Integration of Optical and Synthetic Aperture Radar Data with Different Synthetic Aperture Radar Image Processing Techniques and Development Stages to Improve Soybean Yield Prediction
<p>Experimental area with field boundaries marked in red and soybean yield data points in each harvest.</p> "> Figure 2
<p>Temporal profiles of SAR data in <span class="html-italic">VV</span> and <span class="html-italic">VH</span> backscatter coefficient (<b>a</b>) and optical data considering EVI (<b>b</b>). The red circle represents the selected image dates based on the EVI.</p> "> Figure 3
<p>SAR data workflow for obtaining (<b>a</b>) backscatter coefficients and (<b>b</b>) polarimetric decomposition.</p> "> Figure 4
<p>Prediction scenarios performed. Input data corresponding to each tested scenario (in red): (<b>a</b>) using all stages and SAR variables together, (<b>b</b>) using stages separately and all SAR variables together, (<b>c</b>) using the stage that previously performed best with the variables separated.</p> "> Figure 5
<p>Spearman correlation coefficient between SAR data and soybean yield, including harvest, growth stages, speckle noise reduction filters, and SAR variables. Significant correlations at 5%.</p> "> Figure 6
<p>R<sup>2</sup> and RMSE values of predictions for each harvest individually with all stages of image collection, using only optical data (EVI) compared to using optical data together with all SAR variables.</p> "> Figure 7
<p>DPSVI index map for distinct growth stages and soybean harvests. The highlighted area in black shows the difference in cultivar in harvest 3.</p> "> Figure 8
<p>Percentage difference in R<sup>2</sup> of predictions with EVI and adding SAR variables in models using each stage individually compared to all stages combined.</p> "> Figure 9
<p>Percentage difference in RMSE of predictions with EVI and adding SAR variables in models using each stage individually compared to all stages combined.</p> "> Figure 10
<p>R<sup>2</sup> values for predictions using all growth stages with only optical data and using optical data in conjunction with all SAR variables.</p> "> Figure 11
<p>RMSE values for predictions using all growth stages with only optical data and using optical data in conjunction with all SAR variables.</p> "> Figure 12
<p>R<sup>2</sup> values obtained for Stage 3 using scenarios with separate SAR variables in conjunction with EVI, compared to using all SAR variables combined with EVI and using only optical data (EVI).</p> "> Figure 13
<p>Visual comparison between actual yield maps and predicted yield using DPSVI in conjunction with EVI for Stage 3, using the Boxcar filter. The actual yield data were interpolated using ordinary kriging. The error maps represent the difference between the actual and predicted maps, showing positive and negative variations.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Yield Data
2.2. Remote Sensing Data
2.3. Development Stages of the Crop
- Stage 1: Between planting and the vegetative peak;
- Stage 2: During the vegetative peak;
- Stage 3: Between the vegetative peak and harvest.
2.4. Preprocessing of SAR Images
Speckle Noise Filters
2.5. Variables
2.6. Correlation
2.7. Predictions
3. Results and Discussion
3.1. Correlation Between Remote Sensing Data and Yield
3.2. Speckle Filter Correlation with Soybean Yield
3.3. Correlation of SAR Variables with Soybean Yield
3.4. Predictions
3.4.1. Considering All Stages Together
3.4.2. Predictions by Separating Stages
3.4.3. The Best Growth Stage for Yield Prediction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Ittersum, M.K.; Cassman, K.G.; Grassini, P.; Wolf, J.; Tittonell, P.; Hochman, Z. Yield gap analysis with local to global relevance—A review. Field Crops Res. 2013, 143, 4–17. [Google Scholar] [CrossRef]
- Jin, X.; Kumar, L.; Li, Z.; Feng, H.; Xu, X.; Yang, G.; Wang, J. A review of data assimilation of remote sensing and crop models. Eur. J. Agron. 2018, 92, 141–152. [Google Scholar] [CrossRef]
- Delécolle, R.; Maas, S.J.; Guerif, M.; Baret, F. Remote sensing and crop production models: Present trends. ISPRS J. Photogramm. Remote Sens. 1992, 47, 145–161. [Google Scholar] [CrossRef]
- Jensen, J.R. Sensoriamento Remoto: Uma Perspectiva em Recursos Terrestres, 2nd ed.; Parêntese: São José dos Campos, Brazil, 2009. [Google Scholar]
- Fountas, S.; Espejo-García, B.; Kasimati, A.; Mylonas, N.; Darra, N. O futuro da agricultura digital: Tecnologias e oportunidades. IT Prof. 2020, 22, 24–28. [Google Scholar] [CrossRef]
- Richetti, J.; Judge, J.; Boote, K.J.; Johann, J.A.; Uribe-Opazo, M.A.; Becker, W.R.; Paludo, A.; Silva, L.C.A. Using phenology-based enhanced vegetation index and machine learning for soybean yield estimation in Paraná State, Brazil. J. Appl. Remote Sens. 2018, 12, 026029. [Google Scholar] [CrossRef]
- You, J.; Li, X.; Low, M.; Lobell, D.; Ermon, S. Deep Gaussian Process for Crop Yield Prediction Based on Remote Sensing Data. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 1–9 February 2017; Volume 31, p. 1. [Google Scholar]
- Dalla Betta, M.M.; Trabaquini, K.; Elias, H.T.; Silva, M.S. Mapeamento da soja por meio de imagens Landsat e Sentinel-2 nos municípios de Lages e Capão Alto em Santa Catarina. Agropecuária Catarin. 2022, 35, 68–73. [Google Scholar] [CrossRef]
- Silveira, H.L.F.; Eberhardt, I.D.R.; Sanches, I.D.A.; Galvão, L.S. Análise da Cobertura de Nuvens No Nordeste Do Brasil e Seus Impactos No Sensoriamento Remoto Agrícola Operacional. Simpósio Brasileiro de Sensoriamento Remoto. 2017. Available online: https://www.alice.cnptia.embrapa.br/alice/handle/doc/1074562 (accessed on 26 September 2024).
- Eberhardt, I.D.R.; Schultz, B.; Rizzi, R.; Sanches, I.D.A.; Formaggio, A.R.; Atzberger, C.; Barreto Luiz, A.J. Cloud cover assessment for operational crop monitoring systems in tropical areas. Remote Sens. 2016, 8, 219. [Google Scholar] [CrossRef]
- Prudente, V.H.R.; Martins, V.S.; Vieira, D.C.; Silva, N.R.D.F.; Adami, M.; Sanches, I.D.A. Limitations of cloud cover for optical remote sensing of agricultural areas across South America. Remote Sens. Appl. Soc. Environ. 2020, 20, 100414. [Google Scholar] [CrossRef]
- Bahrami, H.; Homayouni, S.; Safari, A.; Mirzaei, S.; Mahdianpari, M.; Reisi-Gahrouei, O. Deep learning-based estimation of crop biophysical parameters using multi-source and multi-temporal remote sensing observations. Agronomy 2021, 11, 1363. [Google Scholar] [CrossRef]
- Nasirzadehdizaji, R.; Balik Sanli, F.; Abdikan, S.; Cakir, Z.; Sekertekin, A.; Ustuner, M. Sensitivity analysis of multi-temporal Sentinel-1 SAR parameters to crop height and canopy coverage. Appl. Sci. 2019, 9, 655. [Google Scholar] [CrossRef]
- McNairn, H.; Shang, J. A review of multitemporal synthetic aperture radar (SAR) for crop monitoring. In Multitemporal Remote Sensing: Methods and Applications; Ban, Y., Ed.; Springer: New York, NY, USA, 2016; pp. 317–340. [Google Scholar]
- Schlund, M.; Erasmi, S. Sentinel-1 time series data for monitoring the phenology of winter wheat. Remote Sens. Environ. 2020, 246, 111814. [Google Scholar] [CrossRef]
- Prudente, V.H.R.; Oldoni, L.V.; Vieira, D.C.; Cattani, C.E.V.; Sanches, I.D. Relationship between SAR/Sentinel-1 polarimetric and interferometric data with biophysical parameters of agricultural crops. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 599–607. [Google Scholar] [CrossRef]
- Mestre-Quereda, A.; Lopez-Sanchez, J.M.; Vicente-Guijalba, F.; Jacob, A.W.; Engdahl, M.E. Time-series of Sentinel-1 interferometric coherence and backscatter for crop-type mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4070–4084. [Google Scholar] [CrossRef]
- Mandal, D.; Kumar, V.; Ratha, D.; Dey, S.; Bhattacharya, A.; Lopez-Sanchez, J.M.; McNairn, H.; Rao, Y.S. Dual polarimetric radar vegetation index for crop growth monitoring using Sentinel-1 SAR data. Remote Sens. Environ. 2020, 247, 111954. [Google Scholar] [CrossRef]
- Yommy, A.S.; Liu, R.; Wu, S. SAR image despeckling using refined Lee filter. In Proceedings of the 2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China, 26–27 August 2015; pp. 260–265. [Google Scholar]
- Argenti, F.; Lapini, A.; Bianchi, T.; Alparone, L. A tutorial on speckle reduction in synthetic aperture radar images. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–35. [Google Scholar] [CrossRef]
- Muruganantham, P.; Wibowo, S.; Grandhi, S.; Samrat, N.H.; Islam, N. A systematic literature review on crop yield prediction with deep learning and remote sensing. Remote Sens. 2022, 14, 1990. [Google Scholar] [CrossRef]
- Ali, A.M.; Abouelghar, M.; Belal, A.A.; Saleh, N.; Yones, M.; Selim, A.I.; Amin, M.E.S.; Elwesemy, A.; Kucher, D.E.; Maginan, S.; et al. Crop yield prediction using multi sensors remote sensing. Egypt. J. Remote Sens. Space Sci. 2022, 25, 711–716. [Google Scholar]
- Hosseini, M.; Becker-Reshef, I.; Sahajpal, R.; Lafluf, P.; Leale, G.; Puricelli, E.; Skakun, S.; McNairn, H. Soybean yield forecast using dual-polarimetric C-band synthetic aperture radar. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2022, 3, 405–410. [Google Scholar] [CrossRef]
- Hashemi, M.G.; Tan, P.N.; Jalilvand, E.; Wilke, B.; Alemohammad, H.; Das, N.N. Yield estimation from SAR data using patch-based deep learning and machine learning techniques. Comput. Electron. Agric. 2024, 226, 109340. [Google Scholar] [CrossRef]
- Maldaner, L.F.; Canata, T.F.; Molin, J.P. An approach to sugarcane yield estimation using sensors in the harvester and Zigbee technology. Sugar Tech. 2022, 24, 813–821. [Google Scholar] [CrossRef]
- Jin, X.; Yang, G.; Xu, X.; Yang, H.; Feng, H.; Li, Z.; Shen, J.; Lan, Y.; Zhao, C. Combined multi-temporal optical and radar parameters for estimating LAI and biomass in winter wheat using HJ and RADARSAT-2 data. Remote Sens. 2015, 7, 13251–13272. [Google Scholar] [CrossRef]
- Kross, A.; Znoj, E.; Callegari, D.; Kaur, G.; Sunohara, M.; Lapen, D.R.; McNairn, H. Using artificial neural networks and remotely sensed data to evaluate the relative importance of variables for prediction of within-field corn and soybean yields. Remote Sens. 2020, 12, 2230. [Google Scholar] [CrossRef]
- Filipponi, F. Sentinel-1 GRD preprocessing workflow. Proceedings 2019, 18, 11. [Google Scholar] [CrossRef]
- Lee, J.S.; Pottier, E. Polarimetric Radar Imaging: From Basics to Applications; CRC Press: New York, NY, USA, 2009; p. 398. [Google Scholar]
- Oldoni, L.V.; Sanches, I. D.A.; Prudente, V. H.R.; Vieira, D.C.; Gama, F.F. Caracterização da dinâmica da soja, milho e algodão com base em dados SAR polarimétricos do Sentinel-1A. In Proceedings of the Anais do XIX Simpósio Brasileiro de Sensoriamento Remoto, Santos, Brazil, 14–17 April 2019; pp. 692–695. [Google Scholar]
- Bouchemakh, L.; Smara, Y.; Boutarfa, S.; Hamadache, Z. A comparative study of speckle filtering in polarimetric radar SAR images. In Proceedings of the 3rd International Conference on Information and Communication Technologies: From Theory to Applications, Damascus, Syria, 7–11 April 2008; pp. 1–6. [Google Scholar]
- Lee, J.S. A simple speckle smoothing algorithm for synthetic aperture radar images. IEEE Trans. Syst. Man Cybern. 1983, 1, 85–89. [Google Scholar] [CrossRef]
- Lopes, A.; Nezry, E.; Touzi, R.; Laur, H. Maximum a posteriori speckle filtering and first order texture models in SAR images. In Proceedings of the IGARSS’90, College Park, MD, USA, 20–24 May 1990; Volume 3, pp. 2409–2412. [Google Scholar]
- Lee, J.S.; Wen, J.H.; Ainsworth, T.L.; Chen, K.S.; Chen, A.J. Improved sigma filter for speckle filtering of SAR imagery. IEEE Trans. Geosci. Remote Sens. 2009, 47, 202–213. [Google Scholar]
- Amaral, L.R.; Oldoni, H.; Baptista, G.M.; Ferreira, G.H.; Freitas, R.G.; Martins, C.L.; Santos, A.F. Remote Sensing Imagery to Predict Soybean Yield: A Case Study of Vegetation Indices Contribution. Precis. Agric. 2024, 25, 2375–2393. [Google Scholar] [CrossRef]
- Santos, E.P.; da Silva, D.D.; do Amaral, C.H. Vegetation cover monitoring in tropical regions using SAR-C dual-polarization index: Seasonal and spatial influences. Int. J. Remote Sens. 2021, 42, 7581–7609. [Google Scholar] [CrossRef]
- Mitchard, E.T.A.; Saatchi, S.S.; White, L.J.T.; Abernethy, K.A.; Jeffery, K.J.; Lewis, S.L.; Collins, M.; Lefsky, M.A.; Leal, M.E.; Woodhouse, I.H.; et al. Mapping tropical forest biomass with radar and spaceborne LiDAR in Lopé National Park, Gabon: Overcoming problems of high biomass and persistent cloud. Biogeosciences 2012, 9, 179–191. [Google Scholar] [CrossRef]
- Hird, J.N.; DeLancey, E.R.; McDermid, G.J.; Kariyeva, J. Google Earth Engine, open-access satellite data, and machine learning in support of large-area probabilistic wetland mapping. Remote Sens. 2017, 9, 1310. [Google Scholar] [CrossRef]
- Trudel, M.; Charbonneau, F.; Leconte, R. Using RADARSAT-2 polarimetric and ENVISAT-ASAR dual-polarization data for estimating soil moisture over agricultural fields. Can. J. Remote Sens. 2012, 38, 514–527. [Google Scholar]
- Huete, A.; Justice, C.; Van Leeuwen, W. MODIS vegetation index (MOD13). Algorithm Theor. Basis Doc. 1999, 3, 295–309. [Google Scholar]
- Mandal, K.G.; Hati, K.M.; Misra, A.K. Biomass yield and energy analysis of soybean production in relation to fertilizer-NPK and organic manure. Biomass Bioenergy 2009, 33, 1670–1679. [Google Scholar] [CrossRef]
- Martins, C.L.; Santos, A.C.; Canatta, J.V.; Ranzani, G. Classification of the occurrence of broadleaf weeds in narrow-leaf crops. Eng. Agrícola 2024, 44, e20230148. [Google Scholar] [CrossRef]
- Foucher, S.; López-Martínez, C. Analysis, evaluation, and comparison of polarimetric SAR speckle filtering techniques. IEEE Trans. Image Process. 2014, 23, 1751–1764. [Google Scholar] [CrossRef]
- Bipin, C.; Rao, C.V.; Sridevi, P.V. Speckle aware spatial search based segmentation algorithm for crop classification in SAR images using a three component K-NN model. J. Appl. Remote Sens. 2023, 17, 048503. [Google Scholar] [CrossRef]
- Shitole, S.; De, S.; Rao, Y.S.; Pandey, P.C. Selection of suitable window size for speckle reduction and deblurring using SOFM in polarimetric SAR images. J. Indian Soc. Remote Sens. 2015, 43, 739–750. [Google Scholar] [CrossRef]
- McNairn, H.; Kross, A.; Lapen, D.; Caves, R.; Shang, J. Early season monitoring of corn and soybeans with TerraSAR-X and RADARSAT-2. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 252–259. [Google Scholar] [CrossRef]
- Le Toan, T.; Ribbes, F.; Wang, L.F.; Floury, N.; Ding, K.H.; Kong, J.A.; Fujita, M.; Kurosu, T. Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results. IEEE Trans. Geosci. Remote Sens. 1997, 35, 41–56. [Google Scholar] [CrossRef]
- McNairn, H.; Brisco, B. The application of C-band polarimetric SAR for agriculture: A review. Can. J. Remote Sens. 2004, 30, 525–542. [Google Scholar] [CrossRef]
- Haldar, D.; Dave, R.; Dave, V.A. Evaluation of full-polarimetric parameters for vegetation monitoring in rabi (winter) season. Egypt. J. Remote Sens. Space Sci. 2018, 21, S67–S73. [Google Scholar] [CrossRef]
- Kim, Y.; Van Zyl, J.J. A time-series approach to estimate soil moisture using polarimetric radar data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2519–2527. [Google Scholar]
- Maity, S.; Patnaik, C.; Parihar, J.S.; Panigrahy, S.; Reddy, K.A. Study of physical phenomena of vegetation using polarimetric scattering indices and entropy. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 4, 432–438. [Google Scholar] [CrossRef]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E.; Tatham, R.L. Multivariate Data Analysis, 7th ed.; Pearson Education: Hoboken, NJ, USA, 2009. [Google Scholar]
- Jiao, X.; McNairn, H.; Shang, J.; Pattey, E.; Liu, J.; Champagne, C. The sensitivity of RADARSAT-2 polarimetric SAR data to corn and soybean leaf area index. Can. J. Remote Sens. 2011, 37, 69–81. [Google Scholar] [CrossRef]
- Cable, J.W.; Kovacs, J.M.; Jiao, X.; Shang, J. Agricultural monitoring in northeastern Ontario, Canada, using multi-temporal polarimetric RADARSAT-2 data. Remote Sens. 2014, 6, 2343–2371. [Google Scholar] [CrossRef]
- Liu, C.; Shang, J.; Vachon, P. W.; McNairn, H. Multiyear crop monitoring using polarimetric RADARSAT-2 data. IEEE Trans. Geosci. Remote Sens. 2012, 51, 2227–2240. [Google Scholar] [CrossRef]
- Ulaby, F.T. Microwave Remote Sensing Fundamentals and Radiometry; Artech House: Reading, MA, USA, 1981. [Google Scholar]
- Mermoz, S.; Réjou-Méchain, M.; Villard, L.; Le Toan, T.; Rossi, V.; Gourlet-Fleury, S. Decrease of L-band SAR backscatter with biomass of dense forests. Remote Sens. Environ. 2015, 159, 307–317. [Google Scholar] [CrossRef]
- Bhogapurapu, N.; Dey, S.; Bhattacharya, A.; Mandal, D.; Lopez-Sanchez, J.M.; McNairn, H.; López-Martínez, C.; Rao, Y.S. Dual-polarimetric descriptors from Sentinel-1 GRD SAR data for crop growth assessment. ISPRS J. Photogramm. Remote Sens. 2021, 178, 20–35. [Google Scholar] [CrossRef]
- Shang, J.; Jiao, X.; McNairn, H.; Kovacs, J.; Walters, D.; Ma, B.; Geng, X. Tracking crop phenological development of spring wheat using synthetic aperture radar (SAR) in northern Ontario, Canada. In Proceedings of the 2013 Second International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Fairfax, VA, USA, 12–16 August 2013; pp. 517–521. [Google Scholar]
- Nasirzadehdizaji, R.; Cakir, Z.; Sanli, F.B.; Abdikan, S.; Pepe, A.; Calo, F. Sentinel-1 interferometric coherence and backscattering analysis for crop monitoring. Comput. Electron. Agric. 2021, 185, 106118. [Google Scholar] [CrossRef]
Filter | Equation | In Which: |
---|---|---|
Boxcar | N is the number of pixels in the neighborhood, and I (p,q) are the pixel values in the neighborhood. | |
Lee | σ2 is the global variance of the image, Var(N) is the local variance in the neighborhood, and Mean(N) is the local mean in the neighborhood. | |
Gamma | ω(p) weights are the values assigned to the pixels in the neighborhood | |
Refined Lee | ∝ is an adjustment factor. |
Statistics | Harvest 1 | Harvest 2 | Harvest 3 | |||
---|---|---|---|---|---|---|
Full Data | 15 k Points | Full Data | 15 k Points | Full Data | 15 k Points | |
Mean | 3.50 | 3.51 | 2.97 | 2.97 | 5.08 | 5.08 |
Median | 3.44 | 3.44 | 2.99 | 2.99 | 5.05 | 5.05 |
Standard deviation | 0.77 | 0.78 | 0.86 | 0.86 | 0.72 | 0.72 |
CV% | 22.20 | 22.23 | 28.98 | 29.14 | 14.20 | 14.14 |
Minimum value | 1.14 | 1.18 | 1.01 | 1.04 | 2.84 | 3.00 |
Maximum value | 5.95 | 5.86 | 5.47 | 5.46 | 7.93 | 7.93 |
Q1 | 2.93 | 2.93 | 2.38 | 2.38 | 4.58 | 4.58 |
Q3 | 4.04 | 4.05 | 3.53 | 3.54 | 5.54 | 5.55 |
Interquartile range | 1.11 | 1.11 | 1.14 | 1.16 | 0.95 | 0.96 |
n | 71,832 | 15,000 | 59,141 | 15,000 | 59,568 | 15,000 |
Harvest 1 | Harvest 2 | Harvest 3 | |
---|---|---|---|
Stage 1 | 0.27 | 0.51 | −0.34 |
Stage 2 | 0.41 | 0.50 | −0.17 |
Stage 3 | 0.54 | −0.25 | 0.14 |
Harvest 1 | ||||
---|---|---|---|---|
Boxcar | Gamma | Lee | Refined Lee | |
Boxcar | 1 | - | - | - |
Gamma | 0.999 | 1 | - | - |
Lee | 0.999 | 0.999 | 1 | - |
Refined | 0.914 | 0.907 | 0.911 | 1 |
Harvest 2 | ||||
Boxcar | Gamma | Lee | Refined Lee | |
Boxcar | 1 | - | - | - |
Gamma | 0.999 | 1 | - | - |
Lee | 0.999 | 0.999 | 1 | - |
Refined | 0.914 | 0.911 | 0.913 | 1 |
Harvest 3 | ||||
Boxcar | Gamma | Lee | Refined Lee | |
Boxcar | 1 | - | - | - |
Gamma | 0.999 | 1 | - | - |
Lee | 1 | 0.999 | 1 | - |
Refined | 0.830 | 0.907 | 0.911 | 1 |
Harvest 1—Stage 1 | Harvest 2—Stage 1 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
DPSVI | −0.71 | 0.71 | −0.71 | −0.22 | −0.97 | DPSVI | −0.72 | 0.72 | −0.72 | −0.35 | −0.97 |
- | Pol | −1 | 1 | −0.47 | 0.86 | - | Pol | −1 | 1 | −0.36 | 0.86 |
- | - | RFDI | −1 | 0.47 | −0.86 | - | - | RFDI | −1 | 0.36 | −0.86 |
- | - | - | RVI | −0.47 | 0.86 | - | - | - | RVI | −0.36 | 0.86 |
- | - | - | - | VH | 0.021 | - | - | - | - | VH | 0.13 |
- | - | - | - | - | VV | - | - | - | - | - | VV |
Harvest 1—Stage 2 | Harvest 2—Stage 2 | ||||||||||
DPSVI | −0.67 | 0.67 | −0.67 | 0.31 | −0.96 | DPSVI | −0.68 | 0.68 | −0.68 | 0.22 | −0.96 |
- | Pol | −1 | 1 | −0.45 | 0.83 | - | Pol | −1 | 1 | −0.51 | 0.85 |
- | - | RFDI | −1 | 0.45 | −0.83 | - | - | RFDI | −1 | 0.51 | −0.85 |
- | - | - | RVI | −0.45 | 0.83 | - | - | - | RVI | −0.51 | 0.85 |
- | - | - | - | VH | 0.001 | - | - | - | - | VH | 0.033 |
- | - | - | - | - | VV | - | - | - | - | - | VV |
Harvest 1—Stage 3 | Harvest 2—Stage 3 | ||||||||||
DPSVI | −0.58 | 0.58 | −0.58 | −0.43 | −0.97 | DPSVI | −0.62 | 0.62 | −0.62 | −0.29 | −0.96 |
- | Pol | −1 | 1 | −0.42 | 0.76 | - | Pol | −1 | 1 | −0.52 | 0.80 |
- | - | RFDI | −1 | 0.42 | −0.76 | - | - | RFDI | −1 | 0.52 | −0.80 |
- | - | - | RVI | −0.42 | 0.76 | - | - | - | RVI | −0.52 | 0.80 |
- | - | - | - | VH | 0.21 | - | - | - | - | VH | 0.039 |
- | - | - | - | - | VV | - | - | - | - | - | VV |
Harvest 3—Stage 1 | Harvest 3—Stage 3 | ||||||||||
DPSVI | −0.63 | 0.63 | −0.63 | −0.36 | −0.96 | DPSVI | −0.61 | 0.61 | −0.61 | −0.32 | −0.95 |
- | Pol | −1 | 1 | −0.45 | 0.81 | - | Pol | −1 | 1 | −0.47 | 0.80 |
- | - | RFDI | −1 | 0.45 | −0.81 | - | - | RFDI | −1 | 0.47 | −0.80 |
- | - | - | RVI | −0.45 | 0.81 | - | - | - | RVI | −0.47 | 0.80 |
- | - | - | - | VH | 0.12 | - | - | - | - | VH | 0.11 |
- | - | - | - | - | VV | - | - | - | - | - | VV |
Harvest 3—Stage 2 | |||||||||||
DPSVI | −0.68 | 0.68 | −0.68 | 0.25 | −0.97 | ||||||
- | Pol | −1 | 1 | −0.41 | 0.83 | ||||||
- | - | RFDI | −1 | 0.41 | −0.83 | ||||||
- | - | - | RV | −0.41 | 0.83 | ||||||
- | - | - | - | VH | 0.12 | ||||||
- | - | - | - | - | VV |
Stage 1 | Stage 2 | Stage 3 | |
---|---|---|---|
Harvest 1 | 0.90 | 0.90 | 0.93 |
Harvest 2 | 0.86 | 0.88 | 0.87 |
Harvest 3 | 0.93 | 0.91 | 0.90 |
Difference in % | ||
---|---|---|
R2 | RMSE | |
Harvest 1 | 1.51 | −2.89 |
Harvest 2 | 0.73 | −1.76 |
Harvest 3 | 2.81 | −0.89 |
Difference in % | ||||||
---|---|---|---|---|---|---|
Stage 1 | Stage 2 | Stage 3 | ||||
R2 | RMSE | R2 | RMSE | R2 | RMSE | |
Harvest 1 | 14% | −20% | 11% | −18% | 12% | −18% |
Harvest 2 | 6% | −14% | 8% | −17% | 18% | −27% |
Harvest 3 | 13% | 32% | 12% | −3% | 15% | −4% |
Stage 3—Difference (%) | ||||||||
---|---|---|---|---|---|---|---|---|
DPSVI | RVI | VH | Entropy | |||||
R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | |
Harvest 1 | −4% | 6% | −4% | −49% | −3% | 5% | −4% | 6% |
Harvest 2 | −18% | 27% | −6% | −37% | −8% | 14% | −18% | 27% |
Harvest 3 | 104% | −27% | −8% | 19% | −11% | 3% | 106% | −28% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cunha, I.A.; Baptista, G.M.M.; Prudente, V.H.R.; Melo, D.D.; Amaral, L.R. Integration of Optical and Synthetic Aperture Radar Data with Different Synthetic Aperture Radar Image Processing Techniques and Development Stages to Improve Soybean Yield Prediction. Agriculture 2024, 14, 2032. https://doi.org/10.3390/agriculture14112032
Cunha IA, Baptista GMM, Prudente VHR, Melo DD, Amaral LR. Integration of Optical and Synthetic Aperture Radar Data with Different Synthetic Aperture Radar Image Processing Techniques and Development Stages to Improve Soybean Yield Prediction. Agriculture. 2024; 14(11):2032. https://doi.org/10.3390/agriculture14112032
Chicago/Turabian StyleCunha, Isabella A., Gustavo M. M. Baptista, Victor Hugo R. Prudente, Derlei D. Melo, and Lucas R. Amaral. 2024. "Integration of Optical and Synthetic Aperture Radar Data with Different Synthetic Aperture Radar Image Processing Techniques and Development Stages to Improve Soybean Yield Prediction" Agriculture 14, no. 11: 2032. https://doi.org/10.3390/agriculture14112032
APA StyleCunha, I. A., Baptista, G. M. M., Prudente, V. H. R., Melo, D. D., & Amaral, L. R. (2024). Integration of Optical and Synthetic Aperture Radar Data with Different Synthetic Aperture Radar Image Processing Techniques and Development Stages to Improve Soybean Yield Prediction. Agriculture, 14(11), 2032. https://doi.org/10.3390/agriculture14112032