Pilot Study on a Liquid Mineral Foliar Fertilizer Mixed with Herbicides for Maize Protection and Nutrition
<p>Diagram of the laboratory installation used to make the complex composition of fertilizers (1—stand; 2—clamp; 3—gas bulb; 4—tripod; 5—balloon; 6—thermometer; 7—agitator; 8—refrigerant).</p> "> Figure 2
<p>Structural formulas of: (<b>a</b>) 2,4-D acid; (<b>b</b>) Dicamba.</p> "> Figure 3
<p>Temperatures (°C) recorded at the Moara Domneasca weather station, agricultural year 2020–2021.</p> "> Figure 4
<p>Precipitation (mm) recorded at the Moara Domneasca weather station, agricultural year 2020–2021.</p> "> Figure 5
<p>Temperatures (°C) recorded at the Moara Domneasca weather station, agricultural year 2021–2022.</p> "> Figure 6
<p>Precipitation (mm) recorded at the Moara Domneasca weather station, agricultural year 2021–2022.</p> "> Figure 7
<p><sup>1</sup>H-NMR spectrum of 2,4-D acid.</p> "> Figure 8
<p><sup>1</sup>H-NMR spectrum of Dicamba.</p> "> Figure 9
<p>The technological flow of manufacturing liquid foliar fertilizer.</p> "> Figure 10
<p>The new liquid foliar mineral fertilizer.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
- (a)
- Preparation of the macroelements solution (N, P, K);
- (b)
- Preparation of the microelements solution (Fe, Mg, B, Zn, Cu, Mo, Ni, V, Cr);
- (c)
- Obtaining the composition of liquid foliar mineral fertilizers.
2.1. Obtaining the Solution of Macroelements (N, P, K)
2.2. Obtaining the Solution of Microelements (Fe, Mg, B, Cu, Zn, Mo, Ni, V, Cr)
2.3. Obtaining the Liquid Foliar Fertilizer
2.4. Field Studies
2.4.1. Experimental Site
2.4.2. Field Trial Set-Up
2.4.3. Herbicides and Foliar Fertilizer Application
2.4.4. Parameters Studied
2.4.5. Statistical Analysis
3. Results and Discussion
3.1. Results Regarding the Developed Liquid Fertilizer
3.2. Response of Maize Plants to the Treatment with the Herbicide–Foliar Fertilizer Mixture
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Vasin, V.G.; Mikhalkin, N.G.; Vasina, N.V.; Kim, V.E.; Fadeeva, E.S. Yield Structure of Spring Wheat when Applying Fertilisers and Stimulating Preparations. Volga Reg. Farml. 2022, 1, 1011. [Google Scholar] [CrossRef]
- Malakouti, M.J. The Effect of Micronutrients in Ensuring Efficient Use of Macronutrients. Turk. J. Agric. For. 2008, 32, 215–220. [Google Scholar]
- Rutkowska, B.; Szulc, W.; Sosulski, T.; Stępień, W. Soil micronutrient availability to crops affected by long-term inorganic and organic fertilizer applications. Plant Soil Environ. 2014, 60, 198–203. [Google Scholar] [CrossRef]
- Gaj, R.; Murawska, B.; Fabisiak-Spychaj, E.; Budka, A.; Kozera, W. The impact of cover crops and foliar application of micronutrients on accumulation of macronutrients in potato tubers at technological maturity stage. Eur. J. Hortic. Sci. 2018, 83, 345–355. [Google Scholar] [CrossRef]
- Toshkentboyeva, F. Influence of Cultural Fertilizers and Additional Feedings on the Production Indicators of Winter Wheat Varieties. In Proceedings of the International Conference on Advance Research In Humanities, Applied Sciences and Education, (11th-ICARHASE), New York, NY, USA, 28 February 2023. [Google Scholar]
- Chekaev, N.P.; Blinokhvatova, Y.V.; Nushtaeva, A.V.; Kuznetsov, A.Y. Achieving the balance of macronutrients with the No-till technology in the cultivation of agricultural crops with microbiological fertilizers. IOP Conf. Ser. Earth Environ. Sci. 2022, 953, 012022. [Google Scholar] [CrossRef]
- Uktamov, D.A. Microelement (Cu) Salts Application to Superphosphate Fertilizer Technology. Nat. Volatiles Essent. Oils J. 2021, 8, 10661–10671. [Google Scholar]
- Gluhić, D.; Rujeka, V. Microelements in fertilization of plants. Glas. Zaštite Bilja 2013, 36, 26–34. [Google Scholar]
- Niu, J.; Liu, C.; Huang, M.; Liu, K.; Yan, D. Effects of Foliar Fertilization: A Review of Current Status and Future Perspectives. J. Soil Sci. Plant Nutr. 2021, 21, 104–118. [Google Scholar] [CrossRef]
- Dubey, R.; Shami, T.C.; Bhasker Rao, K.U. Microencapsulation Technology and Applications. Def. Sci. J. 2009, 59, 82–95. [Google Scholar]
- Mikula, K.; Izydorczyk, G.; Skrzypczak, D.; Mironiuk, M.; Moustakas, K.; Witek-Krowiak, A.; Chojnacka, K. Controlled release micronutrient fertilizers for precision agriculture—A review. Sci. Total Environ. 2019, 712, 136365. [Google Scholar] [CrossRef] [PubMed]
- Hubca, G.; Hodoşan, C.; Stănescu, P.O.; Pocşan, I.; Dimonie, M. Synthese de l’alcool polyvinylique au degré d’hydrolyse dirigeable par l’alcoolyse du polyvinylacétate en solution homogene. Univ. Politeh. Buchar. Sci. Bull. Ser. B 2006, 68, 25–34. [Google Scholar]
- Hubca, G.; Hodoşan, C.; Stănescu, P.O.; Dimonie, M.; Duşescu, I. Investigation on the possibilities to control the alcoholysis reaction of polyvinyl acetate in suspension. Mater. Plast. 2006, 43, 274–277. [Google Scholar]
- Culpepper, A.S.; Sosnoskie, L.M.; Shugart, J.; Leifheit, N.; Curry, M.; Gray, T. Effects of LowDose Applications of 2,4-D and Dicamba on Watermelon. Weed Technol. 2018, 32, 267–272. [Google Scholar] [CrossRef]
- Dayan, F.E. Current Status and Future Prospects in Herbicide Discovery. Plants 2019, 8, 341. [Google Scholar] [CrossRef] [PubMed]
- Brankov, M.; Simic, M.; Mesarovic, J.; Kresovic, B.; Dragicevic, V. Integrated effects of herbicides and foliar fertilizer on corn inbred line. Chil. J. Agric. Res. 2020, 80, 50–60. [Google Scholar] [CrossRef]
- Şerban, M.; Mǎturaru, G. Annual and Perennial Weed Control in Maize by Early Post-Emergently Application of Herbicides; INCDA Fundulea: Fundulea, Romania, 2019; Volume 87, pp. 2067–7758. [Google Scholar]
- Hodoșan, C.; Dușescu, I.; Taraș, R. Metode Fizico-Chimice de Analiză General Applicate în Industria Alimentară; Printech: Bucharest, Romania, 2004. [Google Scholar]
- Hodoșan, C.; Dușescu, I.; Taraș, R. Tehnici de Control a Calității Produselor Alimentare și a Apei Potabile; Printech: Bucharest, Romania, 2004. [Google Scholar]
- Hodoşan, C. Chimie-Fizica si Coloidala; Pim: Iasi, Romania, 2014. [Google Scholar]
- Ciontu, C.; Sandoiu, D.I.; Penescu, A.; Gadea, M.; Schiopu, T.; Obrisca, M.; Dinca, L. The Esential Role of Crop Rotation and Nitrogen Fertilization in Wheat and Maize in the Sustenable Agriculture System of Reddish Preluvosoil. AgroLife Sci. J. 2012, 1, 68–77. [Google Scholar]
- Available online: https://www.incda-fundulea.ro (accessed on 21 September 2020).
- Kirkby, E.A. Introduction, definition, and classification of nutrients. In Marschner’s Mineral Nutrition of Plants, 4th ed.; Rengel, Z., Cakmak, I., White, P.J., Eds.; Academic Press: London, UK, 2023. [Google Scholar]
- Fageria, N.K.; Filho, M.B.; Moreira, A.; Guimarães, C.M. Foliar Fertilization of Crop Plants. J. Plant Nutr. 2009, 32, 1044–1064. [Google Scholar] [CrossRef]
Chemical Substances | Quantity | Chemical Substances | Quantity |
---|---|---|---|
FeSO4. 7H2O | 0.50 kg | NiSO4 | 0.0005 kg |
MgSO4. 7 H2O | 0.10 kg | Na2Cr2O7 | 0.00025 kg |
ZnSO4. 7 H2O | 0.031 kg | NH4VO3 | 0.00025 kg |
CuSO4. 5 H2O | 0.0004 kg | H3BO3 | 0.085 kg |
(NH4)6Mo7O24. H2O | 0.0009 kg |
Type | Reddish Preluvosol |
---|---|
Texture | Clay-Loam |
pH | 5.62 |
Humus content | 1.77% |
Total nitrogen | 0.182% |
Mobile phosphorus | PAL = 62 mg/kg |
Mobile potassium | KAL = 337 mg/kg |
Winter barley (2019–2020)/Winter wheat (2020–2021) |
Fertilization scheme |
BBCH-00; DAP 150 kg/ha−1 (27% N, 69% P2O5) |
BBCH-30 Urea; 125 kg/ha (57.5% N) |
BBCH-37 Ammonium nitrate; 100 kg/ha (33.5% N) |
Characteristics |
---|
Growing period of 127–130 days; plant tall, vigorous with an average height of 260–270 cm; very good resistance to lodging; weight of 1000 grains: 300–320 g; hectoliter weight: 71–73 kg/hL. |
Drought and heat resistance; resistant to smut (Ustilago maydis); tolerance to helminthosporiosis (Helminthosporium turcicum Pass); loses moisture easily from the grain. |
8.0–9.2% protein; 4.0–4.5% fat; 73.0–74.2% starch. |
The production of grains obtained under the following conditions: non-irrigated: 9.0–10.5 t/ha; Irrigated: 10.5–14.0 t/ha. |
Recommendations: Cultivation area: recommended for zones I and II for corn cultivation. Optimal density: for non-irrigated: 55,000–60,000 plants/ha; for irrigated: 65,000–70,000 plants/ha. |
No. | Substance | Chemical Formula | Purity (%) |
---|---|---|---|
1 | Urea | CH4N2O | 97.5–98.5 |
2 | Monoammoniacal phosphate | NH4H2PO4 | 97.0–98.5 |
3 | Potassium nitrate | KNO3 | 97.5–98.5 |
4 | Ferrous sulphate | FeSO4 | 98.5 |
5 | Magnesium sulphate | MgSO4 | 97–98.5 |
6 | Boric acid | H3BO3 | 97–98.5 |
7 | Zinc sulphate | ZnSO4 | 97.5–98.5 |
8 | Copper sulphate | CuSO4 | 99.5 |
9 | Ammonium paramolybdate | (NH4)6Mo7O24 | 98–98.5 |
10 | Nickel sulphate | NiSO4 | 99.5 |
11 | Ammonium vanadate | (NH4)VO3 | 99.6 |
12 | Sodium dichromate | Na2Cr2O7 | 99.5 |
Cation | Stability Constant (K) | Cation | Stability Constant (K) |
---|---|---|---|
Cr3+ | 1.00 × 1023 | Ni2+ | 4.17 × 1018 |
Cu2+ | 6.310 × 1018 | V3+ | 7.9 × 1025 |
Fe2+ | 2.14 × 1014 | Zn2+ | 3.16 × 1016 |
Mg2+ | 4.90 × 108 |
Characteristics | Chemical Expression |
---|---|
A singlet at δ = 4.7 ppm generated by the two protons attached to the carbon atom from the methyl group to the ether oxygen and the carboxyl function. | |
A singlet at δ = 5.7 ppm of the proton in the structure of the carboxylic function. | |
An AB system between δ = 6.2–7.1 ppm, as well as a doublet with a reduced coupling constant, at δ = 7.3 ppm, which correspond to the three aromatic protons in the benzene nucleus in positions 3.5 and 3.6. | |
At deuteration of the sample, the signal δ = 5.7 ppm corresponding to the proton in the structure of the carboxylic function disappeared, which demonstrated that the signal initially assigned to the proton in this position was correct. |
Characteristics | Chemical Expression |
---|---|
A singlet at δ = 4.0 ppm, corresponding to the three hydrogen atoms from the methoxy group. | |
Two doublets at δ = 7.1 and δ = 7.3 ppm corresponding to the two aromatic protons (from the benzene nucleus, from positions 4 and 5). | |
A singlet at TM = 3.6 ppm, given by the proton from the carboxylic function. |
No. | Macroelements | Content (%) | Substances | Quantity Used to Obtain 1 L of Fertilizer |
1 | Total nitrogen | 8.5 (±0.5) | Urea | 100 g |
2 | Phosphorus calculated as P2O5 | 6.5 (±0.5) | Monoammoniacal phosphate H4+NO−P(O)(OH)2; the product also participates in the nitrogen balance through NH4 | 93 g |
3 | Potassium calculated as K2O | 4.2 (±0.5) | Potassium nitrate KNO3; the product also participates in the total nitrogen balance through NO3 | 78 g |
No. | Microelements | Content (g L−1) | Substances | Quantity Used to Obtain 1 L of Fertilizer |
1 | Iron | 1.0–1.1 | FeSO4 7H2O | 4.9–5.0 g |
2 | Magnesium | 0.1–0.15 | MgSO4 7H2O | 1.0–1.01 g |
3 | Boron | 0.15–0.17 | H3BO4 | 0.85 g |
4 | Zinc | 0.07–0.09 | ZnSO4 7H2O | 0.31 g |
5 | Copper | 0.01–0.015 | CuSO4 7H2O | 0.04 g |
6 | Molybdenum | 0.005–0.007 | (NH4)6Mo7O24 | 0.09 g |
7 | Nickel | 0.001–0.0015 | NiSO4 | 0.045 g |
8 | Vanadium | 0.001–0.0015 | NH4VO4 | 0.023 g |
9 | Chromium | 0.0008–0.0001 | Na2Cr2O7 | 0.022 g |
No. | Input Products/Solutions | Quantity | Outputs Products/Solutions | Quantity |
---|---|---|---|---|
(A) Aqueous solution of NPK macroelements | ||||
1 | Softened water | 60 L | Solution of NPK macroelements | 87.1 kg |
2 | Monoammoniacal phosphate | 9.3 kg | ||
3 | Urea | 10 kg | ||
4 | Nitre | 7.8 kg | ||
(B) Solution of microelements (Fe, Mg, B, Zn, Cu, Mo, Ni, V, Cr) | ||||
1 | Softened water | 20 L | Solution of microelements: Fe, Mg, B, Zn, Cu, Mo, Ni, V, Cr | 21.6684 kg |
2 | Na2—EDTA | 0.95 kg | ||
3 | FeSO4. 7H2O | 0.5 kg | ||
4 | MgSO4. 7H2O | 0.1 kg | ||
5 | ZnSO4. 7H2O | 0.031 kg | ||
6 | CuSO4. 5H2O | 0.0004 kg | ||
7 | (NH4)6 Mo7O24. 4H2O | 0.0009 kg | ||
8 | NiSO4 | 0.0005 kg | ||
9 | Na2Cr2O7 | 0.00025 kg | ||
10 | NH4VO3 | 0.00025 kg | ||
11 | H3BO3 | 0.85 | ||
(C) Liquid foliar fertilizer “CaLuPa”, concentrated product | ||||
1 | Aqueous solution of NPK macroelements | 87.1 kg | Liquid foliar fertilizer “CaLuPa”, concentrated product | 112.2695 kg |
2 | Aqueous solution of microelements (Fe, Mg, Zn, Cu, Mo, Ni, Cr, V, B) | 21.6684 kg | ||
3 | Polyvinyl alcohol | 0.001 kg | 100 L | |
4 | Phenolphthalein | 0.0001 kg | ||
5 | Softened water until the completion of 100 L final product | 3.5 L | ||
Total inputs | 112.2695 kg | Total outputs | 112.2695 kg |
Weed Class | Weed Species | The Percentage of Weeds |
---|---|---|
Annual dicotyledonous | Amaranthus retroflexus, Chenopodium album, Polygonum convolvulus | 47% |
Perennial dicotyledonous | Cirsium arvense, Convolvulus arvensis | |
Annual monocotyledonous | Setaria viridis, Echinochloa crus-galli | 53% |
Perennial monocotyledonous | Sorghum halepense |
Product | Weed Density (Number of Plants/m2) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
After 2 Weeks from the Treatment | After 4 Weeks from the Treatment | |||||||||||
DC | MC | Mean | DC | MC | Mean | |||||||
2021 | 2022 | 2021 | 2022 | DC | MC | 2021 | 2022 | 2021 | 2022 | DC | MC | |
Control (untreated) | 74.5 | 76.7 | 84.2 | 88.0 | 75.6 | 86.1 | 75.1 | 77.3 | 87.2 | 89.6 | 76.2 | 88.4 |
Foliar Fertilizer + DICOPUR TOP 5 L/ha (4:1) | 0 | 0 | 40.6 | 55.0 | 0 | 47.8 | 2.0 | 2.5 | 44.3 | 57.4 | 2.25 | 50.85 |
DICOPUR TOP (standard treatment) 1 L/ha | 2.5 | 3.5 | 42.8 | 57.0 | 3.0 | 49.9 | 3.0 | 5.4 | 49.6 | 58.2 | 4.2 | 53.9 |
Product | Herbicidal Efficacy (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
After 2 Weeks from the Treatment | After 4 Weeks from the Treatment | |||||||||||
DC | MC | Mean | DC | MC | Mean | |||||||
2021 | 2022 | 2021 | 2022 | DC | MC | 2021 | 2022 | 2021 | 2022 | DC | MC | |
Control (untreated) | - | - | - | - | - | - | - | - | - | - | - | - |
Foliar Fertilizer + DICOPUR TOP 5 L/ha (4:1) | 100 | 100 | 51.78 | 37.5 | 100 | 44.64 | 97.33 | 96.74 | 49.19 | 35.93 | 97.03 | 42.56 |
DICOPUR TOP (standard treatment) 1 L/ha | 96.64 | 95.43 | 49.16 | 35.22 | 96.03 | 42.19 | 96.00 | 93.01 | 43.11 | 35.04 | 94.50 | 39.07 |
Product | Grain Yield (t ha−1) | |||||
---|---|---|---|---|---|---|
2021 | 2022 | Mean 2021–2022 | ||||
t ha−1 | % | t ha−1 | % | t ha−1 | % | |
Control (untreated) | 8.63c | 100 | 6.51c | 100 | 7.57c | 100 |
Foliar Fertilizer + DICOPUR TOP 5 L/ha (4:1) | 10.54b | 114.56 | 7.50b | 115.20 | 9.02a | 119.15 |
DICOPUR TOP (standard treatment) 1 L/ha | 10.15b | 110.32 | 7.32b | 112.44 | 8.73b | 115.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hodoșan, C.; Nistor, L.; Poşan, P.; Bărbuică, S.I.; Ianiţchi, D.; Luţă, G.; Szilagyi, L. Pilot Study on a Liquid Mineral Foliar Fertilizer Mixed with Herbicides for Maize Protection and Nutrition. Agriculture 2024, 14, 2129. https://doi.org/10.3390/agriculture14122129
Hodoșan C, Nistor L, Poşan P, Bărbuică SI, Ianiţchi D, Luţă G, Szilagyi L. Pilot Study on a Liquid Mineral Foliar Fertilizer Mixed with Herbicides for Maize Protection and Nutrition. Agriculture. 2024; 14(12):2129. https://doi.org/10.3390/agriculture14122129
Chicago/Turabian StyleHodoșan, Camelia, Lucica Nistor, Paula Poşan, Sorin Iulius Bărbuică, Daniela Ianiţchi, Gabriela Luţă, and Lizica Szilagyi. 2024. "Pilot Study on a Liquid Mineral Foliar Fertilizer Mixed with Herbicides for Maize Protection and Nutrition" Agriculture 14, no. 12: 2129. https://doi.org/10.3390/agriculture14122129
APA StyleHodoșan, C., Nistor, L., Poşan, P., Bărbuică, S. I., Ianiţchi, D., Luţă, G., & Szilagyi, L. (2024). Pilot Study on a Liquid Mineral Foliar Fertilizer Mixed with Herbicides for Maize Protection and Nutrition. Agriculture, 14(12), 2129. https://doi.org/10.3390/agriculture14122129