Estimating the Protein Concentration in Rice Grain Using UAV Imagery Together with Agroclimatic Data
<p>Map of the test sites: Chiba Prefectural Agriculture and Forestry Research Center. The grain protein content was observed for each sample (blue plot) from 2015 to 2017.</p> "> Figure 2
<p>The process of grain protein content (GPC) estimation.</p> "> Figure 3
<p>Comparison between estimated and observed rice grain protein content (GPC) in 2017: (<b>a</b>) shows the estimated GPC of <span class="html-italic">Koshihikari</span>; (<b>b</b>) shows the estimated GPC of <span class="html-italic">Fusaotome</span>; and (<b>c</b>) shows the estimated GPC of <span class="html-italic">Fusakogane.</span> Circles show simple linear regression (SLR) based results, and diamonds show multiple regression (MR) based results.</p> "> Figure 4
<p>Time series of green normalized vegetation index (GNDVI) in the test site (2016). Green circles and the green line are <span class="html-italic">Koshihikari</span>, red circles and the red line are <span class="html-italic">Fusaotome</span>, and orange circles and the orange line are <span class="html-italic">Fusakogane</span>.</p> "> Figure 5
<p>Time series of green normalized difference vegetation index (GNDVI) of <span class="html-italic">Koshihikari</span> with different transplantation dates (2016). The cultivar and the amount of fertilizer are the same. The blue line denotes the time series of GNDVI of the transplantation date April 11, the green line shows the time series of GNDVI of the transplantation date April 25, the orange line shows the time series of GNDVI of the transplantation date May 12, and the red line shows the time series of GNDVI of the transplantation date Jun 3.</p> "> Figure 6
<p>Correlation between average temperature from the transplantation date to the heading stage (°C) and green normalized difference vegetation index (GNDVI) at the heading stage: (<b>a</b>) shows the results of <span class="html-italic">Koshihikari</span>; (<b>b</b>) shows the results of <span class="html-italic">Fusaotome</span>; and (<b>c</b>) shows the results of <span class="html-italic">Fusakogane.</span> Circles show the samples in 2015, diamonds show the sample in 2016, and triangles show the sample in 2017.</p> "> Figure 7
<p>Spatial and temporal variability in green normalized difference vegetation index (GNDVI) from unmanned aerial vehicle imagery in 2016. Black line is the boundary of plot.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and UAV Data Acquisition
2.2. Image Processing and Analysis
2.3. Analysis of Collected Samples and Meteorological Data
2.4. GPC Estimation
3. Results
3.1. Regression Analysis for GPC Estimation
3.2. GNDVI Time Series
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organisation. Food and Agriculture: Driving Action across the 2030 Agenda for Sustainable Development; FAO: Rome, Italy, 2017. [Google Scholar]
- Wheeler, T.; Von Braun, J. Climate change impacts on global food security. Science 2013, 341, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.; Zhu, Y.; Liu, X.; Ye, H.; Tian, Y.; Li, F. Climate change impacts on regional rice production in China. Clim. Change 2018, 147, 523–537. [Google Scholar] [CrossRef]
- Kayad, A.G.; Al-Gaadi, K.A.; Tola, E.; Madugundu, R.; Zeyada, A.M.; Kalaitzidis, C. Assessing the Spatial Variability of Alfalfa Yield Using Satellite Imagery and Ground-Based Data. PLoS ONE 2016, 11, e0157166. [Google Scholar] [CrossRef] [PubMed]
- Parry, M.; Rosenzweig, C.; Iglesias, A.; Fischer, G.; Livermore, M. Climate change and world food security: A new assessment. Glob. Environ. Chang. 1999, 9, S51–S67. [Google Scholar] [CrossRef] [Green Version]
- Murdiyarso, D. Adaptation to climatic variability and change: Asian perspectives on agriculture and food security. Environ. Monit. Assess. 2000, 61, 123–131. [Google Scholar] [CrossRef]
- Maki, M.; Sekiguchi, K.; Homma, K.; Hirooka, Y.; Oki, K. Estimation of rice yield by SIMRIW-RS, a model that integrates remote sensing data into a crop growth model. J. Agric. Meteorol. 2017, 73, 2–8. [Google Scholar] [CrossRef] [Green Version]
- Homma, K.; Maki, M.; Hirooka, Y. Development of a rice simulation model for remote-sensing (SIMRIW-RS). J. Agric. Meteorol. 2017, 73, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Singh, K.; Kalra, N. Simulating impact of climatic variability and extreme climatic events on crop production. Mausam 2016, 67, 113–130. [Google Scholar]
- Parihar, J.S. FASAL concept in meeting the requirements of assessment and forecasting crop production affected by extreme weather events. Mausam 2016, 67, 93–104. [Google Scholar]
- Cogato, A.; Meggio, F.; De Antoni Migliorati, M.; Marinello, F. Extreme Weather Events in Agriculture: A Systematic Review. Sustainability 2019, 11, 2547. [Google Scholar] [CrossRef] [Green Version]
- Brouder, S.M.; Volenec, J.J. Impact of climate change on crop nutrient and water use efficiencies. Physiol. Plant. 2008, 133, 705–724. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Kobayashi, K.; Loladze, I.; Zhu, J.; Jiang, Q.; Xu, X.; Liu, G.; Seneweera, S.; Ebi, K.L.; Drewnowski, A. Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries. Sci. Adv. 2018, 4, eaaq1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, M.R.; Myers, S.S. Impact of anthropogenic CO2 emissions on global human nutrition. Nat. Clim. Chang. 2018, 8, 834–839. [Google Scholar] [CrossRef]
- Ziska, L.H.; Namuco, O.; Moya, T.; Quilang, J. Growth and yield response of field-grown tropical rice to increasing carbon dioxide and air temperature. Agron. J. 1997, 89, 45–53. [Google Scholar] [CrossRef]
- Otomo, T.; Yoshida, S.; Shiraishi, M.; Saito, S. Effect of Temperature during Grain Development on Nitrogen Content, Amylose Content and Taste of Rice (Oryza sativa L.). Available online: https://dl.ndl.go.jp/view/download/digidepo_11087879_po_ART0001892937.pdf?contentNo=1&alternativeNo= (accessed on 10 February 2020).
- Tamaki, M.; Ebata, M.; Tashiro, T.; Ishikawa, M. Physico-ecological studies on quality formation of rice kernel: I. Effects of nitrogen top-dressed at full heading time and air temperature during ripening period on quality of rice kernel. Jpn. J. Crop Sci. 1989, 58, 653–658. [Google Scholar] [CrossRef] [Green Version]
- Honjyo, K. Studies on Protein Content in Rice Grain: I. Variation of protein content between rice varieties and the influences of environmental factors on the protein content. Jpn. J. Crop Sci. 1971, 40, 183–189. [Google Scholar] [CrossRef] [Green Version]
- Ohdaira, Y.; Sasaki, R.; Takeda, H. Analysis of Factors Affecting Seed Protein Compositions and Protein Contents in Rice of Seed-Protein Mutant Cultivars under Different Cropping Seasons. Jpn. J. Crop Sci. 2013, 82, 18–27. [Google Scholar] [CrossRef] [Green Version]
- Koide, T.; Ito, K.; Takamatsu, M. Studies on the Production of the Best—Quality for Sake Brewery Rice “Wakamizu” I. Available online: https://agriknowledge.affrc.go.jp/RN/2010531955.pdf (accessed on 10 February 2020).
- Asaoka, M.; Okuno, K.; Fuwa, H. Effect of environmental temperature at the milky stage on amylose content and fine structure of amylopectin of waxy and nonwaxy endosperm starches of rice (Oryza sativa L.). Agric. Biol. Chem. 1985, 49, 373–379. [Google Scholar]
- Resurreccion, A.P.; Hara, T.; Juliano, B.O.; Yoshida, S. Effect of temperature during ripening on grain quality of rice. Soil Sci. Plant Nutr. 1977, 23, 109–112. [Google Scholar] [CrossRef]
- Okadome, H.; Kurihara, M.; Kusuda, O.; Toyoshima, H.; Shimotsubo, K.; Matsuda, T.; Ohtsubo, K.I. Multiple measurements of physical properties of cooked rice grains with different nitrogenous fertilizers. Jpn. J. Crop Sci. 1999, 68, 211–216. [Google Scholar] [CrossRef] [Green Version]
- Sakaiya, E.; Inoue, Y. Investigating Error Sources in Remote Sensing of Protein Content of Brown Rice Towards Operational Applications on a Regional Scale. Jpn. J. Crop Sci. 2012, 81, 317–331. [Google Scholar] [CrossRef] [Green Version]
- Kjeldahl, C. A new method for the determination of nitrogen in organic matter. Z Anal. Chem. 1883, 22, 366. [Google Scholar] [CrossRef] [Green Version]
- Asaka, D.; Shiga, H. Estimating Rice Grain Protein Contents with SPOT/HRV Data Acquired at Maturing Stage. J. Remote Sens. Soc. Jpn. 2003, 23, 451–457. [Google Scholar] [CrossRef]
- Inoue, Y.; Miah, G.; Sakaiya, E.; Nakano, K.; Kawamura, K. NDSI Map and IPLS Using Hyperspectral Data for Assessment of Plant and Ecosystem Variables; With a Case Study on Remote Sensing of Grain Protein Content, Chlorophyll Content and Biomass in Rice&mdash. J. Remote Sens. Soc. Jpn. 2008, 28, 317–330. [Google Scholar] [CrossRef]
- Suhama, T.; Takeda, T.; Onodera, H. Study for estimation of rice grain protein contents using hyperspectral data. J. Jpn. Soc. Photogramm. Remote Sens. 2010, 49, 358–367. [Google Scholar] [CrossRef] [Green Version]
- Kyuma, K. Paddy Soil Science; Kyoto University Press: Kyoto, Japan, 2004; p. 280. [Google Scholar]
- Hama, A.; Tanaka, K.; Mochizuki, A.; Tsuruoka, Y.; Kondoh, A. Protein Content Estimation of Brown Rice Based on UAV Remote Sensing and Meteorological Data of Grain-filling Period. J. Remote Sens. Soc. Jpn. 2018, 38, 35–43. [Google Scholar] [CrossRef]
- Toscano, P.; Gioli, B.; Genesio, L.; Vaccari, F.P.; Miglietta, F.; Zaldei, A.; Crisci, A.; Ferrari, E.; Bertuzzi, F.; La Cava, P.; et al. Durum wheat quality prediction in Mediterranean environments: From local to regional scale. Eur. J. Agron. 2014, 61, 1–9. [Google Scholar] [CrossRef]
- Toscano, P.; Genesio, L.; Crisci, A.; Vaccari, F.P.; Ferrari, E.; Cava, P.L.; Porter, J.R.; Gioli, B. Empirical modelling of regional and national durum wheat quality. Agric. For. Meteorol. 2015, 204, 67–78. [Google Scholar] [CrossRef]
- Tokunaga, K.; Moriyama, M. Radiometric calibration method of the general purpose digital camera and its application for the vegetation monitoring. SPIE Asia Pac. Remote Sens. 2012, 8524, 8524–8530. [Google Scholar] [CrossRef]
- Hama, A.; Tanaka, K.; Den, H.; Kondoh, A. Comparison and Consideration of Near-Infrared Cameras for Drones: RedEdge and Yubaflex. J. Remote Sens. Soc. Jpn. 2018, 38, 451–457. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Ishihara, M.; Inoue, Y.; Ono, K.; Shimizu, M.; Matsuura, S. The Impact of Sunlight Conditions on the Consistency of Vegetation Indices in Croplands—Effective Usage of Vegetation Indices from Continuous Ground-Based Spectral Measurements. Remote Sens. 2015, 7, 14079–14098. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, M.; Hoshika, Y.; Inada, N.; Koike, T. Photosynthetic activity in relation to a gradient of leaf nitrogen content within a canopy of Siebold’s beech and Japanese oak saplings under elevated ozone. Sci. Total Environ. 2018, 636, 1455–1462. [Google Scholar] [CrossRef] [PubMed]
- NARO. Mesh Agricultural Weather Data System. Available online: https://amu.rd.naro.go.jp/ (accessed on 19 March 2020).
- Inoue, Y.; Sakaiya, E.; Zhu, Y.; Takahashi, W. Diagnostic mapping of canopy nitrogen content in rice based on hyperspectral measurements. Remote Sens. Environ. 2012, 126, 210–221. [Google Scholar] [CrossRef]
- Oritani, T.; Yoshida, R. Studies on Nitrogen Metabolism in Crop Plants: XVIII. Utilization of nitrogen fertilizer on leaf area growth, protein synthesis and sink formation in the rice plant. Jpn. J. Crop Sci. 1984, 53, 204–212. [Google Scholar] [CrossRef]
- Hayashi, M.; Kon, K. Influence of Lowered Grain Protein Content for Grain Quality and Eating Quality on High Eating Quality Rice. Tohoku J. Crop Sci. 2006, 49, 15–16. [Google Scholar] [CrossRef]
- Wakamatsu, K.-I.; Sasaki, O.; Uezono, I.; Tanaka, A. Effect of the Amount of Nitrogen Application on Occurrence of White-back Kernels during Ripening of Rice under High-temperature Conditions. Jpn. J. Crop Sci. 2008, 77, 424–433. [Google Scholar] [CrossRef] [Green Version]
- Boschetti, M.; Stroppiana, D.; Brivio, P.A.; Bocchi, S. Multi-year monitoring of rice crop phenology through time series analysis of MODIS images. Int. J. Remote Sens. 2009, 30, 4643–4662. [Google Scholar] [CrossRef]
- Shihua, L.; Jingtao, X.; Ping, N.; Jing, Z.; Hongshu, W.; Jingxian, W. Monitoring paddy rice phenology using time series MODIS data over Jiangxi Province, China. Int. J. Agric. Biol. Eng. 2014, 7, 28–36. [Google Scholar]
- Guan, S.; Fukami, K.; Matsunaka, H.; Okami, M.; Tanaka, R.; Nakano, H.; Sakai, T.; Nakano, K.; Ohdan, H.; Takahashi, K. Assessing Correlation of High-Resolution NDVI with Fertilizer Application Level and Yield of Rice and Wheat Crops Using Small UAVs. Remote Sens. 2019, 11, 112. [Google Scholar] [CrossRef] [Green Version]
- Baker, J.T.; Allen, L.H., Jr. Effects of CO2 and Temperature on Rice A Summary of Five Growing Seasons. J. Agric. Meteorol. 1993, 48, 575–582. [Google Scholar] [CrossRef]
- Krishnan, P.; Ramakrishnan, B.; Reddy, K.R.; Reddy, V.R. High-Temperature Effects on Rice Growth, Yield, and Grain Quality. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2011; Volume 111, Chapter 3; pp. 87–206. [Google Scholar]
- Takahashi, S.; Yamamuro, S. Mineralization of Soil Nitrogen and Nitrogen Absorption by Rice Plant Derived from Soil and from Irrigation Water in Paddy Field with Continuous Application of Rice Straw Compost. Jpn. J. Soil Sci. Plant Nutr. 1992, 63, 505–510. [Google Scholar] [CrossRef]
Year | Test Site | Cultivar | Transplantation Date | Basal Fertilizer gN/m2 | Topdressing gN/m2 | Growth Stage | |
---|---|---|---|---|---|---|---|
Panicle Formation | Heading | ||||||
2015 | Chiba | Koshihikari | Apr. 10 | 1.5 | 3.0 | Jun. 10 | Jul. 10 |
2015 | Chiba | Koshihikari | Apr. 24 | 0.0–3.0 | 3.0 | Jun. 21 | Jul. 19 |
2015 | Chiba | Koshihikari | May 15 | 0.0–10.0 | 3.0 | Jun. 29 | Aug. 1 |
2015 | Chiba | Koshihikari | Jun. 5 | 1.5 | 3.0 | Jul. 22 | Aug. 11 |
2015 | Chiba | Fusaotome | Apr. 10 | 3.0 | 3.0 | Jun. 5 | Jul. 5 |
2015 | Chiba | Fusaotome | Apr. 24 | 3.0–9.0 | 3.0 | Jun. 9 | Jul. 12 |
2015 | Chiba | Fusaotome | May 15 | 1.5–7.0 | 3.0 | Jun. 28 | Jul. 21 |
2015 | Chiba | Fusaotome | Jun. 5 | 3.0–4.0 | 3.0 | Jul. 15 | Aug. 7 |
2015 | Chiba | Fusakogane | Apr. 10 | 4.0 | 3.0 | Jun. 5 | Jul. 5 |
2015 | Chiba | Fusakogane | Apr. 24 | 4.0–10.0 | 3.0 | Jun. 10 | Jul. 12 |
2015 | Chiba | Fusakogane | May 15 | 0.0–10.0 | 3.0 | Jun. 29 | Jul. 22 |
2015 | Chiba | Fusakogane | Jun. 5 | 4.0 | 3.0 | Jul. 19 | Aug. 8 |
2016 | Chiba | Koshihikari | Apr. 11 | 2.0 | 3.0 | Jun. 20 | Jul. 15 |
2016 | Chiba | Koshihikari | Apr. 25 | 0.0–2.0 | 3.0 | Jun. 25 | Jul. 24 |
2016 | Chiba | Koshihikari | May 13 | 0.0–2.0 | 3.0 | Jun. 27 | Aug. 5 |
2016 | Chiba | Koshihikari | Jun. 6 | 2.0 | 3.0 | Jul. 24 | Aug. 15 |
2016 | Chiba | Fusaotome | Apr. 11 | 3.0 | 3.0 | Jun. 13 | Jul. 10 |
2016 | Chiba | Fusaotome | Apr. 25 | 3.0–7.0 | 3.0 | Jun. 18 | Jul. 14 |
2016 | Chiba | Fusaotome | May 13 | 3.0–7.0 | 3.0 | Jun. 26 | Jul. 21 |
2016 | Chiba | Fusaotome | Jun. 6 | 3.0 | 3.0 | Jul. 16 | Aug. 7 |
2016 | Chiba | Fusakogane | Apr. 11 | 4.0 | 3.0 | Jun. 13 | Jul. 11 |
2016 | Chiba | Fusakogane | Apr. 25 | 4.0–8.0 | 3.0 | Jun. 19 | Jul. 15 |
2016 | Chiba | Fusakogane | May 13 | 4.0–8.0 | 3.0 | Jun. 27 | Jul. 23 |
2016 | Chiba | Fusakogane | Jun. 6 | 4.0 | 3.0 | Jul. 17 | Aug. 8 |
2017 | Chiba | Koshihikari | Apr. 11 | 2.0 | 2.0 | Jun. 13 | Jul. 12 |
2017 | Chiba | Koshihikari | Apr. 24 | 0.0–2.0 | 2.0 | Jun. 28 | Jul. 20 |
2017 | Chiba | Koshihikari | May 17 | 2.0 | 1.0–2.0 | Jul. 6 | Jul. 31 |
2017 | Chiba | Koshihikari | Jun. 6 | 2.0 | 2.0 | Jul. 20 | Aug. 13 |
2017 | Chiba | Fusaotome | Apr. 11 | 3.0 | 3.0 | Jun. 9 | Jul. 7 |
2017 | Chiba | Fusaotome | Apr. 24 | 0.0–5.0 | 3.0 | Jun. 14 | Jul. 11 |
2017 | Chiba | Fusaotome | May 17 | 0.0–3.0 | 1.0–3.0 | Jun. 29 | Jul. 25 |
2017 | Chiba | Fusaotome | Jun. 6 | 3.0 | 3.0 | Jul. 15 | Aug. 6 |
2017 | Chiba | Fusakogane | Apr. 11 | 4.0 | 3.0 | Jun. 10 | Jul. 7 |
2017 | Chiba | Fusakogane | Apr. 24 | 0.0–6.0 | 3.0 | Jun. 15 | Jul. 12 |
2017 | Chiba | Fusakogane | May 17 | 0.0–4.0 | 1.0–3.0 | Jun. 29 | Jul. 25 |
2017 | Chiba | Fusakogane | Jun. 6 | 4.0 | 3.0 | Jul. 17 | Aug. 17 |
Cultivar | n | Coefficient | k | p Value | R2 |
---|---|---|---|---|---|
m | GNDVIheading | ||||
Koshihikari | 15 | + 10.82 | + 0.79 | 3.4 × 103 ** | 0.495 |
Fusaotome | 16 | + 9.73 | + 1.53 | 5.9 × 104 *** | 0.582 |
Fusakogane | 16 | + 8.38 | + 2.35 | 4.8 × 104 *** | 0.593 |
Cultivar | n | Coefficient | k | p Value | R2 | ||
---|---|---|---|---|---|---|---|
m1 | m2 | GNDVIheading | SRgrain-filling | ||||
Koshihikari | 15 | + 9.93 | – 0.08 | + 2.74 | 3.1 × 103 ** | 3.1 × 102 * | 0.568 |
Fusaotome | 16 | + 9.21 | – 0.12 | + 4.13 | 6.8 × 105 *** | 2.6 × 104 *** | 0.796 |
Fusakogane | 16 | + 8.98 | – 0.12 | + 4.09 | 2.5 × 105 *** | 3.8 × 104 *** | 0.712 |
Cultivar | Variable | Avg | Min | Max | GPC Variation % (min Value) | GPC Variation % (max Value) |
---|---|---|---|---|---|---|
Koshihikari | GNDVIheading | 0.572 | 0.518 | 0.651 | – 7.7 | + 11.2 |
Koshihikari | SRgrain-filling | 17.64 | 11.87 | 23.20 | + 6.6 | – 6.3 |
Fusaotome | GNDVIheading | 0.594 | 0.462 | 0.676 | – 16.4 | + 10.2 |
Fusaotome | SRgrain-filling | 18.08 | 13.19 | 22.23 | + 7.9 | – 6.7 |
Fusakogane | GNDVIheading | 0.603 | 0.499 | 0.699 | – 12.7 | + 11.8 |
Fusakogane | SRgrain-filling | 18.08 | 12.78 | 22.23 | + 8.7 | – 6.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hama, A.; Tanaka, K.; Mochizuki, A.; Tsuruoka, Y.; Kondoh, A. Estimating the Protein Concentration in Rice Grain Using UAV Imagery Together with Agroclimatic Data. Agronomy 2020, 10, 431. https://doi.org/10.3390/agronomy10030431
Hama A, Tanaka K, Mochizuki A, Tsuruoka Y, Kondoh A. Estimating the Protein Concentration in Rice Grain Using UAV Imagery Together with Agroclimatic Data. Agronomy. 2020; 10(3):431. https://doi.org/10.3390/agronomy10030431
Chicago/Turabian StyleHama, Akira, Kei Tanaka, Atsushi Mochizuki, Yasuo Tsuruoka, and Akihiko Kondoh. 2020. "Estimating the Protein Concentration in Rice Grain Using UAV Imagery Together with Agroclimatic Data" Agronomy 10, no. 3: 431. https://doi.org/10.3390/agronomy10030431
APA StyleHama, A., Tanaka, K., Mochizuki, A., Tsuruoka, Y., & Kondoh, A. (2020). Estimating the Protein Concentration in Rice Grain Using UAV Imagery Together with Agroclimatic Data. Agronomy, 10(3), 431. https://doi.org/10.3390/agronomy10030431