Metallurgical Waste for Sustainable Agriculture: Converter Slag and Blast-Furnace Sludge Increase Oat Yield in Acidic Soils
<p>Experimental field.</p> "> Figure 2
<p>Waste characterization: (<b>a</b>) SEM micrograph with elemental composition and diffraction pattern of blast-furnace sludge sample; (<b>b</b>) SEM micrograph with elemental composition and diffraction pattern of converter slag.</p> "> Figure 3
<p>Morphophysiological parameters of oats: (<b>a</b>) germination; (<b>b</b>) average stem length; (<b>c</b>) average root length; (<b>d</b>) experimental plants. The * symbol marks significant differences with the control at a significance level of <span class="html-italic">p</span> < 0.05. *—differences from the untreated variant, **—differences from the slag-treated variant.</p> "> Figure 4
<p>Weight of spring oat: (<b>a</b>) raw stem weight; (<b>b</b>) dry stem weight; (<b>c</b>) raw root weight; (<b>d</b>) dry root weight. The * symbol marks significant differences with the control at a significance level of <span class="html-italic">p</span> < 0.05. *—differences from the untreated variant, **—differences from the slag-treated variant.</p> "> Figure 5
<p>Elemental analysis of plants: (<b>a</b>) root, control; (<b>b</b>) stem, control; (<b>c</b>) root, sludge; (<b>d</b>) stem, sludge; (<b>e</b>) root, slag + sludge; (<b>f</b>) stem, slag + sludge.</p> "> Figure 6
<p>Productivity and crop quality indicators of spring oats: (<b>a</b>) yield; (<b>b</b>) height of plants; (<b>c</b>) net photosynthesis productivity; (<b>d</b>) protein content in grain. The * symbol marks significant differences with the control at a significance level of <span class="html-italic">p</span> < 0.05. *—differences from the untreated variant, **—differences from the slag-treated variant.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Waste Characterization
2.2. Laboratory Experiment
2.3. Field Experiment
2.4. Statistical Analysis
3. Results
3.1. Results of Waste Characterization
3.2. Results of Laboratory Experiment
3.3. Results of Field Experiment
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. Sustainable Food Systems: Concept and Framework; FAO: Québec City, QC, Canada, 2018. [Google Scholar]
- Tian, H.; Xu, R.; Canadell, J.G.; Thompson, R.L.; Winiwarter, W.; Suntharalingam, P.; Davidson, E.A.; Ciais, P.; Jackson, R.B.; Janssens-Maenhout, G.; et al. A Comprehensive Quantification of Global Nitrous Oxide Sources and Sinks. Nature 2020, 586, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Geelen, D. Developing Biostimulants from Agro-Food and Industrial By-Products. Front. Plant Sci. 2018, 9, 1567. [Google Scholar] [CrossRef] [PubMed]
- Lis, T.; Nowacki, K.; Żelichowska, M.; Kania, H. Innovation in Metallurgical Waste Management. Metal. Sisak Then Zagreb 2015, 54, 283–285. [Google Scholar]
- Iluţiu-Varvara, D.-A.; Aciu, C. Metallurgical Wastes as Resources for Sustainability of the Steel Industry. Sustainability 2022, 14, 5488. [Google Scholar] [CrossRef]
- Agrawal, A.; Sahu, k.k.; Pandey, B. Solid Waste Management in Non-Ferrous Industries in India. Resour. Conserv. Recycl. 2004, 42, 99–120. [Google Scholar] [CrossRef]
- Zhang, Y. Introductory Chapter: Metallurgical Solid Waste. In Recovery and Utilization of Metallurgical Solid Waste; Yingyi, Z., Ed.; IntechOpen: Rijeka, Croatia, 2019; Chapter 1. [Google Scholar] [CrossRef]
- Guo, J.; Bao, Y.; Wang, M. Steel slag in China: Treatment, Recycling, and Management. Waste Manag. 2018, 78, 318–330. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, J.; Jiang, J.; Li, J.; Tyagi, R.D.; Surampalli, R.Y. The Potential Utilization of Slag Generated from Iron- and Steelmaking Industries: A Review. Environ. Geochem. Health 2020, 42, 1321–1334. [Google Scholar] [CrossRef]
- Kiventerä, J.; Leiviskä, T.; Keski-Ruismäki, K.; Tanskanen, J. Characteristics and Settling Behaviour of Particles from Blast Furnace Flue Gas Washing. J. Environ. Manag. 2016, 172, 162–170. [Google Scholar] [CrossRef]
- Trinkel, V.; Mallow, O.; Aschenbrenner, P.; Rechberger, H.; Fellner, J. Characterization of Blast Furnace Sludge with Respect to Heavy Metal Distribution. Ind. Eng. Chem. Res. 2016, 55, 5590–5597. [Google Scholar] [CrossRef]
- Kurka, V.; Jonšta, P.; Kander, L.; Kotásek, O.; Pyš, J.; Klásková, I.; Noga, R.; Vindyš, M.; Simha Martynková, G. The Influence of Varying Thermal Treatment Conditions on Reducing Zinc Content from a Steelmaking and Blast Furnace Sludge. Metals 2022, 12, 1961. [Google Scholar] [CrossRef]
- Anderson, W.B.; Parkpian, P. Plant Availability of an Iron Waste Product Utilized as an Agricultural Fertilizer on Calcareous Soil. J. Plant Nutr. 1984, 7, 223–233. [Google Scholar] [CrossRef]
- Kicińska, A.; Wikar, J. The Effect of Fertilizing Soils Degraded by the Metallurgical Industry on the Content of Elements in Lactuca sativa L. Sci. Rep. 2021, 11, 4072. [Google Scholar] [CrossRef] [PubMed]
- Zakharova, O.V.; Baranchikov, P.A.; Grodetskaya, T.A.; Kuznetsov, D.V.; Gusev, A.A. Highly Dispersed Blast-Furnace Sludge as a New Micronutrient Fertilizer: Promising Results on Rapeseed. Agronomy 2022, 12, 2929. [Google Scholar] [CrossRef]
- Zakharova, O.; Gusev, A.; Skripnikova, E.; Skripnikova, M.; Krutyakov, Y.; Kudrinsky, A.; Mikhailov, I.; Senatova, S.; Chuprunov, C.; Kuznetsov, D. Study of Ecologo-Biological Reactions of Common Flax to Finely Dispersed Metallurgical Wastes. IOP Conf. Ser. Mater. Sci. Eng. 2015, 98, 012018. [Google Scholar] [CrossRef]
- Fageria, N.K.; Nascente, A.S. Chapter Six—Management of Soil Acidity of South American Soils for Sustainable Crop Production. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2014; Volume 128, pp. 221–275. [Google Scholar]
- Kunhikrishnan, A.; Thangarajan, R.; Bolan, N.S.; Xu, Y.; Mandal, S.; Gleeson, D.B.; Seshadri, B.; Zaman, M.; Barton, L.; Tang, C.; et al. Chapter One—Functional Relationships of Soil Acidification, Liming, and Greenhouse Gas Flux. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2016; Volume 139, pp. 1–71. [Google Scholar]
- Goulding, K.W. Soil Acidification and the Importance of Liming Agricultural Soils with Particular Reference to the United Kingdom. Soil Use Manag. 2016, 32, 390–399. [Google Scholar] [CrossRef]
- Teresa Annunziata, B.; Valentina, C. Possible Uses of Steelmaking Slag in Agriculture: An Overview. In Material Recycling; Dimitris, S.A., Ed.; IntechOpen: Rijeka, Croatia, 2012; Chapter 14. [Google Scholar] [CrossRef]
- Zhang, J.; Matsuura, H.; Tsukihashi, F. Chapter 4.4—Processes for Recycling. In Treatise on Process Metallurgy; Seetharaman, S., Ed.; Elsevier: Boston, MA, USA, 2014; pp. 1507–1561. [Google Scholar] [CrossRef]
- Deus, A.; Bertani, R.; Meirelles, G.; Vidal, A.; Moreira, L.; Büll, L.; Fernandes, D. The Comprehensive Utilization of Steel Slag in Agricultural Soils. In Recovery and Utilization of Metallurgical Solid Waste; IntechOpen: Rijeka, Croatia, 2018. [Google Scholar] [CrossRef]
- Ali Mohammadi Torkashvand, S.S. Converter Slag as a Liming Agent in the Amelioration of Acidic Soils. Int. J. Agric. Biol. 2007, 9, 715–720. [Google Scholar]
- Ning, D.; Song, A.; Fan, F.; Li, Z.; Liang, Y. Effects of Slag-Based Silicon Fertilizer on Rice Growth and Brown-Spot Resistance. PLoS ONE 2014, 9, e102681. [Google Scholar] [CrossRef]
- Filho, M.; Zimmermann, F.; Silva, O. Influence of Calcium Silicate Slag on Soil Acidity and Upland Rice Grain Yield. Ciência E Agrotecnologia 2004, 28, 323–331. [Google Scholar]
- Ning, D.; Liang, Y.; Liu, Z.; Xiao, J.; Duan, A. Impacts of Steel-Slag-Based Silicate Fertilizer on Soil Acidity and Silicon Availability and Metals-Immobilization in a Paddy Soil. PLoS ONE 2016, 11, e0168163. [Google Scholar] [CrossRef]
- Radić, S.; Crnojević, H.; Sandev, D.; Jelić, S.; Sedlar, Z.; Glavaš, K.; Pevalek-Kozlina, B. Effect of Electric Arc Furnace Slag on Growth and Physiology of Maize (Zea mays L.). Acta Biol. Hung. 2013, 64, 490–499. [Google Scholar] [CrossRef]
- Tavakkoli, E.; English, P.; Guppy, C.N. Interaction of Silicon and Phosphorus Mitigate Manganese Toxicity in Rice in a Highly Weathered Soil. Commun. Soil Sci. Plant Anal. 2011, 42, 503–513. [Google Scholar] [CrossRef]
- Liang, Y.; Sun, W.; Zhu, Y.G.; Christie, P. Mechanisms of Silicon-Mediated Alleviation of Abiotic Stresses in Higher Plants: A Review. Environ. Pollut. 2007, 147, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.W.W.; Chowdhury, N.; Wong, J.T.F. Effects of Ground Granulated Blast-Furnace Slag (GGBS) on Hydrological Responses of Cd-Contaminated Soil Planted with a Herbal Medicinal Plant (Pinellia ternata). Can. Geotech. J. 2020, 57, 673–682. [Google Scholar] [CrossRef]
- Kumar, S.S.; Kumar, A.; Singh, S.; Malyan, S.K.; Baram, S.; Sharma, J.; Singh, R.; Pugazhendhi, A. Industrial wastes: Fly ash, Steel Slag and Phosphogypsum- Potential Candidates to Mitigate Greenhouse gas Emissions from Paddy Fields. Chemosphere 2020, 241, 124824. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D. The Mineral Depletion of Foods Available to US as A Nation (1940–2002)—A Review of the 6th Edition of McCance and Widdowson. Nutr. Health 2007, 19, 21–55. [Google Scholar] [CrossRef]
- Gusev, A.A.; Akimova, O.A.; Zakharova, O.V.; Godymchuk, A.; Krutyakov, Y.A.; Klimov, A.I.; Denisov, A.N.; Kuznetsov, D.V. Morphometric Parameters and Biochemical Status of Oilseed Rape Exposed to Fine-Dispersed Metallurgical Sludge, PHMB-Stabilized Silver Nanoparticles and Multi-Wall Carbon Nanotubes. Adv. Mater. Res. 2014, 880, 212–218. [Google Scholar] [CrossRef]
- Gorokhovsky, A.V.; Yurkov, G.Y.; Burmistrov, I.N.; Villalpando-Reyna, A.F.; Kuznetsov, D.V.; Gusev, A.A.; Khaidarov, B.B.; Konyukhov, Y.V.; Zakharova, O.V.; Kiselev, N.V. Glass-Ceramic Protective Coatings Based on Metallurgical Slag. Coatings 2023, 13, 269. [Google Scholar] [CrossRef]
- Chaney, R.L. Zinc Phytotoxicity. In Zinc in Soils and Plants: Proceedings of the International Symposium on ‘Zinc in Soils and Plants’ held at The University of Western Australia, 27–28 September 1993; Robson, A.D., Ed.; Springer: Dordrecht, The Netherlands, 1993; pp. 135–150. [Google Scholar] [CrossRef]
- Kjeldahl, J. Neue Methode zur Bestimmung des Stickstoffs in Organischen Körpern. Z. Für Anal. Chem. 1883, 22, 366–382. [Google Scholar] [CrossRef]
- Parolini, G. The Emergence of Modern Statistics in Agricultural Science: Analysis of Variance, Experimental Design and the Reshaping of Research at Rothamsted Experimental Station, 1919–1933. J. Hist. Biol. 2015, 48, 301–335. [Google Scholar] [CrossRef]
- SanPiN 1.2.3685-21; (Sanitary and Epidemiological Norms) Hygienic Standards and Requirements for Ensuring the Safety and (or) Harmlessness of Environmental Factors for Humans. Meganorms: Moscow Oblast, Russia, 2021; p. 469. (In Russian)
- Codex Alimentarius Commission (Codex). Joint FAO/WHO Food Standards Programme; Codex Alimentarius Commission (Codex): Rome, Italy, 1993. [Google Scholar]
- WHO. Codex Alimentarius Commission (Codex) (2021): Evaluation of Certain Food Additives and Contaminants. In Proceedings of the 14th Session 2021, Virtual, 4–8 October 2021; p. 190. [Google Scholar]
- SanPiN 42-123-4089-86; Maximum Permissible Concentrations of Heavy Metals and Arsenic in Food Raw Materials and Foodstuffs. Russian Gost: Zelenograd, Russia, 1986.
- Rout, G. Role of iron in plant growth and metabolism. Rev. Agric. Sci. 2015, 3, 1–2. [Google Scholar] [CrossRef]
- Mahender, A.; Swamy, B.P.M.; Anandan, A.; Ali, J. Tolerance of Iron-Deficient and -Toxic Soil Conditions in Rice. Plants 2019, 8, 31. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, D.; Sun, W.; Wang, T. The Adaptive Mechanism of Plants to Iron Deficiency via Iron Uptake, Transport, and Homeostasis. Int. J. Mol. Sci. 2019, 20, 2424. [Google Scholar] [CrossRef] [PubMed]
- Yruela, I. Transition metals in plant photosynthesis. Met. Integr. Biometal Sci. 2013, 5, 1090–1109. [Google Scholar] [CrossRef] [PubMed]
- Han, G.; Lu, C.; Guo, J.; Qiao, Z.; Sui, N.; Qiu, N.; Wang, B. C2H2 Zinc Finger Proteins: Master Regulators of Abiotic Stress Responses in Plants. Front. Plant Sci. 2020, 11, 115. [Google Scholar] [CrossRef] [PubMed]
- Bricker, T.M.; Roose, J.L.; Fagerlund, R.D.; Frankel, L.K.; Eaton-Rye, J.J. The Extrinsic proteins of Photosystem II. Biochim. et Biophys. Acta 2012, 1817, 121–142. [Google Scholar] [CrossRef]
- Adamczyk-Szabela, D.; Wolf, W.M. The Impact of Soil pH on Heavy Metals Uptake and Photosynthesis Efficiency in Melissa officinalis, Taraxacum officinalis, Ocimum basilicum. Molecules 2022, 27, 4671. [Google Scholar] [CrossRef]
- Alejandro, S.; Höller, S.; Meier, B.; Peiter, E. Manganese in Plants: From Acquisition to Subcellular Allocation. Front. Plant Sci. 2020, 11, 300. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Calcium in plants. Ann. Bot. 2003, 92, 487–511. [Google Scholar] [CrossRef]
- Thor, K. Calcium—Nutrient and Messenger. Front. Plant Sci. 2019, 10, 440. [Google Scholar] [CrossRef]
- Luyckx, M.; Hausman, J.-F.; Lutts, S.; Guerriero, G. Silicon and Plants: Current Knowledge and Technological Perspectives. Front. Plant Sci. 2017, 8, 411. [Google Scholar] [CrossRef]
- Daoud, A.M.; Hemada, M.M.; Saber, N.; El-Araby, A.A.; Moussa, L. Effect of Silicon on the Tolerance of Wheat (Triticum aestivum L.) to Salt Stress at Different Growth Stages: Case Study for the Management of Irrigation Water. Plants 2018, 7, 29. [Google Scholar] [CrossRef] [PubMed]
- Greger, M.; Landberg, T.; Vaculík, M. Silicon Influences Soil Availability and Accumulation of Mineral Nutrients in Various Plant Species. Plants 2018, 7, 41. [Google Scholar] [CrossRef] [PubMed]
- Ishfaq, M.; Wang, Y.; Yan, M.; Wang, Z.; Wu, L.; Li, C.; Li, X. Physiological Essence of Magnesium in Plants and Its Widespread Deficiency in the Farming System of China. Front. Plant Sci. 2022, 13, 802274. [Google Scholar] [CrossRef] [PubMed]
- Das, C.K.; Srivastava, G.; Dubey, A.; Roy, M.; Jain, S.; Sethy, N.K.; Saxena, M.; Harke, S.; Sarkar, S.; Misra, K.; et al. Nano-iron Pyrite Seed Dressing: A Sustainable Intervention to Reduce Fertilizer Consumption in Vegetable (Beetroot, Carrot), spice (Fenugreek), Fodder (Alfalfa), and Oilseed (Mustard, Sesamum) Crops. Nanotechnol. Environ. Eng. 2016, 1, 2. [Google Scholar] [CrossRef]
- Sun, H.; Qu, G.; Li, S.; Song, K.; Zhao, D.; Li, X.; Yang, P.; He, X.; Hu, T. Iron Nanoparticles Induced the Growth and Physio-chemical Changes in Kobresia capillifolia Seedlings. Plant Physiol. Biochem. 2023, 194, 15–28. [Google Scholar] [CrossRef]
- Sundaria, N.; Singh, M.; Upreti, P.; Chauhan, R.P.; Jaiswal, J.P.; Kumar, A. Seed Priming with Iron Oxide Nanoparticles Triggers Iron Acquisition and Biofortification in Wheat (Triticum aestivum L.) Grains. J. Plant Growth Regul. 2019, 38, 122–131. [Google Scholar] [CrossRef]
- Yang, Y.; Li, R.; Wang, L.; Bi, H.; Peng, Z.; Li, J.; Guo, C.; Bi, Y.; Lai, Y.; Guo, D. Enhanced Germination and Growth of Alfalfa with Seed Presoaking and Hydroponic Culture in Fe2O3 Magnetic Nanoparticles. J. Nanomater. 2023, 2023, 9783977. [Google Scholar] [CrossRef]
- Choukri, M.; Abouabdillah, A.; Bouabid, R.; Abd-Elkader, O.H.; Pacioglu, O.; Boufahja, F.; Bourioug, M. Zn Application through Seed Priming Improves Productivity and Grain Nutritional Quality of Silage Corn. Saudi J. Biol. Sci. 2022, 29, 103456. [Google Scholar] [CrossRef]
- Zhao, X.; Song, B.; Ishfaq, M.; Adil, M.F.; Lal, M.K.; Wu, Z.; Jia, Q.; Huang, W. Zinc Amendment Increases the Yield and Industrial Quality of Beta vulgaris L. Cultivated in Northeast China. Field Crops Res. 2023, 298, 108973. [Google Scholar] [CrossRef]
- Moreno-Lora, A.; Delgado, A. Factors Determining Zn Availability and Uptake by Plants in Soils Developed under Mediterranean Climate. Geoderma 2020, 376, 114509. [Google Scholar] [CrossRef]
- Hamzah Saleem, M.; Usman, K.; Rizwan, M.; Al Jabri, H.; Alsafran, M. Functions and Strategies for Enhancing Zinc Availability in Plants for Sustainable Agriculture. Front. Plant Sci. 2022, 13, 1033092. [Google Scholar] [CrossRef] [PubMed]
- Gautam, A.; Agrawal, D.; SaiPrasad, S.V.; Jajoo, A. A Quick Method to Screen High and Low Yielding Wheat Cultivars Exposed to High Temperature. Physiol. Mol. Biol. Plants Int. J. Funct. Plant Biol. 2014, 20, 533–537. [Google Scholar] [CrossRef] [PubMed]
- Mehta, P.; Jajoo, A.; Mathur, S.; Bharti, S. Chlorophyll a Fluorescence Study Revealing Effects of High Salt Stress on Photosystem II in Wheat Leaves. Plant Physiol. Biochem. PPB 2010, 48, 16–20. [Google Scholar] [CrossRef] [PubMed]
- G H Krause, a.; Weis, E. Chlorophyll Fluorescence and Photosynthesis: The Basics. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1991, 42, 313–349. [Google Scholar] [CrossRef]
- Murchie, E.H.; Lawson, T. Chlorophyll Fluorescence Analysis: A Guide to Good Practice and Understanding Some New Applications. J. Exp. Bot. 2013, 64, 3983–3998. [Google Scholar] [CrossRef]
- Kitajima, M.; Butler, W.L. Quenching of Chlorophyll Fluorescence and Primary Photochemistry in Chloroplasts by Dibromothymoquinone. Biochim. et Biophys. Acta 1975, 376, 105–115. [Google Scholar] [CrossRef]
- Lloyd, J.; Farquhar, G.D. The CO2 Dependence of Photosynthesis, Plant Growth Responses to Elevated Atmospheric CO2 Concentrations and Their Interaction with Soil Nutrient Status. I. General Principles and Forest Ecosystems. Funct. Ecol. 1996, 10, 4–32. [Google Scholar] [CrossRef]
- Raven, J.A.; Karley, A.J. Carbon Sequestration: Photosynthesis and Subsequent Processes. Curr. Biol. 2006, 16, R165–R167. [Google Scholar] [CrossRef]
- Sekhar, K.M.; Reddy, K.S.R.; Reddy, A.R. Photosynthesis and Carbon Sequestration Efficacy of Conocarpus erectus L. (Combretaceae) Grown Under Elevated CO2 Atmosphere. Plant Physiol. Rep. 2023, 28, 113–123. [Google Scholar] [CrossRef]
- Repo, E.; Warchoł, J.; Johansson Westholm, L.; Sillanpää, M. Steel Slag as a Low-Cost Sorbent for Metal Removal in the Presence of Chelating Agents. J. Ind. Eng. Chem. 2014, 27, 115–125. [Google Scholar] [CrossRef]
- Kasirajan, R.; Bekele, A.; Girma, E. Adsorption of lead (Pb-II) using CaO-NPs Synthesized by Solgel Process from Hen Eggshell: Response Surface Methodology for Modeling, Optimization and Kinetic Studies. S. Afr. J. Chem. Eng. 2022, 40, 209–229. [Google Scholar] [CrossRef]
- Zengin, H.; Toprak, G.; Zengin, G. Investigation of Adsorption Performance of Calcium Oxide Particles upon Various Treatments. Water Res. 2023, 243, 120380. [Google Scholar] [CrossRef] [PubMed]
- Mallampati, S.R.; Mitoma, Y.; Okuda, T.; Sakita, S.; Kakeda, M. Enhanced Heavy Metal Immobilization in Soil by Grinding with Addition of Nanometallic Ca/CaO Dispersion Mixture. Chemosphere 2012, 89, 717–723. [Google Scholar] [CrossRef]
- Harter, R.D. Effect of Soil pH on Adsorption of Lead, Copper, Zinc, and Nickel. Soil Sci. Soc. Am. J. 1983, 47, 47–51. [Google Scholar] [CrossRef]
- Bravo, S.; Amorós, J.A.; Pérez-de-los-Reyes, C.; García, F.J.; Moreno, M.M.; Sánchez-Ormeño, M.; Higueras, P. Influence of the Soil pH in the Uptake and Bioaccumulation of heavy metals (Fe, Zn, Cu, Pb and Mn) and Other Elements (Ca, K, Al, Sr and Ba) in Vine Leaves, Castilla-La Mancha (Spain). J. Geochem. Explor. 2017, 174, 79–83. [Google Scholar] [CrossRef]
- Obeng-Gyasi, E.; Roostaei, J.; Gibson, J.M. Lead Distribution in Urban Soil in a Medium-Sized City: Household-Scale Analysis. Environ. Sci. Technol. 2021, 55, 3696–3705. [Google Scholar] [CrossRef]
- Kaur, H.; Srivastava, S.; Goyal, N.; Walia, S. Behavior of Zinc in Soils and Recent Advances on Strategies for Ameliorating Zinc Phyto-Toxicity. Environ. Exp. Bot. 2024, 220, 105676. [Google Scholar] [CrossRef]
- Lehto, T.; Mälkönen, E. Effects of Liming and Boron Fertilization on Boron Uptake of Picea Abies. Plant Soil 1994, 163, 55–64. [Google Scholar] [CrossRef]
- Sá, A.; Ernani, P. Boron Leaching Decreases with Increases on Soil pH. Rev. Bras. Ciência Solo 2016, 40, e0150008. [Google Scholar] [CrossRef]
- Arunkumar, B.R.; Thippeshappa, G.N.; Anjali, M.C.; Prashanth, K.M. Boron: A Critical Micronutrient for Crop Growth and Productivity. J. Pharmacogn. Phytochem. 2018, 7, 2738–2741. [Google Scholar]
- Plum, L.M.; Rink, L.; Haase, H. The Essential Toxin: Impact of Zinc on Human Health. Int. J. Environ. Res. Public Health 2010, 7, 1342–1365. [Google Scholar] [CrossRef] [PubMed]
Indicator | Cd | As | Hg | Pb | Zn | Cu | Mn | B *** |
---|---|---|---|---|---|---|---|---|
control | 0.21 ± 0.06 | 3.10 ± 0.40 | <0.02 | 3.19 ± 0.73 | 11.98 ± 3.93 | 3.0 ± 0.7 | 95.2 ±10.27 | 1.0 ± 0.32 |
slag | 0.28 ± 0.07 | 2.87 ± 0.11 | <0.02 | 4.08 ± 1 | 13.93 ± 4.6 | 3.17 ± 0.73 | 113 ± 12.9 | 0.52 ± 0.16 |
sludge | 0.27 ± 0.05 | 3.0 ± 0.14 | <0.02 | 3.42 ± 0.9 | 16.06 ± 4.4 | 5.02 ± 1.23 | 97.21 ± 11.23 | 0.91 ± 0.12 |
sludge + slag | 0.29 ± 0.08 | 2.90 ± 0.38 | <0.02 | 4.27 ± 1.11 | 15.90 ± 5.6 | 4.91 ± 1.36 | 108.43 ± 13.11 | 0.84 ± 0.16 |
MPC/APC * SanPiN 1.2.3685-21 ** | -/1.0 | -/5.0 | 2.1/- | -/65.0 | -/110.0 | -/66 | 1500/- | - |
Element | Control | Slag | Sludge | Sludge + Slag | MPC | ||||
---|---|---|---|---|---|---|---|---|---|
Straw | Grain | Straw | Grain | Straw | Grain | Straw | Grain | ||
Pb | 0.14 ± 0.04 | 0.15 ± 0.05 | 0.15 ± 0.05 | 0.15 ± 0.06 | 0.17 ± 0.07 | 0.16 ± 0.04 | 0.16 ± 0.08 | 0.16 ± 0.07 | 0.2 * |
Cd | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | 0.1 * |
As | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.2 * |
Hg | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.03 * |
Zn | 12.38 ± 0.6 | 15.86 ± 0.5 | 12.7 ± 0.3 | 16.01 ± 0.4 | 13.11 ± 0.6 | 18.16 ± 0.5 | 12.45 ± 0.5 | 16.73 ± 0.7 | 50 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zakharova, O.V.; Baranchikov, P.A.; Chebotaryova, S.P.; Grigoriev, G.V.; Strekalova, N.S.; Grodetskaya, T.A.; Burmistrov, I.N.; Volokhov, S.V.; Kuznetsov, D.V.; Gusev, A.A. Metallurgical Waste for Sustainable Agriculture: Converter Slag and Blast-Furnace Sludge Increase Oat Yield in Acidic Soils. Agronomy 2024, 14, 2642. https://doi.org/10.3390/agronomy14112642
Zakharova OV, Baranchikov PA, Chebotaryova SP, Grigoriev GV, Strekalova NS, Grodetskaya TA, Burmistrov IN, Volokhov SV, Kuznetsov DV, Gusev AA. Metallurgical Waste for Sustainable Agriculture: Converter Slag and Blast-Furnace Sludge Increase Oat Yield in Acidic Soils. Agronomy. 2024; 14(11):2642. https://doi.org/10.3390/agronomy14112642
Chicago/Turabian StyleZakharova, Olga V., Peter A. Baranchikov, Svetlana P. Chebotaryova, Gregory V. Grigoriev, Nataliya S. Strekalova, Tatiana A. Grodetskaya, Igor N. Burmistrov, Sergey V. Volokhov, Denis V. Kuznetsov, and Alexander A. Gusev. 2024. "Metallurgical Waste for Sustainable Agriculture: Converter Slag and Blast-Furnace Sludge Increase Oat Yield in Acidic Soils" Agronomy 14, no. 11: 2642. https://doi.org/10.3390/agronomy14112642
APA StyleZakharova, O. V., Baranchikov, P. A., Chebotaryova, S. P., Grigoriev, G. V., Strekalova, N. S., Grodetskaya, T. A., Burmistrov, I. N., Volokhov, S. V., Kuznetsov, D. V., & Gusev, A. A. (2024). Metallurgical Waste for Sustainable Agriculture: Converter Slag and Blast-Furnace Sludge Increase Oat Yield in Acidic Soils. Agronomy, 14(11), 2642. https://doi.org/10.3390/agronomy14112642