Rapid Non-Destructive Detection of Rice Seed Vigor via Terahertz Spectroscopy
<p>Schematic diagram of the working principle of the QT-TO1000 Terahertz Spectral Transmission 3D Imaging Scanner.</p> "> Figure 2
<p>Flowchart of Rice Seed Viability Detection.</p> "> Figure 3
<p>Seed Germination Box with Neatly Arranged Rice Seeds.</p> "> Figure 4
<p>THz Time-Domain Spectra of Rice Seeds at Various Vigor Levels.</p> "> Figure 5
<p>The results of feature extraction from the terahertz spectra of rice seeds obtained through the UVE algorithm.</p> "> Figure 6
<p>Feature Extraction Results of Terahertz Spectra of Rice Seeds Using the CARS Algorithm.</p> "> Figure 7
<p>Visualization of Rice Seed Terahertz Spectra Based on the First Three Principal Components Extracted by PCA.</p> "> Figure 8
<p>Confusion Matrix of the Full-Spectrum RF Model for the Prediction Results.</p> "> Figure 9
<p>Confusion Matrix of the CARS-PLS-DA Model for the Prediction Results.</p> "> Figure 10
<p>Confusion Matrix of the CARS-KNN Model for the Prediction Results.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Rice Seeds with Different Vigor Levels
2.2. Overview of Terahertz Imaging Equipment
2.3. Optical Parameter Extraction
2.4. Seed Germination Experiment
2.5. Algorithm Principle
2.5.1. Competitive Adaptive Reweighted Sampling (CARS)
2.5.2. Uninformative Variable Elimination (UVE) Algorithm
- (1)
- Establish the initial model and add noise variables: A partial least squares (PLS) model is constructed using all variables, and a noise variable matrix is introduced to simulate the effect of uninformative variables. The model is expressed as follows:
- (2)
- represents the response variable, is the original variable matrix, and are the coefficients of the original variables and noise variables, respectively, and is the error term. Assess the stability of the variables: The stability of each variable’s coefficient in the model, including noise variables, is calculated to evaluate its contribution. It is computed as the ratio of the standard deviation of the variable’s coefficient to its absolute mean value, and the formula is as follows:
- (3)
- Variable selection and model optimization: A threshold T is set based on the stability distribution of the noise variables. Variables with stability values lower than this threshold are considered uninformative and are eliminated. The selected variables are then used to construct the optimized model.
2.6. Evaluation Criteria for the Rice Vigor Detection Model
- (1)
- Precision:
- (2)
- Recall:
- (3)
- Accuracy:
3. Results and Discussion
3.1. Germination Results
3.2. Spectral Feature Extraction of Rice Seeds
Extraction of Spectral Regions of Interest in Rice Seeds
3.3. Terahertz Spectral Band Selection for Rice Seeds
3.3.1. Wavelength Variable Selection Based on the UVE Algorithm
3.3.2. Wavelength Variable Selection Based on the CARS Algorithm
3.3.3. Wavelength Variable Selection Based on the PCA Algorithm
3.4. Development of a Qualitative Detection Model for Rice Seed Viability Based on Terahertz Spectra
3.4.1. Establishment of an RF Qualitative Model for the Terahertz Spectra of Rice Seeds
3.4.2. Establishment of PLS-DA Qualitative Model for Terahertz Spectra of Rice Seeds
3.4.3. Establishment of a KNN Qualitative Model
3.4.4. Qualitative Model Analysis of Rice Seed Vigor Using RF, PLS-DA, and KNN
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, L.; Risalat, H.; Cao, R.; Hu, Q.; Pan, X.; Hu, Y.; Zhang, G. Food Security in China: View of Rice Production in Recent 20 Years. Foods 2022, 11, 3324. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; He, Y.; Huang, S.; Wang, Z. Advances in the identification of quantitative trait loci and genes involved in seed vigor in rice. Front. Plant Sci. 2021, 12, 659307. [Google Scholar] [CrossRef]
- Xing, M.Y.; Long, Y.; Wang, Q.Y.; Tian, X.; Fan, S.; Zhang, C.; Huang, W. Physiological Alterations and Nondestructive Test Methods of Crop Seed Vigor: A Comprehensive Review. Agriculture 2023, 13, 527. [Google Scholar] [CrossRef]
- Wang, X.; Zheng, H.; Tang, Q. Early Harvesting Improves Seed Vigor of Hybrid Rice Seeds. Sci. Rep. 2018, 8, 11092. [Google Scholar]
- Anhar, A.; Putri, D.H.; Advinda, L.; Atika, V.; Amimi, S.; Aldo, W.; Ruchi, W. Correction to: Molecular characterization of Trichoderma strains from West Sumatera, Indonesia and their beneficial effects on rice seedling growth. J. Crop Sci. Biotechnol. 2021, 24, 441–448. [Google Scholar] [CrossRef]
- Sukkaew, N.; Kaewnaborn, J.; Soonsuwon, W.; Wongvarodom, V. Tetrazolium test for evaluating viability of stored rice (Oryza sativa) seeds. Seed Sci. Technol. 2023, 51, 97–109. [Google Scholar] [CrossRef]
- Alahakoon, A.; Abeysiriwardena, D.S.D.; Damunupola, J.W.; Hay, F.R.; Gama-Arachchige, N.S. Accelerated aging test of seed vigour for predicting field emergence of wet direct-seeded rice. Crop Pasture Sci. 2021, 72, 773–781. [Google Scholar] [CrossRef]
- Jin, B.; Qi, H.; Jia, L.; Tang, Q.; Gao, L.; Li, Z.; Zhao, G. Determination of viability and vigor of naturally-aged rice seeds using hyperspectral imaging with machine learning. Infrared Phys. Technol. 2022, 122, 104097. [Google Scholar] [CrossRef]
- Al Siam, A.; Salehin, M.M.; Alam, M.S.; Ahamed, S.; Islam, M.H.; Rahman, A. Paddy seed viability prediction based on feature fusion of color and hyperspectral image with multivariate analysis. Heliyon 2024, 10, e36999. [Google Scholar] [CrossRef]
- He, X.; Feng, X.; Sun, D.; Liu, F.; Bao, Y.; He, Y. Rapid and nondestructive measurement of rice seed vitality of different years using near-infrared hyperspectral imaging. Molecules 2019, 24, 2227. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.Y.; Chen, J.; Zhou, M.; Zhao, Y.; Long, T.; Wu, Q.; Xu, L. Prediction of peanut seed vigor based on hyperspectral images. Food Sci. Technol. 2022, 42, e32822. [Google Scholar] [CrossRef]
- Lakshmanan, M.K.; Boelt, B.; Gislum, R. A chemometric method for the viability analysis of spinach seeds by near infrared spectroscopy with variable selection using successive projections algorithm. J. Near Infrared Spectrosc. 2023, 31, 24–32. [Google Scholar] [CrossRef]
- Ambrose, A.; Lohumi, S.; Lee, W.H.; Cho, B.K. Comparative nondestructive measurement of corn seed viability using Fourier transform near-infrared (FT-NIR) and Raman spectroscopy. Sens. Actuators B Chem. 2016, 224, 500–506. [Google Scholar] [CrossRef]
- Pardo, G.P.; Pacheco, A.D.; Tomás, S.A.; Orea, A.C.; Aguilar, C.H. Characterization of aged lettuce and chard seeds by photothermal techniques. Int. J. Thermophys. 2018, 39, 118. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Y.; Ge, H.Y.; Jiang, Y.; Qin, Y. Identification of rice freshness using terahertz imaging and deep learning. Photonics 2023, 10, 547. [Google Scholar] [CrossRef]
- Wu, J.Z.; Li, X.Q.; Liu, C.L.; Le, Y.U.; Sun, X.; Sun, L.J. Research on nondestructive testing of corn seed vigor based on THz-TDS reflection imaging. Spectrosc. Spectr. Anal. 2020, 40, 2840. [Google Scholar]
- Sano, N.; Rajjou, L.; North, H.M.; Debeaujon, I.; Marion-Poll, A.; Seo, M. Staying alive: Molecular aspects of seed longevity. Plant Cell Physiol. 2016, 57, 660–674. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.X.; Fu, H.; Gao, J.D.; Zhang, Y.X.; Huang, W.J.; Chen, Z.J.; Yan, S.J.; Liu, J. Identification of metabolomic biomarkers of seed vigor and aging in hybrid rice. Rice 2022, 15, 7. [Google Scholar] [CrossRef] [PubMed]
- Corbineau, F. The effects of storage conditions on seed deterioration and ageing: How to improve seed longevity. Seeds 2024, 3, 56–75. [Google Scholar] [CrossRef]
- GB/T 3543.4-1995; Rules for Agricultural Seed Testing—Germination Test. China Standard Press: Beijing, China, 1995.
- Liu, H.; Zhu, Y.F.; Liu, X.; Jiang, Y.; Deng, S.; Ai, X.; Deng, Z. Effect of artificially accelerated aging on the vigor of Metasequoia glyptostroboides seeds. J. For. Res. 2020, 31, 769–779. [Google Scholar] [CrossRef]
- Wu, F.; Fang, Q.; Yan, S.W.; Pan, L.; Tang, X.; Ye, W. Effects of zinc oxide nanoparticles on arsenic stress in rice (Oryza sativa L.): Germination, early growth, and arsenic uptake. Environ. Sci. Pollut. Res. 2020, 27, 26974–26981. [Google Scholar] [CrossRef] [PubMed]
- Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009, 45, 427–437. [Google Scholar] [CrossRef]
- Fan, Y.; Ma, S.; Wu, T. Individual wheat kernels vigor assessment based on NIR spectroscopy coupled with machine learning methodologies. Infrared Phys. Technol. 2020, 105, 103213. [Google Scholar] [CrossRef]
- Kandpal, L.M.; Lohumi, S.; Kim, M.S.; Kang, J.S.; Cho, B.K. Near-infrared hyperspectral imaging system coupled with multivariate methods to predict viability and vigor in muskmelon seeds. Sens. Actuators B Chem. 2016, 229, 534–544. [Google Scholar] [CrossRef]
- Gadotti, G.I.; Ascoli, C.A.; Bernardy, R.; Monteiro, R.D.C.; Pinheiro, R.D.M. Machine learning for soybean seeds lots classification. Eng. Agrícol. 2022, 42, e20210101. [Google Scholar] [CrossRef]
- Ahmad, N.A. Numerically stable locality-preserving partial least squares discriminant analysis for efficient dimensionality reduction and classification of high-dimensional data. Heliyon 2024, 10, e26157. [Google Scholar] [CrossRef]
- Ye, L.; Su, W.; Zou, J.; Ding, Z.; Luo, Y.; Li, W.; Zhou, Y.; Wu, H.; Yao, H. Ultra-broadband composite terahertz absorber prediction based on K-nearest neighbor. Opt. Laser Technol. 2024, 170, 110208. [Google Scholar] [CrossRef]
Aging Days (D) | Total Number of Samples | GE (%) | GI | VI | GR (%) |
---|---|---|---|---|---|
0 | 60 | 85 | 16.53 | 735.92 | 95 |
1 | 60 | 78.3 | 12.67 | 554.31 | 90 |
2 | 60 | 70 | 10.34 | 426.32 | 83.3 |
3 | 60 | 16.7 | 7.35 | 259.08 | 73.3 |
4 | 60 | 11.7 | 6.43 | 173.70 | 65 |
5 | 60 | 5 | 4.81 | 110.73 | 51.7 |
6 | 60 | 0 | 2.90 | 36.48 | 40 |
Aging Days (D) | Total Samples | D1 | D2 | D3 | D4 | D5 | D6 | D7 | D8 | D9 | D 10 | D 11 | D 12 | No Germination |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
High Viability | Low Viability | No Viability | ||||||||||||
0 | 60 | 1 | 1 | 24 | 21 | 4 | 5 | 1 | 3 | |||||
1 | 60 | 0 | 0 | 7 | 27 | 13 | 3 | 3 | 1 | 6 | ||||
2 | 60 | 1 | 12 | 29 | 4 | 2 | 2 | 10 | ||||||
3 | 60 | 3 | 7 | 22 | 7 | 1 | 2 | 1 | 1 | 16 | ||||
4 | 60 | 2 | 5 | 20 | 8 | 2 | 1 | 1 | 21 | |||||
5 | 60 | 3 | 14 | 11 | 1 | 2 | 29 | |||||||
6 | 60 | 1 | 4 | 9 | 6 | 1 | 3 | 36 |
Modeling Method | Pre-Processing Methods | Number of Variables | Tree | Number of Test Samples | Number of Correct Predictions | Test Accuracy | Out-of-Bag Error Rate (%) |
---|---|---|---|---|---|---|---|
RF | None | 3375 | 42 | 105 | 99 | 94.29% | 5.71 |
CARS | 22 | 30 | 105 | 96 | 91.43% | 8.5 | |
UVE | 141 | 93 | 105 | 98 | 93.33% | 6.67 | |
PCA | 53 | 23 | 105 | 92 | 87.62% | 12.38 |
Methods Modeling Method | Pre-Processing Methods | Number of Variables | PC | Training Set Accuracy (%) | Number of Test Samples | Number of Correct Predictions | Prediction Accuracy (%) |
---|---|---|---|---|---|---|---|
PLS-DA | None | 3375 | 5 | 94.60 | 105 | 97 | 92.38 |
CARS | 22 | 5 | 94.29 | 105 | 100 | 95.24 | |
UVE | 141 | 5 | 93.97 | 105 | 99 | 95.24 | |
PCA | 53 | 7 | 94.60 | 105 | 97 | 92.38 |
Methods Modeling Method | Pre-Treatment Methods | Number of Variables | K-Value | Training Set Accuracy (%) | Number of Test Set Samples | Number of Correct Predictions | Test Accuracy (%) |
---|---|---|---|---|---|---|---|
KNN | None | 3375 | 5 | 93.02 | 105 | 100 | 95.24 |
CARS | 22 | 7 | 94.60 | 105 | 102 | 97.14 | |
UVE | 141 | 23 | 88.89 | 105 | 94 | 95.24 | |
PCA | 53 | 3 | 95.56 | 105 | 100 | 95.24 |
Modeling Method | Pre-Treatment Methods | Number of Variables | Number of Test Set Samples | Number of Correct Predictions | Number of Incorrect Predictions | Test Accuracy (%) |
---|---|---|---|---|---|---|
RF | None | 3375 | 105 | 100 | 5 | 95.24 |
PLS-DA | CARS | 22 | 105 | 100 | 5 | 95.24 |
KNN | CARS | 22 | 105 | 102 | 3 | 97.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Xu, S.; Huang, Z.; Liu, W.; Zheng, J.; Liao, Y. Rapid Non-Destructive Detection of Rice Seed Vigor via Terahertz Spectroscopy. Agriculture 2025, 15, 34. https://doi.org/10.3390/agriculture15010034
Hu J, Xu S, Huang Z, Liu W, Zheng J, Liao Y. Rapid Non-Destructive Detection of Rice Seed Vigor via Terahertz Spectroscopy. Agriculture. 2025; 15(1):34. https://doi.org/10.3390/agriculture15010034
Chicago/Turabian StyleHu, Jun, Sijie Xu, Zhikai Huang, Wennan Liu, Jiahao Zheng, and Yuxi Liao. 2025. "Rapid Non-Destructive Detection of Rice Seed Vigor via Terahertz Spectroscopy" Agriculture 15, no. 1: 34. https://doi.org/10.3390/agriculture15010034
APA StyleHu, J., Xu, S., Huang, Z., Liu, W., Zheng, J., & Liao, Y. (2025). Rapid Non-Destructive Detection of Rice Seed Vigor via Terahertz Spectroscopy. Agriculture, 15(1), 34. https://doi.org/10.3390/agriculture15010034