Exploring Climate Change Effects on Vegetation Phenology by MOD13Q1 Data: The Piemonte Region Case Study in the Period 2001–2019
<p>The study area corresponds to the entire Piemonte region (North-West Italy) (Reference frame: WGS 84/UTM zone 32N, EPSG: 32632).</p> "> Figure 2
<p>Land Cover and altitudinal zones (AZs) Meteorological stations (Reference frame: WGS 84/UTM zone 32N, EPSG: 32632).</p> "> Figure 3
<p>Agricultural and natural classes obtained by intersection of the four CLC maps (Reference frame: WGS 84/UTM zone 32N, EPSG: 32632).</p> "> Figure 4
<p>Scatter plots relating MaxNDVI (×10,000) to the years (2001–2019) where regression lines for forests and pastures AZs classes are reported as well.</p> "> Figure 5
<p>TV% along altitudinal gradient in Piemonte region. Forests class shows an increasing trend while Pastures class a decreasing one.</p> ">
Abstract
:1. Introduction
Study Aims
2. Materials and Methods
2.1. Study Area
2.2. Available Data
2.2.1. Satellite Data
2.2.2. Land Cover Map
2.2.3. Digital Terrain Model
2.2.4. Reference Temperature Data
2.3. Data Processing
2.3.1. Reference Classes and Patches Selection
2.3.2. Temperature Trends Analysis
2.3.3. Phenological Metrics (PM)
2.3.4. Class Effects on PM Trends
2.3.5. Altitudinal Effects on PM Trends
3. Results and Discussions
3.1. Reference Classes and Patches Selection
3.2. Temperature Trend Assessment
3.3. Phenological Trend Assessment
3.3.1. Class Effects on PM Trends
3.3.2. Altitudinal Effects on PM Trends
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reid, W.V.; Mooney, H.A.; Cropper, A.; Capistrano, D.; Carpenter, S.R.; Chopra, K.; Dasgupta, P.; Dietz, T.; Duraiappah, A.K.; Hassan, R.; et al. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Agard, J.; Alcamo, J.; Ash, N.; Arthurton, R.; Barker, S.; Barr, J. Global Environment Outlook: Environment for Development (GEO-4); United Nations Environment Programme (UNEP): Nairobi, Kenya, 2007. [Google Scholar]
- Crutzen, P.J. Human Impact on Climate Has Made This the “Anthropocene Age”. New Perspect. Q. 2005, 22, 14–16. [Google Scholar] [CrossRef]
- White, P.S. Natural Disturbance and Patch Dynamics: An Introduction. Nat. Disturb. Patch Dyn. 1985, 3–13. [Google Scholar] [CrossRef]
- Parmesan, C.; Yohe, G. A Globally Coherent Fingerprint of Climate Change Impacts across Natural Systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef]
- Becklin, K.M.; Anderson, J.T.; Gerhart, L.M.; Wadgymar, S.M.; Wessinger, C.A.; Ward, J.K. Examining Plant Physiological Responses to Climate Change through an Evolutionary Lens. Plant Physiol. 2016, 172, 635–649. [Google Scholar] [CrossRef] [PubMed]
- Parmesan, C.; Hanley, M.E. Plants and Climate Change: Complexities and Surprises. Ann. Bot. 2015, 116, 849–864. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, B.; Sharrock, S.; Havens, K. Plants and Climate Change: Which Future? Botanic Gardens Conservation International: Richmond, UK, 2008. [Google Scholar]
- Pearson, R.G.; Phillips, S.J.; Loranty, M.M.; Beck, P.S.; Damoulas, T.; Knight, S.J.; Goetz, S.J. Shifts in Arctic Vegetation and Associated Feedbacks under Climate Change. Nat. Clim. Chang. 2013, 3, 673–677. [Google Scholar] [CrossRef]
- Blois, J.L.; Williams, J.W.; Fitzpatrick, M.C.; Ferrier, S.; Veloz, S.D.; He, F.; Liu, Z.; Manion, G.; Otto-Bliesner, B. Modeling the Climatic Drivers of Spatial Patterns in Vegetation Composition since the Last Glacial Maximum. Ecography 2013, 36, 460–473. [Google Scholar] [CrossRef]
- Chen, S.; Gong, B. Response and Adaptation of Agriculture to Climate Change: Evidence from China. J. Dev. Econ. 2021, 148, 102557. [Google Scholar] [CrossRef]
- Anwar, M.R.; Li Liu, D.; Macadam, I.; Kelly, G. Adapting Agriculture to Climate Change: A Review. Theor. Appl. Climatol. 2013, 113, 225–245. [Google Scholar] [CrossRef]
- Howden, S.M.; Soussana, J.-F.; Tubiello, F.N.; Chhetri, N.; Dunlop, M.; Meinke, H. Adapting Agriculture to Climate Change. Proc. Natl. Acad. Sci. USA 2007, 104, 19691–19696. [Google Scholar] [CrossRef] [Green Version]
- Lauscher, F. Neue Analysen Ältester Und Neuerer Phänologischer Reihen. Arch. Meteorol. Geophys. Bioklimatol. Ser. B 1978, 26, 373–385. [Google Scholar] [CrossRef]
- Sparks, T.H.; Carey, P.D. The Responses of Species to Climate over Two Centuries: An Analysis of the Marsham Phenological Record, 1736–1947. J. Ecol. 1995, 83, 321–329. [Google Scholar] [CrossRef]
- Myneni, R.B.; Keeling, C.D.; Tucker, C.J.; Asrar, G.; Nemani, R.R. Increased Plant Growth in the Northern High Latitudes from 1981 to 1991. Nature 1997, 386, 698–702. [Google Scholar] [CrossRef]
- Chen, Z.-J.; Li, J.-B.; Fang, K.-Y.; Davi, N.K.; He, X.-Y.; Cui, M.-X.; Zhang, X.-L.; Peng, J.-J. Seasonal Dynamics of Vegetation over the Past 100 Years Inferred from Tree Rings and Climate in Hulunbei’er Steppe, Northern China. J. Arid Environ. 2012, 83, 86–93. [Google Scholar] [CrossRef] [Green Version]
- Richardson, A.D.; Keenan, T.F.; Migliavacca, M.; Ryu, Y.; Sonnentag, O.; Toomey, M. Climate Change, Phenology, and Phenological Control of Vegetation Feedbacks to the Climate System. Agric. For. Meteorol. 2013, 169, 156–173. [Google Scholar] [CrossRef]
- Beaubien, E.G.; Freeland, H.J. Spring Phenology Trends in Alberta, Canada: Links to Ocean Temperature. Int. J. Biometeorol. 2000, 44, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Menzel, A.; Fabian, P. Growing Season Extended in Europe. Nature 1999, 397, 659. [Google Scholar] [CrossRef]
- Wielgolaski, F.-E. Starting Dates and Basic Temperatures in Phenological Observations of Plants. Int. J. Biometeorol. 1999, 42, 158–168. [Google Scholar] [CrossRef]
- Abu-Asab, M.S.; Peterson, P.M.; Shetler, S.G.; Orli, S.S. Earlier Plant Flowering in Spring as a Response to Global Warming in the Washington, DC, Area. Biodivers. Conserv. 2001, 10, 597–612. [Google Scholar] [CrossRef]
- Chmielewski, F.-M.; Rötzer, T. Phenological Trends in Europe in Relation to Climatic Changes. Agrometeorol. Schr. 2000, 7, 1–15. [Google Scholar]
- Chmielewski, F.-M.; Müller, A.; Bruns, E. Climate Changes and Trends in Phenology of Fruit Trees and Field Crops in Germany, 1961–2000. Agric. For. Meteorol. 2004, 121, 69–78. [Google Scholar] [CrossRef]
- Sparks, T.H.; Menzel, A. Observed Changes in Seasons: An Overview. Int. J. Climatol. J. R. Meteorol. Soc. 2002, 22, 1715–1725. [Google Scholar] [CrossRef]
- Walther, G.-R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.; Fromentin, J.-M.; Hoegh-Guldberg, O.; Bairlein, F. Ecological Responses to Recent Climate Change. Nature 2002, 416, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Overpeck, J.T.; Meehl, G.A.; Bony, S.; Easterling, D.R. Climate Data Challenges in the 21st Century. Science 2011, 331, 700–702. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Gong, P.; Fu, R.; Zhang, M.; Chen, J.; Liang, S.; Xu, B.; Shi, J.; Dickinson, R. The Role of Satellite Remote Sensing in Climate Change Studies. Nat. Clim. Chang. 2013, 3, 875–883. [Google Scholar] [CrossRef]
- Li, J.; Wang, M.-H.; Ho, Y.-S. Trends in Research on Global Climate Change: A Science Citation Index Expanded-Based Analysis. Glob. Planet. Chang. 2011, 77, 13–20. [Google Scholar] [CrossRef]
- Bontemps, S.; Herold, M.; Kooistra, L.; van Groenestijn, A.; Hartley, A.; Arino, O.; Moreau, I.; Defourny, P. Revisiting Land Cover Observations to Address the Needs of the Climate Modelling Community. Biogeosci. Discuss. 2011, 8, 7713–7740. [Google Scholar]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S. Finer Resolution Observation and Monitoring of Global Land Cover: First Mapping Results with Landsat TM and ETM+ Data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar] [CrossRef] [Green Version]
- Ghent, D.; Kaduk, J.; Remedios, J.; Balzter, H. Data Assimilation into Land Surface Models: The Implications for Climate Feedbacks. Int. J. Remote Sens. 2011, 32, 617–632. [Google Scholar] [CrossRef] [Green Version]
- World Meteorological Organization (WMO); United Nations Educational, Scientific and Cultural Organization (UNESCO); United Nations Environment Programme (UNEP); International Council for Science (ICSU). GCOS, 154. Systematic Observation Requirements for Satellite-Based Products for Climate Supplemental Details to the Satellite-Based Component of the Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC: 2011 Update; WMO: Geneva, Switerland, 2011. [Google Scholar]
- Joyce, K.E.; Belliss, S.E.; Samsonov, S.V.; McNeill, S.J.; Glassey, P.J. A Review of the Status of Satellite Remote Sensing and Image Processing Techniques for Mapping Natural Hazards and Disasters. Prog. Phys. Geogr. 2009, 33, 183–207. [Google Scholar] [CrossRef] [Green Version]
- Sarvia, F.; De Petris, S.; Borgogno-Mondino, E. Remotely Sensed Data to Support Insurance Strategies in Agriculture. In Proceedings of the Remote Sensing for Agriculture, Ecosystems, and Hydrology XXI, Strasbourg, France, 9–11 September 2019; Volume 11149, p. 111491. [Google Scholar]
- Borgogno-Mondino, E.; Sarvia, F.; Gomarasca, M.A. Supporting Insurance Strategies in Agriculture by Remote Sensing: A Possible Approach at Regional Level. In Proceedings of the International Conference on Computational Science and Its Applications, Saint Petersburg, Russia, 1–4 July 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 186–199. [Google Scholar]
- Sarvia, F.; De Petris, S.; Borgogno-Mondino, E. A Methodological Proposal to Support Estimation of Damages from Hailstorms Based on Copernicus Sentinel 2 Data Times Series. In Proceedings of the International Conference on Computational Science and Its Applications, Cagliari, Italy, 1–4 July 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 737–751. [Google Scholar]
- Sarvia, F.; De Petris, S.; Borgogno Mondino, E. Multi-Scale Remote Sensing to Support Insurance Policies in Agriculture: From Mid-Term to Instantaneous Deductions. GISci. Remote Sens. 2020. [Google Scholar] [CrossRef]
- Sarvia, F.; Xausa, E.; Petris, S.D.; Cantamessa, G.; Borgogno-Mondino, E. A Possible Role of Copernicus Sentinel-2 Data to Support Common Agricultural Policy Controls in Agriculture. Agronomy 2021, 11, 110. [Google Scholar] [CrossRef]
- Orusa, T.; Orusa, R.; Viani, A.; Carella, E.; Borgogno Mondino, E. Geomatics and EO Data to Support Wildlife Diseases Assessment at Landscape Level: A Pilot Experience to Map Infectious Keratoconjunctivitis in Chamois and Phenological Trends in Aosta Valley (NW Italy). Remote Sens. 2020, 12, 3542. [Google Scholar] [CrossRef]
- De Petris, S.; Berretti, R.; Sarvia, F.; Borgogno-Mondino, E. Precision Arboriculture: A New Approach to Tree Risk Management Based on Geomatics Tools. In Proceedings of the Remote Sensing for Agriculture, Ecosystems, and Hydrology XXI, Strasbourg, France, 9–11 September 2019; Volume 11149, p. 111491. [Google Scholar]
- De Petris, S.; Sarvia, F.; Borgogno-Mondino, E. A New Index for Assessing Tree Vigour Decline Based on Sentinel-2 Mul-Titemporal Data. Appl. Tree Fail. Risk Manag. Remote Sens. Lett. 2020. [Google Scholar] [CrossRef]
- Orusa, T.; Mondino, E.B. Landsat 8 Thermal Data to Support Urban Management and Planning in the Climate Change Era: A Case Study in Torino Area, NW Italy. In Proceedings of the Remote Sensing Technologies and Applications in Urban Environments IV, Strasbourg, France, 9–10 September 2019; Volume 11157, p. 111570O. [Google Scholar]
- Karl, T.R.; Diamond, H.J.; Bojinski, S.; Butler, J.H.; Dolman, H.; Haeberli, W.; Harrison, D.E.; Nyong, A.; Rösner, S.; Seiz, G. Observation Needs for Climate Information, Prediction and Application: Capabilities of Existing and Future Observing Systems. Procedia Environ. Sci. 2010, 1, 192–205. [Google Scholar] [CrossRef] [Green Version]
- Jonsson, P.; Eklundh, L. Seasonality Extraction by Function Fitting to Time-Series of Satellite Sensor Data. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1824–1832. [Google Scholar] [CrossRef]
- Beeri, O.; Peled, A. Spectral Indices for Precise Agriculture Monitoring. Int. J. Remote Sens. 2006, 27, 2039–2047. [Google Scholar] [CrossRef]
- Didan, K.; Munoz, A.B.; Solano, R.; Huete, A. MODIS Vegetation Index User’s Guide (MOD13 Series); Vegetation Index and Phenology Lab, The University of Arizona: Tucson, AZ, USA, 2015; pp. 1–38. [Google Scholar]
- Büttner, G. CORINE land cover and land cover change products. In Land Use and Land Cover Mapping in Europe; Springer: Berlin/Heidelberg, Germany, 2014; pp. 55–74. [Google Scholar]
- Borgogno Mondino, E.; Fissore, V.; Lessio, A.; Motta, R. Are the New Gridded DSM/DTMs of the Piemonte Region (Italy) Proper for Forestry? A Fast and Simple Approach for a Posteriori Metric Assessment. iFor. Biogeosci. For. 2016, 9, 901–909. [Google Scholar] [CrossRef] [Green Version]
- De Philippis, A. Classificazioni Ed Indici Del Clima, in Rapporto Alla Vegetazione Forestale Italiana. G. Bot. Ital. 1937, 44, 1–169. [Google Scholar] [CrossRef]
- Leemans, R. Possible Changes in Natural Vegetation Patterns Due to Global Warming; International Institute for Applied Systems Analysis (IIASA): Laxenburg, Austria, 1990. [Google Scholar]
- Liu, Q.; Fu, Y.H.; Zeng, Z.; Huang, M.; Li, X.; Piao, S. Temperature, Precipitation, and Insolation Effects on Autumn Vegetation Phenology in Temperate China. Glob. Chang. Biol. 2016, 22, 644–655. [Google Scholar] [CrossRef]
- Zhang, X.; Tarpley, D.; Sullivan, J.T. Diverse Responses of Vegetation Phenology to a Warming Climate. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Vitasse, Y.; François, C.; Delpierre, N.; Dufrêne, E.; Kremer, A.; Chuine, I.; Delzon, S. Assessing the Effects of Climate Change on the Phenology of European Temperate Trees. Agric. For. Meteorol. 2011, 151, 969–980. [Google Scholar] [CrossRef]
- Workie, T.G.; Debella, H.J. Climate Change and Its Effects on Vegetation Phenology across Ecoregions of Ethiopia. Glob. Ecol. Conserv. 2018, 13, e00366. [Google Scholar] [CrossRef]
- Tang, H.; Li, Z.; Zhu, Z.; Chen, B.; Zhang, B.; Xin, X. Variability and Climate Change Trend in Vegetation Phenology of Recent Decades in the Greater Khingan Mountain Area, Northeastern China. Remote Sens. 2015, 7, 11914–11932. [Google Scholar] [CrossRef] [Green Version]
- Bradley, B.A.; Mustard, J.F. Comparison of Phenology Trends by Land Cover Class: A Case Study in the Great Basin, USA. Glob. Chang. Biol. 2008, 14, 334–346. [Google Scholar] [CrossRef] [Green Version]
- Yan, E.; Wang, G.; Lin, H.; Xia, C.; Sun, H. Phenology-Based Classification of Vegetation Cover Types in Northeast China Using MODIS NDVI and EVI Time Series. Int. J. Remote Sens. 2015, 36, 489–512. [Google Scholar] [CrossRef]
- Chen, J.; Jönsson, P.; Tamura, M.; Gu, Z.; Matsushita, B.; Eklundh, L. A Simple Method for Reconstructing a High-Quality NDVI Time-Series Data Set Based on the Savitzky–Golay Filter. Remote Sens. Environ. 2004, 91, 332–344. [Google Scholar] [CrossRef]
- Schwartz, M.D. Phenology: An Integrative Environmental Science; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Reed, B.C.; Brown, J.F.; VanderZee, D.; Loveland, T.R.; Merchant, J.W.; Ohlen, D.O. Measuring Phenological Variability from Satellite Imagery. J. Veg. Sci. 1994, 5, 703–714. [Google Scholar] [CrossRef]
- Testa, S.; Soudani, K.; Boschetti, L.; Mondino, E.B. MODIS-Derived EVI, NDVI and WDRVI Time Series to Estimate Phenological Metrics in French Deciduous Forests. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 132–144. [Google Scholar] [CrossRef]
- Wang, Q.; Tenhunen, J.D. Vegetation Mapping with Multitemporal NDVI in North Eastern China Transect (NECT). Int. J. Appl. Earth Obs. Geoinf. 2004, 6, 17–31. [Google Scholar] [CrossRef]
- DeFries, R.; Hansen, M.; Townshend, J. Global Discrimination of Land Cover Types from Metrics Derived from AVHRR Pathfinder Data. Remote Sens. Environ. 1995, 54, 209–222. [Google Scholar] [CrossRef]
- De Jong, R.; Verbesselt, J.; Schaepman, M.E.; De Bruin, S. Trend Changes in Global Greening and Browning: Contribution of Short-Term Trends to Longer-Term Change. Glob. Chang. Biol. 2012, 18, 642–655. [Google Scholar] [CrossRef]
- Fang, J.; Piao, S.; Field, C.B.; Pan, Y.; Guo, Q.; Zhou, L.; Peng, C.; Tao, S. Increasing Net Primary Production in China from 1982 to 1999. Front. Ecol. Environ. 2003, 1, 293–297. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, J.; Liu, L.; Wang, Z.; Ding, M.; Yang, X. NDVI-Based Vegetation Changes and Their Responses to Climate Change from 1982 to 2011: A Case Study in the Koshi River Basin in the Middle Himalayas. Glob. Planet. Chang. 2013, 108, 139–148. [Google Scholar] [CrossRef]
- Warton, D.I.; Wright, I.J.; Falster, D.S.; Westoby, M. Bivariate Line-Fitting Methods for Allometry. Biol. Rev. 2006, 81, 259–291. [Google Scholar] [CrossRef] [PubMed]
- Warton, D.I.; Weber, N.C. Common Slope Tests for Bivariate Errors-in-Variables Models. Biom. J. J. Math. Methods Biosci. 2002, 44, 161–174. [Google Scholar] [CrossRef]
- Rusu, A.; Ursu, A.; Stoleriu, C.C.; Groza, O.; Niacșu, L.; Sfîcă, L.; Minea, I.; Stoleriu, O.M. Structural Changes in the Romanian Economy Reflected through Corine Land Cover Datasets. Remote Sens. 2020, 12, 1323. [Google Scholar] [CrossRef] [Green Version]
- Menzel, A.; Yuan, Y.; Matiu, M.; Sparks, T.; Scheifinger, H.; Gehrig, R.; Estrella, N. Climate Change Fingerprints in Recent European Plant Phenology. Glob. Chang. Biol. 2020, 26, 2599–2612. [Google Scholar] [CrossRef] [Green Version]
- Kjellström, E.; Bärring, L.; Jacob, D.; Jones, R.; Lenderink, G.; Schär, C. Modelling Daily Temperature Extremes: Recent Climate and Future Changes over Europe. Clim. Chang. 2007, 81, 249–265. [Google Scholar] [CrossRef]
- Sehgal, V.K.; Jain, S.; Aggarwal, P.K.; Jha, S. Deriving Crop Phenology Metrics and Their Trends Using Times Series NOAA-AVHRR NDVI Data. J. Indian Soc. Remote Sens. 2011, 39, 373–381. [Google Scholar] [CrossRef]
- Tao, J.; Xu, T.; Dong, J.; Yu, X.; Jiang, Y.; Zhang, Y.; Huang, K.; Zhu, J.; Dong, J.; Xu, Y. Elevation-Dependent Effects of Climate Change on Vegetation Greenness in the High Mountains of Southwest China during 1982–2013. Int. J. Climatol. 2018, 38, 2029–2038. [Google Scholar] [CrossRef]
- He, Y.; Fan, G.F.; Zhang, X.W.; Li, Z.Q.; Gao, D.W. Vegetation Phenological Variation and Its Response to Climate Changes in Zhejiang Province. J. Nat. Resour. 2013, 2, 220–233. [Google Scholar]
- Zu, J.; Zhang, Y.; Huang, K.; Liu, Y.; Chen, N.; Cong, N. Biological and Climate Factors Co-Regulated Spatial-Temporal Dynamics of Vegetation Autumn Phenology on the Tibetan Plateau. Int. J. Appl. Earth Obs. Geoinf. 2018, 69, 198–205. [Google Scholar] [CrossRef]
- He, B.; Ding, J.; Li, H.; Liu, B.; Chen, W. Spatiotemporal Variation of Vegetation Phenology in Xinjiang from 2001 to 2016. Acta Ecol. Sin. 2018, 38, 2139–2155. [Google Scholar]
- Li, Y.; Qin, Y.; Ma, L.; Pan, Z. Climate Change: Vegetation and Phenological Phase Dynamics. Int. J. Clim. Chang. Strateg. Manag. 2020, 12, 495–509. [Google Scholar] [CrossRef]
- Zhang, Q.; Kong, D.; Shi, P.; Singh, V.P.; Sun, P. Vegetation Phenology on the Qinghai-Tibetan Plateau and Its Response to Climate Change (1982–2013). Agric. For. Meteorol. 2018, 248, 408–417. [Google Scholar] [CrossRef]
- Elisa, P.; Alessandro, P.; Andrea, A.; Silvia, B.; Mathis, P.; Dominik, P.; Manuela, R.; Francesca, T.; Voglar, G.E.; Tine, G. Environmental and Climate Change Impacts of Eighteen Biomass-Based Plants in the Alpine Region: A Comparative Analysis. J. Clean. Prod. 2020, 242, 118449. [Google Scholar] [CrossRef]
- Boschetti, M.; Bocchi, S.; Brivio, P.A. Assessment of Pasture Production in the Italian Alps Using Spectrometric and Remote Sensing Information. Agric. Ecosyst. Environ. 2007, 118, 267–272. [Google Scholar] [CrossRef]
- Li, H.; Jiang, J.; Chen, B.; Li, Y.; Xu, Y.; Shen, W. Pattern of NDVI-Based Vegetation Greening along an Altitudinal Gradient in the Eastern Himalayas and Its Response to Global Warming. Environ. Monit. Assess. 2016, 188, 186. [Google Scholar] [CrossRef]
- Wehn, S.; Lundemo, S.; Holten, J.I. Alpine Vegetation along Multiple Environmental Gradients and Possible Consequences of Climate Change. Alp. Bot. 2014, 124, 155–164. [Google Scholar] [CrossRef] [Green Version]
Code | Meaning | Description |
---|---|---|
−1 | Fill/No Data | Not Processed |
0 | Good Data | Use with confidence |
1 | Marginal data | Useful, but look at other QA information |
2 | Snow/Ice | Target covered with snow/ice |
3 | Cloudy | Target not visible, cover with cloud |
Technical Features | Value CLC 2000 | Value CLC 2006 | Value CLC 2012 | Value CLC 2018 |
---|---|---|---|---|
Satellite data source | Landsat-7 ETM single date | SPOT-4/5 and IRS P6 LISS III | IRS P6 LISS III and RapidEye | Sentinel-2 and Landsat-8 for gap filling |
Time consistency (years) | 2000 +/− 1 year | 2006+/− 1 year | 2011–2012 | 2017–2018 |
Geometric accuracy (satellite data) | ≤25 m | ≤25 m | ≤25 m | ≤10 m |
Geometric accuracy (CLC) | Better than 100 m | Better than 100 m | Better than 100 m | Better than 100 m |
Thematic accuracy | ≥85% | ≥85% | ≥85% | ≥85% |
Minimum mapping unit/width | 25 ha/100 m | 25 ha/100 m | 25 ha/100 m | 25 ha/100 m |
Access to the data | free | free | free | free |
Number of countries involved | 35 | 38 | 39 | 39 |
CLC Code | Class Meaning |
---|---|
211 | Non-irrigated arable land |
221 | Vineyards |
31 | Forests |
321 | Pastures |
Code | Altitudinal Range (m a.s.l.) | Description |
---|---|---|
AZ1 | 0–600 | Basal plane |
AZ2 | 600–1200 | Sub-Mountain plane |
AZ3 | 1200–2000 | Mountain plane |
AZ4 | ≥2000 | Alpine plan |
CLC Class | 2000 Area (km2) | 2006 Area (km2) | 2012 Area (km2) | 2018 Area (km2) |
---|---|---|---|---|
Non-irrigated arable land | 4167.12 | 4157.23 | 4102.28 | 4102.46 |
Vineyards | 659.26 | 639.27 | 630.04 | 629.81 |
Forests | 7658.59 | 7614.78 | 7534.96 | 7518.00 |
Pastures | 2257.60 | 2203.15 | 681.90 | 681.69 |
Altitudinal Class | Area (km2) | Area (%) |
---|---|---|
Forests AZ1 | 4733.52 | 67.37 |
Forests AZ2 | 1495.48 | 21.29 |
Forests AZ3 | 710.66 | 10.11 |
Forests AZ4 | 86.23 | 1.23 |
Pastures AZ1 | 2.60 | 0.39 |
Pastures AZ2 | 41.49 | 6.26 |
Pastures AZ3 | 377.61 | 57.01 |
Pastures AZ4 | 240.64 | 36.33 |
Linear Trend’s Coefficients | CLC Classes | Azs | ||||||
---|---|---|---|---|---|---|---|---|
Non-Irrigated Arable Land | Vineyards | Forests | Pastures | AZ1 | AZ2 | AZ3 | AZ4 | |
Gain | 0.00027 | 0.00017 | 0.00018 | 0.00016 | 0.00013 | 0.00016 | 0.00019 | 0.00018 |
p-value (of G) | 2.91 × 10−10 | 2.94 × 10−5 | 1.26 × 10−6 | 2.38 × 10−6 | 2.33 × 10−3 | 4.70 × 10−5 | 1.63 × 10−7 | 1.47 × 10−7 |
Offset | 1.5845 | 5.9237 | 2.7023 | −0.7670 | 7.7237 | 5.5583 | −1.1894 | −5.2374 |
Gain Values for CLC Classes Analyzed | ||||
---|---|---|---|---|
PM | Non-Irrigated Arable Land | Vineyards | Forests | Pastures |
SOS | −1.740 | −0.673 | −0.729 | 0.252 |
EOS | −1.094 | −1.038 | −0.392 | −0.533 |
LOS | 0.645 | −0.365 | 0.336 | −0.785 |
MaxNDVI | 11.285 | 34.333 ** | 10.500 * | 16.496 |
Doy_MaxNDVI | 0.785 | −0.842 | 1.122 | −0.589 |
Forests
AZ1 | Forests AZ2 | Forests AZ3 | Forests AZ4 | Pastures AZ1 | Pastures AZ2 | Pastures
AZ3 | Pastures AZ4 | |
---|---|---|---|---|---|---|---|---|
r | 0.390 | 0.500 | 0.432 | 0.410 | 0.700 | 0.480 | 0.330 | 0.290 |
Gain | 5.891 | 11.831 | 16.076 | 17.594 | 32.666 | 19.173 | 18.235 | 13.246 |
p-value (of G) | 0.090 | 0.020 | 0.060 | 0.080 | 0.001 | 0.030 | 0.170 | 0.220 |
Offset | 8365 | 8406 | 7901 | 7536 | 6951 | 7686 | 7125 | 6939 |
F (Blue) p-Value (Orange) | AZ1 | AZ2 | AZ3 | AZ4 | |
---|---|---|---|---|---|
Forests | AZ1 | 0.32 | 0.25 | 0.25 | |
AZ2 | 1.003 | 0.65 | 0.59 | ||
AZ3 | 1.348 | 0.199 | 0.9 | ||
AZ4 | 1.35 | 0.289 | 0.014 | ||
Pastures | AZ1 | 0.25 | 0.34 | 0.14 | |
AZ2 | 1.358 | 0.95 | 0.66 | ||
AZ3 | 0.923 | 0.003 | 0.76 | ||
AZ4 | 2.177 | 0.193 | 0.091 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarvia, F.; De Petris, S.; Borgogno-Mondino, E. Exploring Climate Change Effects on Vegetation Phenology by MOD13Q1 Data: The Piemonte Region Case Study in the Period 2001–2019. Agronomy 2021, 11, 555. https://doi.org/10.3390/agronomy11030555
Sarvia F, De Petris S, Borgogno-Mondino E. Exploring Climate Change Effects on Vegetation Phenology by MOD13Q1 Data: The Piemonte Region Case Study in the Period 2001–2019. Agronomy. 2021; 11(3):555. https://doi.org/10.3390/agronomy11030555
Chicago/Turabian StyleSarvia, Filippo, Samuele De Petris, and Enrico Borgogno-Mondino. 2021. "Exploring Climate Change Effects on Vegetation Phenology by MOD13Q1 Data: The Piemonte Region Case Study in the Period 2001–2019" Agronomy 11, no. 3: 555. https://doi.org/10.3390/agronomy11030555