Optimizing Gaussian Process Regression for Image Time Series Gap-Filling and Crop Monitoring
<p>RGB image of the crop ROIs in Castile and Leon region, Northwest Iberian peninsula, from Sentinel 2 capture of 26 June 2016.</p> "> Figure 2
<p>Modeling LAI time series of wheat by using different GPR parametrizations (<math display="inline"><semantics> <msub> <mi mathvariant="bold-italic">θ</mi> <mrow> <mi>p</mi> <mi>p</mi> </mrow> </msub> </semantics></math>,<math display="inline"><semantics> <msub> <mi mathvariant="bold-italic">θ</mi> <mrow> <mi>R</mi> <mi>a</mi> <mi>p</mi> <mi>e</mi> </mrow> </msub> </semantics></math>,<math display="inline"><semantics> <msub> <mi mathvariant="bold-italic">θ</mi> <mrow> <mi>g</mi> <mi>l</mi> </mrow> </msub> </semantics></math>) (<a href="#agronomy-10-00618-f002" class="html-fig">Figure 2</a>a) and automatic identification of some seasonal patterns (<a href="#agronomy-10-00618-f002" class="html-fig">Figure 2</a>b–d). The green and blue colors represent the area under the curve between SOS and EOS. For reasons of clarity the associated GPR uncertainties are not displayed. Counting of days starts from 1 January 2016.</p> "> Figure 3
<p>Modeling LAI time series of potato by using different GPR parametrizations (<math display="inline"><semantics> <msub> <mi mathvariant="bold-italic">θ</mi> <mrow> <mi>p</mi> <mi>p</mi> </mrow> </msub> </semantics></math>,<math display="inline"><semantics> <msub> <mi mathvariant="bold-italic">θ</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>r</mi> <mi>n</mi> </mrow> </msub> </semantics></math>,<math display="inline"><semantics> <msub> <mi mathvariant="bold-italic">θ</mi> <mrow> <mi>g</mi> <mi>l</mi> </mrow> </msub> </semantics></math>) (<a href="#agronomy-10-00618-f003" class="html-fig">Figure 3</a>a) and automatic identification of some seasonal patterns (<a href="#agronomy-10-00618-f003" class="html-fig">Figure 3</a>b–d). The green and blue colors represent the area under the curve between SOS and EOS. For reasons of clarity the associated GPR uncertainties are not displayed. Counting of days starts from 1 January 2016.</p> "> Figure 4
<p>Phenological indicator maps estimated by using <math display="inline"><semantics> <msub> <mi mathvariant="bold-italic">θ</mi> <mrow> <mi>g</mi> <mi>l</mi> </mrow> </msub> </semantics></math> (<b>left</b> column) and their differences regarding <math display="inline"><semantics> <msub> <mi mathvariant="bold-italic">θ</mi> <mrow> <mi>p</mi> <mi>p</mi> </mrow> </msub> </semantics></math> (<b>right</b> column). Counting of days starts from 1 January 2017.</p> ">
Abstract
:1. Introduction
2. Gaussian Process Regression
- Length-scale l describes how smooth a function is. Small length-scale value means that function values can change quickly; large values characterize functions that change only slowly. l also determines how far we can reliably extrapolate from the training data.
- Signal variance is a scaling factor. It determines variation of function values from their mean. Small value of characterize functions that stay close to their mean value, larger values allow more variation. If is too large, the modelled function will be free to chase outliers.
- Noise variance is formally not a part of the covariance function itself. It is used by the Gaussian process model to allow for noise present in training data. This parameter specifies how much noise is expected to be present in the data.
3. Data and Methods
3.1. Data Description
3.2. Methodology
- Crop type selection. For each crop type found in the available dataset (i.e., wheat, corn, barley, sunflower, rape, pea, alfalfa, beet and potato), we randomly selected 100 parcels larger than 50 pixels.
- Hyperparameter optimization. Hyperparameters were optimally determined by assessing individually each pixel, across the time series.
- Hyperparameter average. In this step, we simply took the mean of the previously trained hyperparameters for each crop type. Additionally, we also computed a global average of the hyperparameters over all pixels within the randomly selected parcels (i.e., without any crop segregation).
- Time series prediction. Subsequently, LAI-reconstructed time series were computed with different GPR model parameterizations, i.e., using the hyperparameters described in point 2 and 3.
- Statistical analysis for performance comparison. In this step, we evaluated the performance of the different GPR models in terms of reconstruction (original vs. recontructed LAI time series) and processing time. The performance was assessed with the goodness-of-fit indicator root mean square error (RMSE), i.e., the lower the RMSE the better the reconstruction.
- Phenological metrics extraction. Finally, we analyzed how the different GPR parametrizations (i.e., free vs. fixed hyperparameters) affect the estimation of phenological indicators derived from the reconstructed LAI time series. For determining when the seasons start and end, we used a percentage of the seasonal amplitude, defined between the base level and the maximum value for each individual season [27,43]. For easy visualization and interpretation, we calculated the SOS when the left part of the fitted curve reached a 20% of the seasonal amplitude, counted from the base level. The EOS was defined similarly, but using the right side of the curve.
4. Results
4.1. Performance of GPR Models
4.2. Performance of Crop Phenology Characterization
5. Discussion
6. Conclusions
- For all tested crop fields, fixing the hyperparmeters led to LAI accuracies (RMSE) on the order of 0.1767 , as opposed to 0.1564 [] for the standard GPR estimations. This suggests only a small loss in accuracy of around 12%.
- When further simplifying to fix to one hyperparameter for all crop types, the performance was only degraded between 2% and 7% compared to using the per-pixel optimization.
- Using both methodologies, the gain in processing speed is 90 times faster than the standard GPR estimations (i.e., 0.00111 vs. 0.1 sec, respectively).
- To demonstrate the validity of the optimization, phenology indicators were calculated based on the different GPR strategies. The final maps show the good quality of the proposed approach, with no statistically significant RMSE differences regarding the conventional GPR methodology (e.g., 7.27 days in EOS/SOS).
Author Contributions
Funding
Conflicts of Interest
References
- Verrelst, J.; Camps-Valls, G.; Munoz-Marí, J.; Rivera, J.P.; Veroustraete, F.; Clevers, J.G.; Moreno, J. Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties—A review. ISPRS J. Photogramm. Remote Sens. 2015, 108, 273–290. [Google Scholar] [CrossRef]
- Verrelst, J.; Malenovskỳ, Z.; Van der Tol, C.; Camps-Valls, G.; Gastellu-Etchegorry, J.P.; Lewis, P.; North, P.; Moreno, J. Quantifying vegetation biophysical variables from imaging spectroscopy data: A review on retrieval methods. Surv. Geophys. 2019, 40, 589–629. [Google Scholar]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Malenovský, Z.; Rott, H.; Cihlar, J.; Schaepman, M.; Garcia-Santos, G.; Fernandes, R.; Berger, M. Sentinels for science: Potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land. Remote Sens. Environ. 2012, 120, 91–101. [Google Scholar]
- Rouse, W.; Haas, R.; Well, J.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. Proc. Third ERTS Symp. 1974, 1, 309–317. [Google Scholar]
- Watson, D. Comparative physiological studies on the growth of field crops: I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years. Ann. Botany 1947, 11, 41–76. [Google Scholar]
- Gobron, N.; Pinty, B.; Aussedat, O.; Chen, J.; Cohen, W.; Fensholt, R.; Gond, V.; Huemmrich, K.; Lavergne, T.; Mélin, F.; et al. Evaluation of fraction of absorbed photosynthetically active radiation products for different canopy radiation transfer regimes: Methodology and results using Joint Research Center products derived from SeaWiFS against ground-based estimations. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Kandasamy, S.; Baret, F.; Verger, A.; Neveux, P.; Weiss, M. A comparison of methods for smoothing and gap filling time series of remote sensing observations—Application to MODIS LAI products. Biogeosciences 2013, 10, 4055–4071. [Google Scholar] [CrossRef] [Green Version]
- White, M.A.; Hoffman, F.; Hargrove, W.W.; Nemani, R.R. A global framework for monitoring phenological responses to climate change. Geophys. Res. Lett. 2005, 32. [Google Scholar]
- Rezaei, E.E.; Siebert, S.; Ewert, F. Climate and management interaction cause diverse crop phenology trends. Agric. For. Meteorol. 2017, 233, 55–70. [Google Scholar] [CrossRef]
- Atkinson, P.M.; Jeganathan, C.; Dash, J.; Atzberger, C. Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology. Remote Sens. Environ. 2012, 123, 400–417. [Google Scholar] [CrossRef]
- Zeng, L.; Wardlow, B.D.; Xiang, D.; Hu, S.; Li, D. A review of vegetation phenological metrics extraction using time-series, multispectral satellite data. Remote Sens. Environ. 2020, 237, 111511. [Google Scholar] [CrossRef]
- Jönsson, J.; Eklundh, L. TIMESAT—A program for analysing time-series of satellite sensor data. Comput. Geosci. 2004, 30, 833–845. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.M.; Strandgard, M.N.; Brown, M.W.; Fox, J.C. Improving the productivity of mechanised harvesting systems using remote sensing. Austral. Forest. 2012, 75, 238–245. [Google Scholar] [CrossRef]
- Jayawardhana, W.; Chathurange, V. Extraction of Agricultural Phenological Parameters of Sri Lanka Using MODIS, NDVI Time Series Data; International Conference of Sabaragamuwa University of Sri Lanka 2015 (ICSUSL 2015). Proc. Food Sci. 2016, 6, 235–241. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhang, Q. Monitoring interannual variation in global crop yield using long-term AVHRR and MODIS observations. ISPRS J. Photogramm. Remote Sens. 2016, 114, 191–205. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Murphy, K.P. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Bishop, C.M. Pattern Recognition and Machine Learning (Information Science and Statistics), 1st ed.; Springer: Berlin, Germany, 2007. [Google Scholar]
- Bacour, C.; Baret, F.; Béal, D.; Weiss, M.; Pavageau, K. Neural network estimation of LAI, fAPAR, fCover and LAIxCab, from top of canopy MERIS reflectance data: Principles and validation. Remote Sens. Environ. 2006, 105, 313–325. [Google Scholar] [CrossRef]
- Amin, E.; Verrelst, J.; Rivera-Caicedo, J.P.; Pasqualotto, N.; Delegido, J.; Verdú, A.R.; Moreno, J. The Sensagri Sentinel-2 LAI Green and Brown Product: From Algorithm Development Towards Operational Mapping. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1822–1825. [Google Scholar]
- Camps-Valls, G.; Verrelst, J.; Munoz-Mari, J.; Laparra, V.; Mateo-Jimenez, F.; Gomez-Dans, J. A survey on Gaussian processes for earth-observation data analysis: A comprehensive investigation. IEEE Geosci. Remote Sens. Mag. 2016, 4, 58–78. [Google Scholar] [CrossRef] [Green Version]
- Camps-Valls, G.; Sejdinovic, D.; Runge, J.; Reichstein, M. A perspective on Gaussian processes for Earth observation. Natl. Sci. Rev. 2019, 6, 616–618. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, C.; Williams, C. Gaussian Processes for Machine Learning; The MIT Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Mateo-Sanchis, A.; Muñoz-Marí, J.; Campos-Taberner, M.; García-Haro, J.; Camps-Valls, G. Gap filling of biophysical parameter time series with multi-output Gaussian Processes. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; IEEE: Piscataway, NJ, USA; pp. 4039–4042. [Google Scholar] [CrossRef]
- Pipia, L.; Muñoz-Marí, J.; Amin, E.; Belda, S.; Camps-Valls, G.; Verrelst, J. Fusing optical and SAR time series for LAI gap filling with multioutput Gaussian processes. Remote Sens. Environ. 2019, 235, 111452. [Google Scholar]
- Belda, S.; Pipia, L.; Morcillo-Pallarés, P.; Rivera-Caicedo, J.P.; Amin, E.; de Grave, C.; Verrelst, J. DATimeS: A machine learning time series GUI toolbox for gap-filling and vegetation phenology trends detection. Environ. Model. Softw. 2020, 127, 104666. [Google Scholar]
- Verrelst, J.; Rivera, J.P.; Moreno, J.; Camps-Valls, G. Gaussian processes uncertainty estimates in experimental Sentinel-2 LAI and leaf chlorophyll content retrieval. ISPRS J. Photogramm. Remote Sens. 2013, 86, 157–167. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, B. How priors of initial hyperparameters affect Gaussian process regression models. Neurocomputing 2018, 275, 1702–1710. [Google Scholar] [CrossRef] [Green Version]
- Camps-Valls, G.; Martino, L.; Svendsen, D.H.; Campos-Taberner, M.; Muñoz-Marí, J.; Laparra, V.; Luengo, D.; García-Haro, F.J. Physics-aware Gaussian processes in remote sensing. Appl. Soft Comput. 2018, 68, 69–82. [Google Scholar] [CrossRef]
- Hensman, J.; Fusi, N.; Lawrence, N.D. Gaussian Processes for Big Data. arXiv 2013, arXiv:1309.6835. [Google Scholar]
- Moore, C.; Chua, A.; Berry, C.; Gair, J. Fast methods for training gaussian processes on large datasets. R. Soc. Open Sci. 2016, 3. [Google Scholar] [CrossRef] [Green Version]
- Verrelst, J.; Alonso, L.; Camps-Valls, G.; Delegido, J.; Moreno, J. Retrieval of Vegetation Biophysical Parameters Using Gaussian Process Techniques. IEEE Trans. Geosci. Remote Sens 2012, 50, 1832–1843. [Google Scholar] [CrossRef]
- Verrelst, J.; Alonso, L.; Rivera Caicedo, J.; Moreno, J.; Camps-Valls, G. Gaussian Process Retrieval of Chlorophyll Content From Imaging Spectroscopy Data. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2013, 6, 867–874. [Google Scholar]
- Campos-Taberner, M.; García-Haro, F.J.; Camps-Valls, G.; Grau-Muedra, G.; Nutini, F.; Crema, A.; Boschetti, M. Multitemporal and multiresolution leaf area index retrieval for operational local rice crop monitoring. Remote Sens. Environ. 2016, 187, 102–118. [Google Scholar]
- Verrelst, J.; Rivera, J.P.; Veroustraete, F.; Muñoz-Marí, J.; Clevers, J.G.; Camps-Valls, G.; Moreno, J. Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods—A comparison. ISPRS J. Photogramm. Remote Sens. 2015, 108, 260–272. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Jung, M.; Ichii, K.; Papale, D.; Tramontana, G.; Bodesheim, P.; Schwalm, C.; Zscheischler, J.; Mahecha, M.; Reichstein, M. Ranking drivers of global carbon and energy fluxes over land. In 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS); IEEE: Piscataway, NJ, USA, 2015; pp. 4416–4419. [Google Scholar]
- Aye, S.; Heyns, P. An integrated Gaussian process regression for prediction of remaining useful life of slow speed bearings based on acoustic emission. Mech. Syst. Signal Proc. 2017, 84, 485–498. [Google Scholar] [CrossRef]
- Rasmussen, C.E. Gaussian processes in machine learning. In Advanced Lectures on Machine Learning; Springer: Berlin, Germany, 2004; pp. 63–71. [Google Scholar]
- Blum, M.; Riedmiller, M. Optimization of Gaussian Process Hyperparameters using Rprop. In Proceedings of the European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), Bruges, Belgium, 24–26 April 2013. [Google Scholar]
- Gómez, V.; Medina, V.; Bengoa, J.; García, D. Accuracy Assessment of a 122 Classes Land Cover Map Based on Sentinel-2, Landsat 8 and Deimos-1 Images and Ancillary Data. In Proceedings of the IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 5453–5456. [Google Scholar]
- Brahim-Belhouari, S.; Bermak, A. Gaussian process for nonstationary time series prediction. Comput. Stat. Data Anal. 2004, 47, 705–712. [Google Scholar] [CrossRef]
- Udelhoven, T. TimeStats: A Software Tool for the Retrieval of Temporal Patterns From Global Satellite Archives. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2011, 4, 310–317. [Google Scholar] [CrossRef]
- Takigawa, I.; Shimizu, K.; Tsuda, K.; Takakusagi, S. Machine learning predictions of factors affecting the activity of heterogeneous metal catalysts. In Nanoinformatics; Springer: Singapore, 2018; pp. 45–64. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Liu, T.; Bu, K.; Yan, F. Monitoring the long term vegetation phenology change in Northeast China from 1982 to 2015. Scienti. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Ren, S.; Chen, X.; An, S. Assessing plant senescence reflectance index-retrieved vegetation phenology and its spatiotemporal response to climate change in the Inner Mongolian Grassland. Int. J. Biometeorol. 2017, 61, 601–612. [Google Scholar]
- Campos-Taberner, M.; García-Haro, F.J.; Camps-Valls, G.; Grau-Muedra, G.; Nutini, F.; Busetto, L.; Katsantonis, D.; Stavrakoudis, D.; Minakou, C.; Gatti, L.; et al. Exploitation of SAR and optical sentinel data to detect rice crop and estimate seasonal dynamics of leaf area index. Remote Sens. 2017, 9, 248. [Google Scholar]
Wheat | Corn | Barley | Sunflower | Rape | Pea | Alfalfa | Beet | Potato | Global | |
---|---|---|---|---|---|---|---|---|---|---|
−3.9432 | −3.6245 | −3.6819 | −3.6563 | −3.8655 | −3.2352 | −3.6324 | −3.7147 | −3.4294 | −3.6430 | |
−0.6151 | −0.1381 | −0.6275 | −1.4275 | −0.0032 | −0.9412 | −0.9359 | 0.2405 | 0.1128 | −0.4817 | |
−2.0441 | −1.5917 | −2.0289 | −2.1427 | −1.3874 | −2.1000 | −1.8461 | −1.0593 | −1.4976 | −1.7442 |
Crop Type | Averaged Hyperparameters | Variance | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Wheat | Corn | Barley | Sunflower | Rape | Pea | Alfalfa | Beet | Potato | Global | ||
Wheat | 0.028 | 0.032 | 0.030 | 0.034 | 0.027 | 0.048 | 0.030 | 0.028 | 0.044 | 0.030 | 0.007 |
Corn | 0.085 | 0.046 | 0.050 | 0.080 | 0.072 | 0.050 | 0.063 | 0.055 | 0.046 | 0.049 | 0.015 |
Barley | 0.052 | 0.036 | 0.037 | 0.051 | 0.046 | 0.043 | 0.043 | 0.039 | 0.040 | 0.037 | 0.006 |
Sunflower | 0.068 | 0.054 | 0.056 | 0.059 | 0.064 | 0.047 | 0.056 | 0.057 | 0.050 | 0.055 | 0.006 |
Rape | 0.086 | 0.086 | 0.083 | 0.090 | 0.084 | 0.104 | 0.084 | 0.082 | 0.101 | 0.083 | 0.008 |
Pea | 0.120 | 0.084 | 0.090 | 0.106 | 0.110 | 0.064 | 0.096 | 0.095 | 0.070 | 0.089 | 0.017 |
Alfalfa | 0.082 | 0.069 | 0.070 | 0.075 | 0.078 | 0.066 | 0.071 | 0.072 | 0.069 | 0.069 | 0.005 |
Beet | 0.125 | 0.091 | 0.092 | 0.118 | 0.112 | 0.105 | 0.101 | 0.095 | 0.101 | 0.092 | 0.012 |
Potato | 0.196 | 0.087 | 0.104 | 0.169 | 0.167 | 0.062 | 0.135 | 0.121 | 0.059 | 0.104 | 0.046 |
Crop Type | Averaged Hyperparameters | Variance | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Wheat | Corn | Barley | Sunflower | Rape | Pea | Alfalfa | Beet | Potato | Global | ||
Wheat | 1.796 | 2.113 | 1.950 | 2.237 | 1.749 | 3.106 | 1.979 | 1.842 | 2.869 | 1.951 | 0.463 |
Corn | 3.231 | 1.731 | 1.883 | 3.050 | 2.746 | 1.891 | 2.380 | 2.075 | 1.749 | 1.874 | 0.560 |
Barley | 3.085 | 2.141 | 2.201 | 3.039 | 2.740 | 2.557 | 2.529 | 2.307 | 2.391 | 2.197 | 0.342 |
Sunflower | 8.837 | 6.962 | 7.196 | 7.650 | 8.256 | 6.070 | 7.242 | 7.395 | 6.502 | 7.079 | 0.800 |
Rape | 3.126 | 3.106 | 3.017 | 3.264 | 3.032 | 3.762 | 3.037 | 2.975 | 3.673 | 3.002 | 0.286 |
Pea | 8.669 | 6.110 | 6.489 | 7.678 | 7.968 | 4.642 | 6.982 | 6.851 | 5.072 | 6.428 | 1.243 |
Alfalfa | 6.585 | 5.556 | 5.653 | 6.006 | 6.257 | 5.297 | 5.702 | 5.755 | 5.513 | 5.586 | 0.386 |
Beet | 3.549 | 2.579 | 2.617 | 3.342 | 3.166 | 2.982 | 2.857 | 2.698 | 2.847 | 2.591 | 0.336 |
Potato | 5.468 | 2.419 | 2.890 | 4.711 | 4.663 | 1.730 | 3.771 | 3.374 | 1.654 | 2.890 | 1.292 |
Crop Type | Averaged Hyperparameters | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Wheat | Corn | Barley | Sunflower | Rape | Pea | Alfalfa | Beet | Potato | Global | |
Wheat | 0.996 | 0.996 | 0.996 | 0.997 | 0.997 | 0.993 | 0.997 | 0.997 | 0.994 | 0.996 |
Corn | 0.993 | 0.998 | 0.997 | 0.995 | 0.995 | 0.997 | 0.997 | 0.997 | 0.998 | 0.997 |
Barley | 0.991 | 0.994 | 0.994 | 0.993 | 0.992 | 0.992 | 0.994 | 0.994 | 0.993 | 0.994 |
Sunflower | 0.937 | 0.959 | 0.956 | 0.950 | 0.944 | 0.966 | 0.955 | 0.954 | 0.964 | 0.957 |
Rape | 0.993 | 0.994 | 0.994 | 0.994 | 0.993 | 0.991 | 0.994 | 0.994 | 0.992 | 0.995 |
Pea | 0.943 | 0.968 | 0.965 | 0.956 | 0.951 | 0.978 | 0.961 | 0.962 | 0.976 | 0.965 |
Alfalfa | 0.968 | 0.978 | 0.977 | 0.973 | 0.971 | 0.979 | 0.976 | 0.976 | 0.978 | 0.977 |
Beet | 0.992 | 0.995 | 0.995 | 0.994 | 0.993 | 0.993 | 0.995 | 0.995 | 0.994 | 0.995 |
Potato | 0.976 | 0.993 | 0.991 | 0.984 | 0.981 | 0.997 | 0.988 | 0.989 | 0.996 | 0.991 |
Crop Type | Per-Pixel Hyperpar. | Averaged Hyperparameters | Variance | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Wheat | Corn | Barley | Sunflower | Rape | Pea | Alfalfa | Beet | Potato | Global | |||
Wheat | 6.269 | 6.721 | 6.006 | 6.165 | 6.698 | 6.571 | 5.138 | 6.425 | 6.298 | 5.335 | 6.166 | 0.512 |
Corn | 5.817 | 7.334 | 6.223 | 6.445 | 7.134 | 7.066 | 5.408 | 6.762 | 6.631 | 5.554 | 6.432 | 0.640 |
Barley | 5.763 | 7.150 | 6.098 | 6.308 | 7.043 | 6.904 | 5.250 | 6.663 | 6.493 | 5.396 | 6.309 | 0.637 |
Sunflower | 9.284 | 12.717 | 10.948 | 11.278 | 12.165 | 12.283 | 9.493 | 11.691 | 11.562 | 9.850 | 11.251 | 1.150 |
Rape | 6.905 | 8.049 | 6.779 | 7.111 | 7.843 | 7.830 | 5.288 | 7.474 | 7.356 | 5.504 | 7.085 | 0.900 |
Pea | 5.809 | 10.845 | 8.908 | 9.252 | 10.252 | 10.357 | 7.422 | 9.730 | 9.560 | 7.765 | 9.234 | 1.482 |
Alfalfa | 8.714 | 11.136 | 9.626 | 9.935 | 10.792 | 10.810 | 8.098 | 10.352 | 10.202 | 8.517 | 9.920 | 1.002 |
Beet | 7.436 | 8.881 | 7.601 | 7.857 | 8.618 | 8.585 | 6.537 | 8.217 | 8.074 | 6.749 | 7.844 | 0.745 |
Potato | 4.628 | 7.952 | 5.863 | 6.197 | 7.380 | 7.389 | 4.895 | 6.752 | 6.521 | 5.035 | 6.190 | 1.091 |
Crop Type | No. of Pixels | Time (m) | ||
---|---|---|---|---|
[,] | Ratio | |||
Wheat | 62,482 | 104.136 | 1.145 | 90.95 |
Corn | 36,065 | 60.108 | 0.661 | 90.93 |
Barley | 44,154 | 73.590 | 0.809 | 9.,96 |
Sunflower | 29,463 | 49.105 | 0.540 | 90.94 |
Rape | 23,467 | 39.111 | 0.430 | 90.96 |
Pea | 14,726 | 24.543 | 0.269 | 91.24 |
Alfalfa | 21,683 | 36.138 | 0.397 | 91.03 |
Beet | 16,466 | 27.443 | 0.301 | 91.17 |
Potato | 14,337 | 23.895 | 0.262 | 91.20 |
Total | 262,843 | 438.069 | 4.814 | - |
Wheat | Potato | |||||
---|---|---|---|---|---|---|
SOS | 311 | 311 | 313 | 524 | 522 | 520 |
EOS | 538 | 538 | 539 | 606 | 608 | 610 |
LOS | 227 | 227 | 226 | 82 | 87 | 89 |
DOM | 454 | 455 | 453 | 565 | 565 | 565 |
Max Value | 2.79 | 2.80 | 2.84 | 5.09 | 5.01 | 4.93 |
Blue Area | 115.01 | 113.08 | 107.30 | 129.70 | 135.62 | 137.16 |
Green Area | 56.74 | 57.07 | 58.44 | 55.51 | 58.02 | 58.66 |
Amplitude | 1.25 | 1.26 | 1.29 | 3.37 | 3.35 | 3.28 |
SOS | EOS | LOS | DOM | Max Value | Blue Area | Green Area | Amp | |
---|---|---|---|---|---|---|---|---|
Crop Mean | 2.76 ± 4.9 | 3.47 ± 3.6 | 5.37 ± 10.6 | 3.49 ± 8.9 | 0.07 ± 0.1 | 5.37 ± 10.2 | 3.19 ± 5.3 | 0.09 ± 0.1 |
Global Mean | 4.60 ± 8.5 | 4.99 ± 6.0 | 7.58 ± 11.2 | 4.66 ± 8.4 | 0.09 ± 0.1 | 6.69 ± 10.1 | 4.02 ± 6.2 | 0.12 ± 0.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belda, S.; Pipia, L.; Morcillo-Pallarés, P.; Verrelst, J. Optimizing Gaussian Process Regression for Image Time Series Gap-Filling and Crop Monitoring. Agronomy 2020, 10, 618. https://doi.org/10.3390/agronomy10050618
Belda S, Pipia L, Morcillo-Pallarés P, Verrelst J. Optimizing Gaussian Process Regression for Image Time Series Gap-Filling and Crop Monitoring. Agronomy. 2020; 10(5):618. https://doi.org/10.3390/agronomy10050618
Chicago/Turabian StyleBelda, Santiago, Luca Pipia, Pablo Morcillo-Pallarés, and Jochem Verrelst. 2020. "Optimizing Gaussian Process Regression for Image Time Series Gap-Filling and Crop Monitoring" Agronomy 10, no. 5: 618. https://doi.org/10.3390/agronomy10050618
APA StyleBelda, S., Pipia, L., Morcillo-Pallarés, P., & Verrelst, J. (2020). Optimizing Gaussian Process Regression for Image Time Series Gap-Filling and Crop Monitoring. Agronomy, 10(5), 618. https://doi.org/10.3390/agronomy10050618