Spectrophotometric-Based Sensor for the Detection of Multiple Fertilizer Solutions
<p>Development strategy for fertilizer detection sensors: (<b>a</b>) The acquisition of UV–vis/NIR absorption spectra of four fertilizer solutions: (<b>i</b>) KNO<sub>3</sub>, (<b>ii</b>) (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, (<b>iii</b>) KH<sub>2</sub>PO<sub>4</sub>, and (iv) K<sub>2</sub>SO<sub>4</sub>. (<b>b</b>) Determination of characteristic wavelengths and construction of quantitative models. (<b>c</b>) Sensor structure and amplifier circuit design. (<b>d</b>) The detection strategy of qualitative analysis followed by quantitative assessment.</p> "> Figure 2
<p>Fertilizer solution detection sensor. (<b>a</b>) Internal structure of the sensor; (<b>b</b>) external structure of the sensor; (<b>c</b>) physical drawing of the sensor; and (<b>d</b>) fertilizer solution identification and concentration detection strategy.</p> "> Figure 3
<p>Absorption spectra of four fertilizer solutions after Savitzky–Golay smoothing treatment. (<b>a</b>) NO<sub>3</sub><sup>−</sup> solution, (<b>b</b>) NH<sub>4</sub><sup>+</sup> solution, (<b>c</b>) H<sub>2</sub>PO<sub>4</sub><sup>−</sup> solution, and (<b>d</b>) K<sup>+</sup> solution.</p> "> Figure 4
<p>Absorption spectra of four nutrient ions at different concentrations in characteristic bands: (<b>a</b>) NO<sub>3</sub><sup>−</sup>, (<b>b</b>) NH<sub>4</sub><sup>+</sup>, (<b>c</b>) H<sub>2</sub>PO<sub>4</sub><sup>−</sup>, and (<b>d</b>) K<sup>+</sup>. Linear relationships between the ion concentration and the absorbance at characteristic wavelength: (<b>e</b>) NO<sub>3</sub><sup>−</sup>, (<b>f</b>) NH<sub>4</sub><sup>+</sup>, (<b>g</b>) H<sub>2</sub>PO<sub>4</sub><sup>−</sup>, and (<b>h</b>) K<sup>+</sup>.</p> "> Figure 5
<p>Absorbance change trends in four fertilizer solutions at four characteristic wavelengths: (<b>a</b>) NO<sub>3</sub><sup>−</sup>, (<b>b</b>) NH<sub>4</sub><sup>+</sup>, (<b>c</b>) H<sub>2</sub>PO<sub>4</sub><sup>−</sup>, and (<b>d</b>) K<sup>+</sup>.</p> "> Figure 6
<p>Stability test results of the fertilizer solution sensor: (<b>a</b>) the stability of the LED light source characterized by the output voltage of the Photodetector 1; (<b>b</b>) transmission voltage value; and (<b>c</b>) ambient light voltage value.</p> "> Figure 7
<p>The trend in absorbance variation at four detection wavelengths (256, 405, 700, and 1650 nm) of the sensor for 10 concentrations of fertilizer solutions: (<b>a</b>) NO<sub>3</sub><sup>−</sup>, (<b>b</b>) NH<sub>4</sub><sup>+</sup>, (<b>c</b>) H<sub>2</sub>PO<sub>4</sub><sup>−</sup>, and (<b>d</b>) K<sup>+</sup>.</p> "> Figure 8
<p>Confusion matrix charts of the classification results for four fertilizer solutions (KNO<sub>3</sub>, (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, KH<sub>2</sub>PO<sub>4</sub>, and K<sub>2</sub>SO<sub>4</sub>) obtained by the developed sensor.</p> "> Figure 9
<p>Detection errors of the sensor on the concentration of four fertilizer solutions.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Materials
2.2. Acquisition of UV–vis/NIR Absorption Spectra
2.3. Spectral Pre-Processing and Characteristic Wavelength-Based Modeling of Fertilizer Concentration
2.4. Development of a Four-Channel Fertilizer Solution Detection Sensor
2.4.1. Structural Design of the Sensor
2.4.2. Detection Principle of the Sensor
2.4.3. Signal Conditioning Circuit
2.4.4. Evaluation of the Sensor Stability
2.4.5. Detection Strategy
2.4.6. Evaluation Method of the Sensor Detection Accuracy
3. Results and Discussion
3.1. Characteristic Wavelength Selection of Nutrient Ions in Fertilizer Solution
3.2. Construction of Fertilizer Solution Detection Model
3.2.1. Identification of Fertilizer Solution Based on Characteristic Wavelengths
3.2.2. Detection of Fertilizer Solution Concentration
3.3. Stability Analysis of the Fertilizer Solution Sensor
3.4. Detection Accuracy of the Fertilizer Solution Sensor
3.4.1. Identification of Fertilizer Solution Types
3.4.2. Fertilizer Solution Concentration Detection Model Verification
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kamienski, C.; Soininen, J.-P.; Taumberger, M.; Dantas, R.; Toscano, A.; Salmon Cinotti, T.; Filev Maia, R.; Torre Neto, A. Smart Water Management Platform: IoT-Based Precision Irrigation for Agriculture. Sensors 2019, 19, 276. [Google Scholar] [CrossRef] [PubMed]
- An, S.; Wang, X.; Xue, B.; Yin, Y.; Wang, H.; Rao, C.; Guo, H. Research and Development of Intelligent Water and Fertilizer Integrated Machine Control System Based on Cloud Platform. Agric. Eng. 2022, 12, 29–34, (In Chinese with English Abstract). [Google Scholar]
- Cai, C.; Zheng, P.; Zhang, J. Integrated Monitor System of Water and Fertilizer of Greenhouse Intelligent Irrigatio. Agric. Sci. Technol. 2017, 18, 1465–1469+1523. [Google Scholar]
- Sun, F.; Ma, W.; Li, H.; Wang, S. Research on Water-Fertilizer Integrated Technology Based On Neural Network Prediction and Fuzzy Control. IOP Conf. Ser. Earth Environ. Sci. 2018, 170, 32168. [Google Scholar] [CrossRef]
- Zhai, Z.; Chen, X.; Zhang, Y.; Zhou, R. Decision-Making Technology Based on Knowledge Engineering and Experiment on the Intelligent Water-Fertilizer Irrigation System. J. Comput. Methods Sci. Eng. 2021, 21, 665–684. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Yang, Q.; Lei, L.; Wu, Z. Development of Real-Time Detecting Device for Nitrogen Concentration of Liquid Fertilizer. Trans. Chin. Soc. Agric. Eng. 2015, 31, 139–145, (In Chinese with English Abstract). [Google Scholar]
- Ma, Z.; Zhang, J.; Li, J.; Wu, H. Design and Experiment of Concentric Cylindrical Capacitive Sensor for Liquid Fertilizer Concentration. Transducer Microsyst. Technol. 2018, 37, 91–94, (In Chinese with English Abstract). [Google Scholar]
- Feng, R.; Wang, Z.; Li, Z. Design and Experiment on Fertile Solution PH Value and Electrical Conductivity Measuring Instrument. Drain. Irrig. Mach. Eng. 2020, 38, 643–648, (In Chinese with English Abstract). [Google Scholar]
- Chen, F.; Wei, D.; Tang, Y. Virtual Ion Selective Electrode for Online Measurement of Nutrient Solution Components. IEEE Sens. J. 2011, 11, 462–468. [Google Scholar] [CrossRef]
- Xi, X.; Zhang, N.; He, D. Detection of Sylvine Concentration in Water Based on Permittivity. Trans. Chin. Soc. Agric. Eng. 2012, 28, 124–129. [Google Scholar]
- Zhang, J.; Chen, X.; Wang, R.; Liu, Y.; Li, W.; Li, M. Development and Experiment of the Rapid Detection Device of the Nutrient Ion Concentrations for Fertigation System. Trans. Chin. Soc. Agric. Eng. 2022, 38, 102–110, (In Chinese with English Abstract). [Google Scholar]
- Martynov, L.Y.; Sergeeva, A.S.; Sakharov, K.A.; Shkinev, V.M.; Yashtulov, N.A.; Zaitsev, N.K. Voltammetric Determination of Phosphates Using Ion-Selective Electrode Based on Organotin Ionophore. Microchem. J. 2023, 191, 108877. [Google Scholar] [CrossRef]
- Cecconi, F.; Reifsnyder, S.; Ito, Y.; Jimenez, M.; Sobhani, R.; Rosso, D. ISE-Ammonium Sensors in WRRFs: Field Assessment of Their Influencing Factors. Environ. Sci. Water Res. Technol. 2019, 5, 737–746. [Google Scholar] [CrossRef]
- Pedersen, J.W.; Larsen, L.H.; Thirsing, C.; Vezzaro, L. Reconstruction of Corrupted Datasets from Ammonium-ISE Sensors at WRRFs through Merging with Daily Composite Samples. Water Res. 2020, 185, 116227. [Google Scholar] [CrossRef]
- Papias, S.; Masson, M.; Pelletant, S.; Prost-Boucle, S.; Boutin, C. In Situ Continuous Monitoring of Nitrogen with Ion-Selective Electrodes in a Constructed Wetland Receiving Treated Wastewater: An Operating Protocol to Obtain Reliable Data. Water Sci. Technol. 2018, 77, 1706–1713. [Google Scholar] [CrossRef]
- Miras, M.; García, M.S.; Martínez, V.; Ortuño, J.Á. Inexpensive Ion-Selective Electrodes for the Simultaneous Monitoring of Potassium and Nitrate Concentrations in Nutrient Solutions. Anal. Methods 2021, 13, 3511–3520. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Li, J.; Zhang, J.; Ma, Z.; Salih, W.E.B. Development of Rapid Identification Device for Variety of Macronutrient Water Soluble Fertilizers Based on Dielectric Characteristic Frequency. Trans. Chin. Soc. Agric. Eng. 2017, 33, 51–58, (In Chinese with English Abstract). [Google Scholar]
- Li, J.; Gao, Y.; Zeng, J.; Li, X.; Wu, Z.; Wang, G. Online Rapid Detection Method of Fertilizer Solution Information Based on Characteristic Frequency Response Features. Sensors 2023, 23, 1116. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Xu, X.; Li, Z.; Wang, T.; Wang, C. Detection Methods of Ammonia Nitrogen in Water: A Review. TrAC Trends Anal. Chem. 2020, 127, 115890. [Google Scholar] [CrossRef]
- Passos, M.L.; Saraiva, M.L.M. Detection in UV-Visible Spectrophotometry: Detectors, Detection Systems, and Detection Strategies. Measurement 2019, 135, 896–904. [Google Scholar] [CrossRef]
- Zhou, F.; Li, C.; Yang, C.; Zhu, H.; Li, Y. A Spectrophotometric Method for Simultaneous Determination of Trace Ions of Copper, Cobalt, and Nickel in the Zinc Sulfate Solution by Ultraviolet-Visible Spectrometry. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 223, 117370. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, Z.; Ma, S. The concentration of water and fertilizer online detection device based on spectral technology. In Proceedings of the 2014 Montreal, Montreal, QC, Canada, 13–16 July 2014. [Google Scholar]
- Shen, J.; Qiao, W.; Chen, H.; Zhou, J.; Liu, F. Application of Visible/Near Infrared Spectrometers to Quickly Detect the Nitrogen, Phosphorus, and Potassium Content of Chemical Fertilizers. Appl. Sci. 2021, 11, 5103. [Google Scholar] [CrossRef]
- Yahaya, S.M.; Mahmud, A.A.; Abdullahi, M.; Haruna, A. Recent Advances in the Chemistry of Nitrogen, Phosphorus and Potassium as Fertilizers in Soil: A Review. Pedosphere 2023, 33, 385–406. [Google Scholar] [CrossRef]
- Wu, J.G. Recent Fourier Transform Infrared Spectroscopy Techniques and Applications; Scientific and Technical Documentation Press: Beijing, China, 1994. [Google Scholar]
- Bian, X.; Wang, K.; Tan, E.; Diwu, P.; Zhang, F.; Guo, Y. A Selective Ensemble Preprocessing Strategy for Near-Infrared Spectral Quantitative Analysis of Complex Samples. Chemom. Intell. Lab. Syst. 2020, 197, 103916. [Google Scholar] [CrossRef]
- Zhao, A.; Tang, X.; Zhang, Z.; Liu, J. Optimizing Savitzky-Golay Parameters and Its Smoothing Pretreatment for FTIR Gas Spectra. Guang Pu Xue Yu Guang Pu Fen Xi 2016, 36, 1340–1344. [Google Scholar]
- Zhang, G.; Hao, H.; Wang, Y.; Jiang, Y.; Shi, J.; Yu, J.; Cui, X.; Li, J.; Zhou, S.; Yu, B. Optimized Adaptive Savitzky-Golay Filtering Algorithm Based on Deep Learning Network for Absorption Spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 263, 120187. [Google Scholar] [CrossRef]
- Worsfold, P.; Townshend, A.; Poole, C.F.; Miró, M. Encyclopedia of Analytical Science, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 244–248. [Google Scholar]
- Strong, F.C. Theoretical Basis of Bouguer-Beer Law of Radiation Absorption. Anal. Chem. 1952, 24, 338–342. [Google Scholar] [CrossRef]
- Dangkulwanich, M.; Thitaparun, P.; Yimkosol, W.; Chalermsongsak, T. Characterization of Factors Influencing Absorbance Measurements in LED-Based Colorimeters. Eur. J. Phys. 2023, 44, 25801. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Zhang, Z. Rapid Determination of Nitrate Nitrogen and Nitrite Nitrogen by Second Derivative Spectrophotometry. Spectrosc. Spectr. Anal. 2019, 39, 161–165. [Google Scholar]
- Chen, X.; Yin, G.; Zhao, N.; Gan, T.; Yang, F.; Zhu, W.; Liu, J. Study on the Determination of Nitrate with UV First Derivative Spectrum under Turbidity Interference. Spectrosc. Spectr. Anal. 2019, 39, 2912–2916. [Google Scholar]
- Dong, J.; Tang, J.; Wu, G.; Xin, Y.; Li, R.; Li, Y. Effective Correction of Dissolved Organic Carbon Interference in Nitrate Detection Using Ultraviolet Spectroscopy Combined with the Equivalent Concentration Offset Method. RSC Adv. 2024, 14, 5370–5379. [Google Scholar] [CrossRef] [PubMed]
- Cho, W.-J.; Kim, H.-J.; Jung, D.-H.; Kim, D.-W.; Ahn, T.I.; Son, J.-E. On-Site Ion Monitoring System for Precision Hydroponic Nutrient Management. Comput. Electron. Agric. 2018, 146, 51–58. [Google Scholar] [CrossRef]
Fertilizer Solution Types | Concentration Prediction Model | R2 |
---|---|---|
KNO3 | C1 = 469.42771A1 + 2.27857 | 0.9708 |
(NH4)2SO4 | C2 = 311.16449A2 − 310.77385 | 0.9186 |
KH2PO4 | C3 = 1098.18745A3 − 344.82809 | 0.9333 |
K2SO4 | C4 = 468.81920A4 − 1019.85709 | 0.9173 |
Concentration (mg/L) | Va (mV) | Vi1 (mV) | Vi2 (mV) | Vi3 (mV) | Vi4 (mV) | Vt1 (mV) | Vt2 (mV) | Vt3 (mV) | Vt4 (mV) | A1 | A2 | A3 | A4 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10 | 10.4 | 135.6 | 134.4 | 136.6 | 136.9 | 108.8 | 22.9 | 99.3 | 136.8 | 0.1046 | 0.9965 | 0.1522 | 0 |
20 | 10.1 | 134.8 | 136.1 | 135.9 | 135.3 | 104.1 | 19.9 | 95.4 | 135.2 | 0.1227 | 1.1091 | 0.1687 | 0 |
30 | 10.1 | 136.2 | 134.2 | 135.7 | 135.5 | 105.0 | 18.9 | 88.6 | 135.5 | 0.1234 | 1.1493 | 0.2041 | 0 |
40 | 10.3 | 134.8 | 136.2 | 133.9 | 136.2 | 105.3 | 20.3 | 93.9 | 136.1 | 0.1174 | 1.1000 | 0.1698 | 0 |
50 | 10.2 | 135.7 | 135.3 | 136.6 | 136.4 | 101.7 | 16.2 | 89.8 | 136.3 | 0.1372 | 1.3191 | 0.2008 | 0 |
60 | 10.6 | 136.1 | 135.9 | 135.5 | 134.9 | 100.9 | 16.0 | 88.9 | 134.9 | 0.1430 | 1.3656 | 0.2028 | 0 |
70 | 10.2 | 137.1 | 136.7 | 136.3 | 134.7 | 102.9 | 19.5 | 94.3 | 134.6 | 0.1364 | 1.1336 | 0.1759 | 0 |
80 | 10.1 | 136.7 | 135.8 | 137.3 | 134.4 | 101.6 | 18.2 | 95.1 | 134.3 | 0.1410 | 1.1909 | 0.1751 | 0 |
90 | 10.3 | 135.7 | 135.8 | 136.8 | 136.6 | 105.7 | 18.5 | 97.6 | 136.5 | 0.1187 | 1.1848 | 0.1611 | 0 |
100 | 10.4 | 136.4 | 134.6 | 135.2 | 135.6 | 105.1 | 17.8 | 99.7 | 135.6 | 0.1240 | 1.2249 | 0.1454 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Wu, Z.; Liang, J.; Gao, Y.; Wang, C. Spectrophotometric-Based Sensor for the Detection of Multiple Fertilizer Solutions. Agriculture 2024, 14, 1291. https://doi.org/10.3390/agriculture14081291
Li J, Wu Z, Liang J, Gao Y, Wang C. Spectrophotometric-Based Sensor for the Detection of Multiple Fertilizer Solutions. Agriculture. 2024; 14(8):1291. https://doi.org/10.3390/agriculture14081291
Chicago/Turabian StyleLi, Jianian, Zhuoyuan Wu, Jiawen Liang, Yuan Gao, and Chenglin Wang. 2024. "Spectrophotometric-Based Sensor for the Detection of Multiple Fertilizer Solutions" Agriculture 14, no. 8: 1291. https://doi.org/10.3390/agriculture14081291