on Rheological Properties and Induced Mechanical Damage
3.4. Alcohol Insoluble Residues (AIR)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kappel, F.; Fisher-Fleming, B.; Hogue, E. Fruit Characteristics and Sensory Attributes of an Ideal Sweet Cherry. HortScience 1996, 31, 443–446. [Google Scholar] [CrossRef]
- Crisosto, C.H.; Crisosto, G.M.; Metheney, P. Consumer Acceptance of ‘Brooks’ and ‘Bing’ Cherries Is Mainly Dependent on Fruit SSC and Visual Skin Color. Postharvest Biol. Technol. 2003, 28, 159–167. [Google Scholar] [CrossRef]
- Zheng, X.; Yue, C.; Gallardo, K.; McCracken, V.; Luby, J.; McFerson, J. What Attributes Are Consumers Looking for in Sweet Cherries? Evidence from Choice Experiments. Agric. Resour. Econ. Rev. 2016, 45, 124–142. [Google Scholar] [CrossRef]
- Ross, C.F.; Chauvin, M.A.; Whiting, M. Firmness Evaluation of Sweet Cherries by a Trained and Consumer Sensory Panel. J. Texture Stud. 2009, 40, 554–570. [Google Scholar] [CrossRef]
- Moghimi, A.; Saiedirad, M.H.; Moghadam, E.G. Interpretation of Viscoelastic Behaviour of Sweet Cherries Using Rheological Models. Int. J. Food Sci. Technol. 2011, 46, 855–861. [Google Scholar] [CrossRef]
- Li, Z.; Miao, F.; Andrews, J. Mechanical Models of Compression and Impact on Fresh Fruits. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1296–1312. [Google Scholar] [CrossRef]
- Brüggenwirth, M.; Knoche, M. Factors Affecting Mechanical Properties of the Skin of Sweet Cherry Fruit. J. Am. Soc. Hortic. Sci. 2016, 141, 45–53. [Google Scholar] [CrossRef]
- Brüggenwirth, M.; Fricke, H.; Knoche, M. Biaxial Tensile Tests Identify Epidermis and Hypodermis as the Main Structural Elements of Sweet Cherry Skin. AoB Plants 2014, 6, plu019. [Google Scholar] [CrossRef]
- Param, N.; Zoffoli, J.P. Genotypic Differences in Sweet Cherries Are Associated with the Susceptibility to Mechanical Damage. Sci. Hortic. 2016, 211, 410–419. [Google Scholar] [CrossRef]
- Ricardo-Rodrigues, S.; Laranjo, M.; Agulheiro-Santos, A.C. Methods for Quality Evaluation of Sweet Cherry. J. Sci. Food Agric. 2023, 103, 463–478. [Google Scholar] [CrossRef]
- Sirisomboon, P.; Tanaka, M.; Kojima, T. Evaluation of Tomato Textural Mechanical Properties. J. Food Eng. 2012, 111, 618–624. [Google Scholar] [CrossRef]
- Choi, C.; Wiersma, P.A.; Toivonen, P.; Kappel, F. Fruit Growth, Firmness and Cell Wall Hydrolytic Enzyme Activity during Development of Sweet Cherry Fruit Treated with Gibberellic Acid (GA3). J. Hortic. Sci. Biotechnol. 2002, 77, 615–621. [Google Scholar] [CrossRef]
- Kondo, S.; Tomiyama, A.; Seto, H. Changes of Endogenous Jasmonic Acid and Methyl Jasmonate in Apples and Sweet Cherries during Fruit Development. J. Am. Soc. Hortic. Sci. 2000, 125, 282–287. [Google Scholar] [CrossRef]
- Tapia García, M.I.; Velardo-Micharet, B.; Ayuso, M.C.; Bernalte, M.J.; González-Gómez, D. Effect of Modified Atmosphere on Postharvest Quality of ‘Sweetheart’ Cherries. Acta Hortic. 2017, 1161, 653–660. [Google Scholar] [CrossRef]
- Kappel, F.; Toivonen, P.; McKenzie, D.-L.; Stan, S. Storage Characteristics of New Sweet Cherry Cultivars. HortScience 2002, 37, 139–143. [Google Scholar] [CrossRef]
- Afonso, S.; Oliveira, I.; Ribeiro, C.; Vilela, A.; Meyer, A.S.; Gonçalves, B. Innovative Edible Coatings for Postharvest Storage of Sweet Cherries. Sci. Hortic. 2023, 310, 111738. [Google Scholar] [CrossRef]
- Patten, K.D.; Patterson, M.E. Fruit Temperature Effects on Mechanical Damage of Sweet Cherries. J. Am. Soc. Hortic. Sci. 1985, 110, 215–219. [Google Scholar] [CrossRef]
- Toivonen, P.M.A.; Kappel, F.; Stan, S.; McKenzie, D.-L.; Hocking, R. Firmness, Respiration, and Weight Loss of “Bing”, “Lapins” and “Sweetheart” Cherries in Relation to Fruit Maturity and Susceptibility to Surface Pitting. HortScience 2004, 39, 1066–1069. [Google Scholar] [CrossRef]
- Whiting, M.D.; Lang, G.A. “Bing” Sweet Cherry on the Dwarfing Rootstock “Gisela 5”: Thinning Affects Fruit Quality and Vegetative Growth but Not Net CO2 Exchange. J. Am. Soc. Hortic. Sci. 2004, 129, 407–415. [Google Scholar] [CrossRef]
- Rutkowski, K.; Łysiak, G.P. Thinning Methods to Regulate Sweet Cherry Crops—A Review. Appl. Sci. 2022, 12, 1280. [Google Scholar] [CrossRef]
- Measham, P.F.; Richardson, A.; Townsend, A. Calcium Application and Impacts on Cherry Fruit Quality. Acta Hortic. 2017, 1161, 375–382. [Google Scholar] [CrossRef]
- Matteo, M.; Zoffoli, J.P.; Ayala, M. Calcium Sprays and Crop Load Reduction Increase Fruit Quality and Postharvest Storage in Sweet Cherry (Prunus avium L.). Agronomy 2022, 12, 829. [Google Scholar] [CrossRef]
- Saracoglu, O.; Ozturk, B.; Yildiz, K.; Kucuker, E. Pre-Harvest Methyl Jasmonate Treatments Delayed Ripening and Improved Quality of Sweet Cherry Fruits. Sci. Hortic. 2017, 226, 19–23. [Google Scholar] [CrossRef]
- González-Villagra, J.; Chicahual, C.; Jorquera-Fontena, E.; Falquetto-Gomes, P.; Nunes-Nesi, A.; Reyes-Díaz, M. Salicylic Acid Improves Yield, Fruit Quality, and Post-Harvest Storage in Sweet Cherry (Prunus avium L.) Cv. Lapins Subjected to Late-Deficit Irrigation. Horticulturae 2024, 10, 707. [Google Scholar] [CrossRef]
- Carrión-Antolí, A.; Lorente-Mento, J.M.; Valverde, J.M.; Castillo, S.; Valero, D.; Serrano, M. Effects of Melatonin Treatment on Sweet Cherry Tree Yield and Fruit Quality. Agronomy 2022, 12, 3. [Google Scholar] [CrossRef]
- Facteau, T.J.; Rowe, K.E.; Chestnut, N.E. Response Patterns of Gibberellic Acid-Treated Sweet Cherry Fruit at Different Soluble Solids Levels and Leaf/Fruit Ratios. Sci. Hortic. 1985, 27, 257–262. [Google Scholar] [CrossRef]
- Cline, J.A.; Trought, M. Effect of Gibberellic Acid on Fruit Cracking and Quality of Bing and Sam Sweet Cherries. Can. J. Plant Sci. 2007, 87, 545–550. [Google Scholar] [CrossRef]
- Canli, F.A.; Orhan, H. Effects of Preharvest Gibberellic Acid Applications on Fruit Quality of ‘0900 Ziraat’ Sweet Cherry. Horttechnology 2009, 19, 127–129. [Google Scholar] [CrossRef]
- Einhorn, T.C.; Wang, Y.; Turner, J. Sweet Cherry Fruit Firmness and Postharvest Quality of Late-Maturing Cultivars Are Improved with Low-Rate, Single Applications of Gibberellic Acid. HortScience 2013, 48, 1010–1017. [Google Scholar] [CrossRef]
- Lenahan, O.M.; Whiting, M.D.; Elfving, D.C. Gibberellic Acid Inhibits Floral Bud Induction and Improves ‘Bing’ Sweet Cherry Fruit Quality. HortScience 2006, 41, 654–659. [Google Scholar] [CrossRef]
- Kondo, S.; Inoue, K. Abscisic Acid (ABA) and 1-Aminocyclopropane-1-Carboxylic Acid (ACC) Content during Growth of ‘Satohnishiki’ Cherry Fruit, and the Effect of ABA and Ethephon Application on Fruit Quality. J. Hortic. Sci. 1997, 72, 221–227. [Google Scholar] [CrossRef]
- Ren, J.; Chen, P.; Dai, S.; Li, P.; Li, Q.; Ji, K.; Wang, Y.; Leng, P. Role of Abscisic Acid and Ethylene in Sweet Cherry Fruit Maturation: Molecular Aspects. N. Z. J. Crop. Hortic. Sci. 2011, 39, 161–174. [Google Scholar] [CrossRef]
- Luo, H.; Dai, S.; Ren, J.; Zhang, C.; Ding, Y.; Li, Z.; Sun, Y.; Ji, K.; Wang, Y.; Li, Q.; et al. The Role of ABA in the Maturation and Postharvest Life of a Nonclimacteric Sweet Cherry Fruit. J. Plant Growth Regul. 2014, 33, 373–383. [Google Scholar] [CrossRef]
- Tan, Y.; Wen, B.; Xu, L.; Zong, X.; Sun, Y.; Wei, G.; Wei, H. High Temperature Inhibited the Accumulation of Anthocyanin by Promoting ABA Catabolism in Sweet Cherry Fruits. Front. Plant Sci. 2023, 14, 1079292. [Google Scholar] [CrossRef]
- Kondo, S.; Danjo, C. Cell Wall Polysaccharide Metabolism during Fruit Development in Sweet Cherry “Satohnishiki” as Affected by Gibberellic Acid. J. Jpn. Soc. Hortic. Sci. 2001, 70, 178–184. [Google Scholar] [CrossRef]
- Zoffoli, J.P.; Naranjo, P.; Hanssens, C.; Param, N. Effects of Gibberellic Acid on the Rheological Properties of Sweet Cherry Tissue. Acta Hortic. 2017, 1161, 647–652. [Google Scholar] [CrossRef]
- Zoffoli, J.P.; Rodriguez, J. Fruit Temperature Affects Physical Injury Sensitivity of Sweet Cherry during Postharvest Handling. Acta Hortic. 2014, 1020, 111–114. [Google Scholar] [CrossRef]
- Choi, C.; Toivonen, P.; Wiersma, P.A.; Kappel, F. Differences in Levels of Pectic Substances and Firmness in Fruit from Six Sweet Cherry Genotypes. J. Am. Pomol. Soc. 2002, 56, 197–201. [Google Scholar]
- Polat, R.; Aktas, T.; Ikinci, A. Selected Mechanical Properties and Bruise Susceptibility of Nectarine Fruit. Int. J. Food Prop. 2012, 15, 1369–1380. [Google Scholar] [CrossRef]
- Zoffoli, J.P.; Muñoz, S.; Valenzuela, L.; Reyes, M.; Barros, F. Manipulation of ‘Van’ Sweet Cherry Crop Load Influences Fruit and Susceptibility to Impact Bruising. Acta Hortic. 2008, 795, 877–882. [Google Scholar] [CrossRef]
- Facteau, T.J.; Rowe, K.E.; Chestnut, N.E. Firmness of Sweet Cherry Fruit Following Multiple Applications of Gibberellic Acid. J. Am. Soc. Hortic. Sci. 1985, 110, 775–777. [Google Scholar] [CrossRef]
- Martínez, G.A.; Chaves, A.R.; Añón, M.C. Effect of Exogenous Application of Gibberellic Acid on Color Change and Phenylalanine Ammonia-Lyase, Chlorophyllase, and Peroxidase Activities during Ripening of Strawberry Fruit (Fragaria × Ananassa Duch.). J. Plant Growth Regul. 1996, 15, 139–146. [Google Scholar] [CrossRef]
- Ozkan, Y.; Ucar, M.; Yildiz, K.; Ozturk, B. Pre-Harvest Gibberellic Acid (GA3) Treatments Play an Important Role on Bioactive Compounds and Fruit Quality of Sweet Cherry Cultivars. Sci. Hortic. 2016, 211, 358–362. [Google Scholar] [CrossRef]
- Kuhn, N.; Maldonado, J.; Ponce, C.; Arellano, M.; Time, A.; Multari, S.; Martens, S.; Carrera, E.; Donoso, J.M.; Sagredo, B.; et al. RNAseq Reveals Different Transcriptomic Responses to GA3 in Early and Midseason Varieties Before Ripening Initiation in Sweet Cherry Fruits. Sci. Rep. 2021, 11, 13075. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, N.; Ponce, C.; Arellano, M.; Time, A.; Sagredo, B.; Donoso, J.M.; Meisel, L.A. Gibberellic Acid Modifies the Transcript Abundance of ABA Pathway Orthologs and Modulates Sweet Cherry (Prunus avium) Fruit Ripening in Early- and Mid-Season Varieties. Plants 2020, 9, 1796. [Google Scholar] [CrossRef]
- Zhang, J.; Cao, Y.; Tang, J.; He, X.; Li, M.; Li, C.; Ren, X.; Ding, Y. Physiology and Application of Gibberellins in Postharvest Horticultural Crops. Horticulturae 2023, 9, 625. [Google Scholar] [CrossRef]
- Ozturk, B.; Aglar, E.; Saracoglu, O.; Karakaya, O.; Gun, S. Effects of GA3, CACl2 and Modified Atmosphere Packaging (MAP) Applications on Fruit Quality of Sweet Cherry at Cold Storage. Int. J. Fruit Sci. 2022, 22, 696–710. [Google Scholar] [CrossRef]
- Kappel, F.; MacDonald, R. Early Gibberellic Acid Sprays Increase Firmness and Fruit Size of “Sweetheart” Sweet Cherry. J. Am. Pomol. Soc. 2007, 61, 38–43. [Google Scholar]
- Zhang, C.; Whiting, M. Pre-Harvest Foliar Application of Prohexadione-Ca and Gibberellins Modify Canopy Source-Sink Relations and Improve Quality and Shelf-Life of ‘Bing’ Sweet Cherry. Plant Growth Regul. 2011, 65, 145–156. [Google Scholar] [CrossRef]
- Lidster, P.D.; Muller, K.; Tung, M.A. Effects of Maturity on Fruit Composition and Susceptibility to Surface Damage in Sweet Cherries. Can. J. Plant Sci. 1980, 60, 865–871. [Google Scholar] [CrossRef]
- Looney, N.E.; Lidster, P.D. Some Growth Regulator Effects on Fruit Quality, Mesocarp Composition, and Susceptibility to Postharvest Surface Marking of Sweet Cherries. J. Am. Soc. Hortic. Sci. 1980, 105, 130–134. [Google Scholar] [CrossRef]
- Facteau, T.J. Relationship of Soluble Solids, Alcohol-Insoluble Solids, Fruit Calcium, and Pectin Levels to Firmness and Surface Pitting in ‘Lambert’ and ‘Bing’ Sweet Cherry Fruit. J. Am. Soc. Hortic. Sci. 1982, 107, 151–154. [Google Scholar] [CrossRef]
- Fuentealba, C.; Ejsmentewicz, T.; Campos-Vargas, R.; Saa, S.; Aliaga, O.; Chirinos, R.; Campos, D.; Pedreschi, R. Cell Wall and Metabolite Composition of Sweet Cherry Fruits from Two Cultivars with Contrasting Susceptibility to Surface Pitting during Storage. Food Chem. 2021, 342, 128307. [Google Scholar] [CrossRef] [PubMed]
- Knoche, M.; Grimm, E.; Schlegel, H.J. Mature Sweet Cherries Have Low Turgor. J. Am. Soc. Hortic. Sci. 2014, 139, 3–12. [Google Scholar] [CrossRef]
- Crisosto, C.H.; Garner, D.; Doyle, J.; Day, K.R. Relationship Between Fruit Respiration, Bruising Susceptibility, and Temperature in Sweet Cherries. HortScience 1993, 28, 132–135. [Google Scholar] [CrossRef]
- Basak, A.; Rozpara, E.; Grzyb, Z. Use of Bioregulators to Reduce Sweet Cherry Tree Growth and to Improve Fruit Quality. Acta Hortic. 1998, 468, 719–724. [Google Scholar] [CrossRef]
- Hallett, I.C.; Harker, F.R. Microscopic Investigations of Fruit Texture. Acta Hortic 1998, 464, 411–416. [Google Scholar] [CrossRef]
Cultivar | Treatment | GA (ppm) | Time of Application (DAFB) | Harvest (DAFB) |
---|---|---|---|---|
Bing | T0 | 0 | - | 82 |
T30 | 15 + 15 | Pit-hardening (28) + Straw-colour (44) | 84 | |
T45 | 25 + 20 | Pit-hardening (28) + Straw-colour (44) | 86 | |
T60 | 30 + 30 | Pit-hardening (28) + Straw-colour (44) | 86 | |
Lapins | T0 | 0 | - | 87 |
T30 | 15 + 15 | Pit-hardening (28) + Straw-colour (45) | 87 | |
T45 | 25 + 20 | Pit-hardening (28) + Straw-colour (45) | 91 | |
T60 | 30 + 30 | Pit-hardening (28) + Straw-colour (45) | 91 |
Cultivar | Treatment | Modulus of Elasticity | Strain at Bioyield | Maximum Stress |
---|---|---|---|---|
(MPa) | (%) | (kPa) | ||
Bing | T0 | 1.73 a | 10.65 | 223.0 a |
T30 | 2.19 b | 11.01 | 262.4 b | |
T45 | 1.92 ab | 11.12 | 245.3 ab | |
T60 | 1.92 ab | 11.30 | 244.3 ab | |
p-value | 0.0257 | NS | 0.0366 | |
Lapins | T0 | 1.23 a | 10.95 | 185.8 a |
T30 | 1.71 b | 10.11 | 224 b | |
T45 | 1.74 b | 10.21 | 220.8 b | |
T60 | 1.92 b | 10.14 | 231.5 b | |
p-value | 0.0016 | NS | 0.0021 |
Cultivar | Treatment | Modulus of Elasticity | Strain at Bioyield | Maximum Stress |
---|---|---|---|---|
(MPa) | (%) | (kPa) | ||
Bing | T0 | 1.93 a | 10.37 c | 242.9 a |
T30 | 2.51 b | 8.33 a | 275.1 b | |
T45 | 2.51 b | 8.80 b | 287.6 b | |
T60 | 2.64 b | 8.86 b | 281.8 b | |
p-value | 0.0011 | <0.0001 | 0.0403 | |
Lapins | T0 | 1.38 a | 10.09 b | 194.0 a |
T30 | 2.29 b | 8.83 a | 241.7 b | |
T45 | 2.45 bc | 8.64 a | 255.4 bc | |
T60 | 2.72 c | 8.75 a | 267.7 c | |
p-value | <0.0001 | 0.0380 | 0.0001 |
Cultivar | Treatment | Bruising | |
---|---|---|---|
Inc. 1 | Sev. 2 | ||
(%) | (1–3) | ||
Bing | T0 | 32 b | 2.27 b |
T30 | 30 b | 1.78 a | |
T45 | 16 a | 1.69 a | |
T60 | 19 a | 1.71 a | |
p-value | 0.0001 | 0.0193 | |
Lapins | T0 | 27 b | 2.54 c |
T30 | 8 a | 2.43 bc | |
T45 | 18 ab | 1.76 a | |
T60 | 13 a | 2.01 ab | |
p-value | 0.0185 | 0.0118 |
Cultivar | Treatment | Modulus of Elasticity | Strain at Bioyield | Maximum Stress |
---|---|---|---|---|
(MPa) | (%) | (kPa) | ||
Bing | T0 | 1.84 a | 8.12 a | 236.7 a |
T30 | 2.35 b | 8.67 ab | 288.0 b | |
T45 | 2.49 b | 8.91 b | 312.7 b | |
T60 | 2.54 b | 9.27 b | 312.7 b | |
p-value | 0.0276 | 0.0168 | 0.0031 | |
Lapins | T0 | 1.40 a | 10.75 b | 211.3 a |
T30 | 1.97 b | 9.06 a | 241.4 b | |
T45 | 2.26 bc | 9.38 a | 260.2 bc | |
T60 | 2.46 c | 9.31 a | 276.4 c | |
p-value | 0.001 | 0.0317 | 0.0011 |
Fruit Damage Index 1 | Rheological Properties | |||||
---|---|---|---|---|---|---|
Cultivar | Colour | Compression Test | Impact Test | Modulus of Elasticity | Strain at Bioyield | Maximum Stress |
(MPa) | (%) | (kPa) | ||||
Bing | Colour 3 | 3.54 b | 1.44 b | 2.34 b | 10.24 a | 275.08 b |
Colour 3.5 | 2.13 a | 0.96 a | 1.94 a | 11.02 b | 243.76 a | |
p-value | <0.0001 | 0.0052 | <0.0001 | 0.0108 | 0.002 | |
Lapins | Colour 3 | 3.74 b | 1.38 | 2.01 b | 9.19 a | 233.08 |
Colour 3.5 | 2.73 a | 1.24 | 1.65 a | 10.35 b | 215.55 | |
p-value | <0.0001 | NS | 0.0054 | 0.001 | NS |
Colour 3 | Colour 3.5 | ||||
---|---|---|---|---|---|
Cultivar | Treatment | AIR | AIR | AIR | AIR |
(g 100 g−1 FW) | (mg/fruit) | (g 100 g−1 FW) | (mg/fruit) | ||
Bing | T0 | 1.49 a | 139.60 a | 1.89 | 188.07 |
T30 | 1.76 b | 172.43 b | 2.12 | 205.62 | |
T45 | 1.86 bc | 174.63 b | 1.96 | 193.96 | |
T60 | 2.06 c | 187.03 b | 2.32 | 230.40 | |
p-value | 0.0004 | 0.0149 | NS | NS | |
Lapins | T0 | 1.73 b | 169.58 a | 2.09 | 199.15 |
T30 | 1.53 a | 170.85 a | 1.81 | 199.12 | |
T45 | 1.69 ab | 187.22 ab | 1.96 | 215.78 | |
T60 | 1.81 b | 204.87 b | 1.94 | 203.68 | |
p-value | 0.0385 | 0.0461 | NS | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrión-Antolí, A.; Zoffoli, J.P.; Serrano, M.; Valero, D.; Naranjo, P. Preharvest Gibberellic Acid Treatment Increases Both Modulus of Elasticity and Resistance in Sweet Cherry Fruit (cv. ‘Bing’ and ‘Lapins’) at Harvest and Postharvest During Storage at 0 °C. Agronomy 2024, 14, 2738. https://doi.org/10.3390/agronomy14112738
Carrión-Antolí A, Zoffoli JP, Serrano M, Valero D, Naranjo P. Preharvest Gibberellic Acid Treatment Increases Both Modulus of Elasticity and Resistance in Sweet Cherry Fruit (cv. ‘Bing’ and ‘Lapins’) at Harvest and Postharvest During Storage at 0 °C. Agronomy. 2024; 14(11):2738. https://doi.org/10.3390/agronomy14112738
Chicago/Turabian StyleCarrión-Antolí, Alberto, Juan Pablo Zoffoli, María Serrano, Daniel Valero, and Paulina Naranjo. 2024. "Preharvest Gibberellic Acid Treatment Increases Both Modulus of Elasticity and Resistance in Sweet Cherry Fruit (cv. ‘Bing’ and ‘Lapins’) at Harvest and Postharvest During Storage at 0 °C" Agronomy 14, no. 11: 2738. https://doi.org/10.3390/agronomy14112738
APA StyleCarrión-Antolí, A., Zoffoli, J. P., Serrano, M., Valero, D., & Naranjo, P. (2024). Preharvest Gibberellic Acid Treatment Increases Both Modulus of Elasticity and Resistance in Sweet Cherry Fruit (cv. ‘Bing’ and ‘Lapins’) at Harvest and Postharvest During Storage at 0 °C. Agronomy, 14(11), 2738. https://doi.org/10.3390/agronomy14112738