Convolutional Neural Networks in Detection of Plant Leaf Diseases: A Review
<p>The Computational Architecture of ANNs.</p> "> Figure 2
<p>A common CNN architecture.</p> "> Figure 3
<p>Number of articles published for the detection of plant leaf diseases using CNN from 2013 to 2022.</p> "> Figure 4
<p>Comparison of CNN architectures in terms of plant types and accuracy.</p> "> Figure 5
<p>Number of plants used in 100 summarized studies that applied CNN to detect diseases.</p> "> Figure 6
<p>Distribution of the widely applied CNN algorithm in 100 reviewed studies.</p> "> Figure 7
<p>Accuracy characteristics of CNN architectures used in 100 reviewed studies.</p> "> Figure 8
<p>Distribution of the year and dataset used in 100 reviewed studies.</p> ">
Abstract
:1. Introduction
2. Related Work
3. Methodology
- The approach used.
- The problem presented.
- The datasets used.
- The performance achieved.
- Limitations of the study, if any.
- Have the authors compared their CNN-based approach with other technologies, and what is the difference in performance?
4. Convolutional Neural Networks (CNN)
4.1. Comparison of Popular CNN Frameworks
4.2. Pre-Trained Network
4.3. Training from Scratch
5. Applications of CNN in Agriculture
Analysis and Data Extraction
6. CNN’s Agriculture Applications: Major Problems and Solutions
6.1. Limited Plant Leaf Datasets
- 1.
- Data augmentation techniques: Data augmentation techniques increase the diversity of the data during training by artificially generating additional samples from the real dataset. Furthermore, image augmentation is a technique that creates new data from existing data to help train a deep neural network model. The most recent augmentation techniques. Fast Auto Augment [128], AugMix [129], Rand Augment [130], and population-based augmentation [131]. Liu et al. [56] used data augmentation techniques to increase the dataset size from 1053 to 13,689 images. Sladojevic et al. [132] used data augmentation to increase from 4483 to 33,469 images using perspective transformation and rotation methods. With the expansion of the dataset, the accuracy improved as well. In another study, Barbedo [133] used resizing and image segmentation methods to increase the size of the dataset from 1567 images to 46,409 images. The accuracy improved by 10.83% over the no expanded dataset.
- 2.
- Transfer learning: Transfer learning is a machine learning technique in which we reuse a previously trained model as the base for a new model on a new task. As a result of the new datasets, it will just retrain a few layers of pertained networks which helps to reduce the amount of data required [133]. Chen et al. [46] introduced the INC-VGGN DL architectural features to detect plant diseases, which used transfer learning by changing the pre-trained VGGNet. On the public dataset Plant Village, the suggested model obtained an accuracy of 91.83%, while on their dataset, it obtained an accuracy of 92.00%. Coulibaly et al. suggested a method for detecting mildew diseases in pearl millet using transfer learning. This method was developed using the VGG16 CNN model, which was pre-trained on the public dataset. The study provided a satisfactory result, with a 94.5% recall rate and a 95.00% accuracy rate [134].
- 3.
- Citizen science: In 1995, the concept of citizen science was proposed. Nonprofessional participants collect data as part of a scientific study in this technique. Farmers submit the collected images to a server for plant disease and pest classification, after which the images are correctly labeled and analyzed by an expert [133].
- 4.
- Data sharing: Data sharing is another way of increasing datasets. Several studies are now being conducted worldwide on accurate disease detection. The dataset will become more accurate if the different datasets are shared. This situation will encourage more significant and satisfying study results.
6.2. Image Background
6.3. Variability in Symptoms
7. Discussion
8. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DL | Deep Learning |
CNN | Convolutional Neural Networks |
DCNN | Deep Convolutional Neural Networks |
FOA | The Food and Agriculture Organization |
References
- Altieri, M.A. Agroecology: The Science of Sustainable Agriculture; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Gebbers, R.; Adamchuk, V.I. Precision agriculture and food security. Science 2010, 327, 828–831. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, F.P. Agriculture, pesticides, food security and food safety. Environ. Sci. Policy 2006, 9, 685–692. [Google Scholar] [CrossRef]
- Mohanty, S.P.; Hughes, D.P.; Salathé, M. Using deep learning for image-based plant disease detection. Front. Plant Sci. 2016, 7, 1419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, S.A.; Beed, F.D.; Harmon, C.L. Plant disease diagnostic capabilities and networks. Annu. Rev. Phytopathol. 2009, 47, 15–38. [Google Scholar] [CrossRef] [Green Version]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Najafabadi, M.M.; Villanustre, F.; Khoshgoftaar, T.M.; Seliya, N.; Wald, R.; Muharemagic, E. Deep learning applications and challenges in big data analytics. J. Big Data 2015, 2, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Abade, A.; Ferreira, P.A.; de Barros Vidal, F. Plant diseases recognition on images using convolutional neural networks: A systematic review. Comput. Electron. Agric. 2021, 185, 106125. [Google Scholar] [CrossRef]
- Dhaka, V.S.; Meena, S.V.; Rani, G.; Sinwar, D.; Ijaz, M.F.; Woźniak, M. A survey of deep convolutional neural networks applied for prediction of plant leaf diseases. Sensors 2021, 21, 4749. [Google Scholar] [CrossRef]
- Nagaraju, M.; Chawla, P. Systematic review of deep learning techniques in plant disease detection. Int. J. Syst. Assur. Eng. Manag. 2020, 11, 547–560. [Google Scholar] [CrossRef]
- Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Quintanilla, C.; Peña, J.; Andújar, D.; Dorado, J.; Ribeiro, A.; López-Granados, F. Is the current state of the art of weed monitoring suitable for site-specific weed management in arable crops? Weed Res. 2018, 58, 259–272. [Google Scholar] [CrossRef]
- Lu, J.; Tan, L.; Jiang, H. Review on convolutional neural network (CNN) applied to plant leaf disease classification. Agriculture 2021, 11, 707. [Google Scholar] [CrossRef]
- Golhani, K.; Balasundram, S.K.; Vadamalai, G.; Pradhan, B. A review of neural networks in plant disease detection using hyperspectral data. Inf. Process. Agric. 2018, 5, 354–371. [Google Scholar] [CrossRef]
- Bangari, S.; Rachana, P.; Gupta, N.; Sudi, P.S.; Baniya, K.K. A Survey on Disease Detection of a potato Leaf Using CNN. In Proceedings of the 2nd IEEE International Conference on Artificial Intelligence and Smart Energy (ICAIS), Coimbatore, India, 23–25 February 2022; pp. 144–149. [Google Scholar]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Le Cun, Y.; Jackel, L.D.; Boser, B.; Denker, J.S.; Graf, H.P.; Guyon, I.; Henderson, D.; Howard, R.E.; Hubbard, W. Handwritten digit recognition: Applications of neural network chips and automatic learning. IEEE Commun. Mag. 1989, 27, 41–46. [Google Scholar] [CrossRef]
- Abdel-Hamid, O.; Mohamed, A.R.; Jiang, H.; Deng, L.; Penn, G.; Yu, D. Convolutional neural networks for speech recognition. IEEE/ACM Trans. Audio Speech Lang. Process. 2014, 22, 1533–1545. [Google Scholar] [CrossRef] [Green Version]
- Kamilaris, A.; Prenafeta-Boldú, F.X. Disaster monitoring using unmanned aerial vehicles and deep learning. arXiv 2018, arXiv:1807.11805. [Google Scholar]
- Canziani, A.; Paszke, A.; Culurciello, E. An analysis of deep neural network models for practical applications. arXiv 2016, arXiv:1605.07678. [Google Scholar]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [Green Version]
- Alom, M.Z.; Taha, T.M.; Yakopcic, C.; Westberg, S.; Sidike, P.; Nasrin, M.S.; Hasan, M.; Van Essen, B.C.; Awwal, A.A.; Asari, V.K. A state-of-the-art survey on deep learning theory and architectures. Electronics 2019, 8, 292. [Google Scholar] [CrossRef] [Green Version]
- Bahrampour, S.; Ramakrishnan, N.; Schott, L.; Shah, M. Comparative study of deep learning software frameworks. arXiv 2015, arXiv:1511.06435. [Google Scholar]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar]
- Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; Darrell, T. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM International Conference on Multimedia, Orlando, FL, USA, 3–7 November 2014; pp. 675–678. [Google Scholar]
- Ferentinos, K.P. Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 2018, 145, 311–318. [Google Scholar] [CrossRef]
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. {TensorFlow}: A system for {Large-Scale} machine learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), Savannah, GA, USA, 2–4 November 2016; pp. 265–283. [Google Scholar]
- Bastien, F.; Lamblin, P.; Pascanu, R.; Bergstra, J.; Goodfellow, I.; Bergeron, A.; Bouchard, N.; Warde-Farley, D.; Bengio, Y. Theano: New features and speed improvements. arXiv 2012, arXiv:1211.5590. [Google Scholar]
- Kim, P. Matlab Deep Learning: With Machine Learning, Neural Networks and Artificial Intelligence; Apress: New York, NY, USA, 2017; p. 130. [Google Scholar]
- Amara, J.; Bouaziz, B.; Algergawy, A. A deep learning-based approach for banana leaf diseases classification. In Proceedings of the Datenbanksysteme für Business, Technologie und Web (BTW 2017)—Workshopband, Stuttgart, Germany, 6–10 March 2017. [Google Scholar]
- Naik, B.N.; Ramanathan, M.; Palanisamy, P. Detection and classification of chilli leaf disease using a squeeze-and-excitation-based CNN model. Ecol. Inform. 2022, 69, 101663. [Google Scholar] [CrossRef]
- Partel, V.; Kim, J.; Costa, L.; Pardalos, P.M.; Ampatzidis, Y. Smart Sprayer for Precision Weed Control Using Artificial Intelligence: Comparison of Deep Learning Frameworks. In Proceedings of the International Symposium on Artificial Intelligence and Mathematics, ISAIM 2020, Fort Lauderdale, FL, USA, 6–8 January 2020. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Proceedings of the Advances in Neural Information Processing Systems 28 (NIPS 2015), Montreal, QC, Canada, 7–12 December 2016. [Google Scholar]
- Redmon, J. Darknet: Open Source Neural Networks in C. 2013–2016. Available online: http://pjreddie.com/darknet/ (accessed on 13 June 2022).
- Binguitcha-Fare, A.A.; Sharma, P. Crops and weeds classification using convolutional neural networks via optimization of transfer learning parameters. Int. J. Eng. Adv. Technol. (IJEAT) 2019, 8, 2249–8958. [Google Scholar]
- Sahu, P.; Chug, A.; Singh, A.P.; Singh, D.; Singh, R.P. Deep Learning Models for Beans Crop Diseases: Classification and Visualization Techniques. Int. J. Mod. Agric. 2021, 10, 796–812. [Google Scholar]
- Mukti, I.Z.; Biswas, D. Transfer learning based plant diseases detection using ResNet50. In Proceedings of the 4th IEEE International Conference on Electrical Information and Communication Technology (EICT), Khulna, Bangladesh, 20–22 December 2019; pp. 1–6. [Google Scholar]
- Arya, S.; Singh, R. A Comparative Study of CNN and AlexNet for Detection of Disease in Potato and Mango leaf. In Proceedings of the IEEE International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT), Ghaziabad, India, 27–28 September 2019; Volume 1, pp. 1–6. [Google Scholar]
- Milioto, A.; Lottes, P.; Stachniss, C. Real-Time Blob-Wise Sugar Beets VS Weeds Classification for Monitoring Fields Using Convolutional Neural Networks. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 4, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Yi, S.; Zeng, N.; Liu, Y.; Zhang, Y. Identification of rice diseases using deep convolutional neural networks. Neurocomputing 2017, 267, 378–384. [Google Scholar] [CrossRef]
- Zhang, W.; Hansen, M.F.; Volonakis, T.N.; Smith, M.; Smith, L.; Wilson, J.; Ralston, G.; Broadbent, L.; Wright, G. Broad-leaf weed detection in pasture. In Proceedings of the 3rd IEEE International Conference on Image, Vision and Computing (ICIVC), Chongqing, China, 27–29 June 2018; pp. 101–105. [Google Scholar]
- Liang, W.C.; Yang, Y.J.; Chao, C.M. Low-cost weed identification system using drones. In Proceedings of the 7th IEEE International Symposium on Computing and Networking Workshops (CANDARW), Nagasaki, Japan, 26–29 November 2019; pp. 260–263. [Google Scholar]
- Dyrmann, M.; Karstoft, H.; Midtiby, H.S. Plant species classification using deep convolutional neural network. Biosyst. Eng. 2016, 151, 72–80. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Q.; Gao, L. Visual tea leaf disease recognition using a convolutional neural network model. Symmetry 2019, 11, 343. [Google Scholar] [CrossRef] [Green Version]
- Nkemelu, D.K.; Omeiza, D.; Lubalo, N. Deep convolutional neural network for plant seedlings classification. arXiv 2018, arXiv:1811.08404. [Google Scholar]
- Pearlstein, L.; Kim, M.; Seto, W. Convolutional neural network application to plant detection, based on synthetic imagery. In Proceedings of the 2016 IEEE Applied Imagery Pattern Recognition Workshop (AIPR), Washington, DC, USA, 18–20 October 2016; pp. 1–4. [Google Scholar]
- Jiang, Z.; Dong, Z.; Jiang, W.; Yang, Y. Recognition of rice leaf diseases and wheat leaf diseases based on multi-task deep transfer learning. Comput. Electron. Agric. 2021, 186, 106184. [Google Scholar] [CrossRef]
- Sravan, V.; Swaraj, K.; Meenakshi, K.; Kora, P. A deep learning based crop disease classification using transfer learning. Mater. Today Proc. 2021. Epub ahead of printing. [Google Scholar] [CrossRef]
- Shin, J.; Chang, Y.K.; Heung, B.; Nguyen-Quang, T.; Price, G.W.; Al-Mallahi, A. A deep learning approach for RGB image-based powdery mildew disease detection on strawberry leaves. Comput. Electron. Agric. 2021, 183, 106042. [Google Scholar] [CrossRef]
- Brahimi, M.; Boukhalfa, K.; Moussaoui, A. Deep learning for tomato diseases: Classification and symptoms visualization. Appl. Artif. Intell. 2017, 31, 299–315. [Google Scholar] [CrossRef]
- Darwish, A.; Ezzat, D.; Hassanien, A.E. An optimized model based on convolutional neural networks and orthogonal learning particle swarm optimization algorithm for plant diseases diagnosis. Swarm Evol. Comput. 2020, 52, 100616. [Google Scholar] [CrossRef]
- DeChant, C.; Wiesner-Hanks, T.; Chen, S.; Stewart, E.L.; Yosinski, J.; Gore, M.A.; Nelson, R.J.; Lipson, H. Automated identification of northern leaf blight-infected maize plants from field imagery using deep learning. Phytopathology 2017, 107, 1426–1432. [Google Scholar] [CrossRef] [Green Version]
- Sibiya, M.; Sumbwanyambe, M. A computational procedure for the recognition and classification of maize leaf diseases out of healthy leaves using convolutional neural networks. AgriEngineering 2019, 1, 119–131. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Zhang, Y.; He, D.; Li, Y. Identification of apple leaf diseases based on deep convolutional neural networks. Symmetry 2017, 10, 11. [Google Scholar] [CrossRef] [Green Version]
- Nachtigall, L.G.; Araujo, R.M.; Nachtigall, G.R. Classification of apple tree disorders using convolutional neural networks. In Proceedings of the 28th IEEE International Conference on Tools with Artificial Intelligence (ICTAI), San Jose, CA, USA, 6–8 November 2016; pp. 472–476. [Google Scholar]
- Yuwana, R.S.; Suryawati, E.; Zilvan, V.; Ramdan, A.; Pardede, H.F.; Fauziah, F. Multi-condition training on deep convolutional neural networks for robust plant diseases detection. In Proceedings of the 2019 IEEE International Conference on Computer, Control, Informatics and Its Applications (IC3INA), Tangerang, Indonesia, 23–24 October 2019; pp. 30–35. [Google Scholar]
- Kawasaki, Y.; Uga, H.; Kagiwada, S.; Iyatomi, H. Basic study of automated diagnosis of viral plant diseases using convolutional neural networks. In Proceedings of the International Symposium on Visual Computing; Springer: Berlin/Heidelberg, Germany, 2015; pp. 638–645. [Google Scholar]
- Cruz, A.C.; Luvisi, A.; De Bellis, L.; Ampatzidis, Y. X-FIDO: An effective application for detecting olive quick decline syndrome with deep learning and data fusion. Front. Plant Sci. 2017, 8, 1741. [Google Scholar] [CrossRef] [PubMed]
- Ha, J.G.; Moon, H.; Kwak, J.T.; Hassan, S.I.; Dang, M.; Lee, O.N.; Park, H.Y. Deep convolutional neural network for classifying Fusarium wilt of radish from unmanned aerial vehicles. J. Appl. Remote Sens. 2017, 11, 042621. [Google Scholar] [CrossRef]
- Dang, L.M.; Syed, I.H.; Suhyeon, I. Drone agriculture imagery system for radish wilt. J. Appl. Remote Sens. 2017, 11, 16006. [Google Scholar]
- Liang, W.j.; Zhang, H.; Zhang, G.F.; Cao, H.x. Rice blast disease recognition using a deep convolutional neural network. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the International Conference on Machine Learning, PMLR, Lille, France, 7–9 July 2015; pp. 448–456. [Google Scholar]
- Lu, J.; Hu, J.; Zhao, G.; Mei, F.; Zhang, C. An In-field Automatic Wheat Disease Diagnosis System. Comput. Electron. Agric. 2017, 142, 369–379. [Google Scholar] [CrossRef] [Green Version]
- Ramcharan, A.; Baranowski, K.; McCloskey, P.; Ahmed, B.; Legg, J.; Hughes, D.P. Deep learning for image-based cassava disease detection. Front. Plant Sci. 2017, 8, 1852. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Sun, Y.; Wang, J. Automatic image-based plant disease severity estimation using deep learning. Comput. Intell. Neurosci. 2017, 2017, 2917536. [Google Scholar] [CrossRef] [Green Version]
- Oppenheim, D.; Shani, G. Potato disease classification using convolution neural networks. Adv. Anim. Biosci. 2017, 8, 244–249. [Google Scholar] [CrossRef]
- Durmus, H.; Günes, E.O.; Kirci, M. Disease detection on the leaves of the tomato plants by using deep learning. In Proceedings of the 6th International Conference on Agro-Geoinformatics, Fairfax, VA, USA, 7–10 August 2017; pp. 1–5. [Google Scholar]
- Arivazhagan, S.; Ligi, S.V. Mango leaf diseases identification using convolutional neural network. Int. J. Pure Appl. Math. 2018, 120, 11067–11079. [Google Scholar]
- Rangarajan, A.K.; Purushothaman, R.; Ramesh, A. Tomato crop disease classification using pre-trained deep learning algorithm. Procedia Comput. Sci. 2018, 133, 1040–1047. [Google Scholar] [CrossRef]
- Nandhini, M.; Kala, K.U.; Thangadarshini, M.; Verma, S.M. Deep Learning model of sequential image classifier for crop disease detection in plantain tree cultivation. Comput. Electron. Agric. 2022, 197, 106915. [Google Scholar] [CrossRef]
- Picón, A.; Alvarez-Gila, A.; Seitz, M.; Ortiz-Barredo, A.; Echazarra, J.; Johannes, A. Deep convolutional neural networks for mobile capture device-based crop disease classification in the wild. Comput. Electron. Agric. 2019, 161, 280–290. [Google Scholar] [CrossRef]
- Howlader, M.R.; Habiba, U.; Faisal, R.H.; Rahman, M.M. Automatic Recognition of Guava Leaf Diseases using Deep Convolution Neural Network. In Proceedings of the 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), Cox’s Bazar, Bangladesh, 7–9 February 2019; pp. 1–5. [Google Scholar]
- Singh, U.P.; Chouhan, S.S.; Jain, S.; Jain, S. Multilayer Convolution Neural Network for the Classification of Mango Leaves Infected by Anthracnose Disease. IEEE Access 2019, 7, 43721–43729. [Google Scholar] [CrossRef]
- GeethaRamani, R.; ArunPandian, J. Identification of plant leaf diseases using a nine-layer deep convolutional neural network. Comput. Electr. Eng. 2019, 76, 323–338. [Google Scholar]
- Fang, T.; Chen, P.; Zhang, J.; Wang, B. Crop leaf disease grade identification based on an improved convolutional neural network. J. Electron. Imaging 2020, 29, 013004. [Google Scholar] [CrossRef]
- Mishra, S.; Sachan, R.; Rajpal, D. Deep convolutional neural network based detection system for real-time corn plant disease recognition. Procedia Comput. Sci. 2020, 167, 2003–2010. [Google Scholar] [CrossRef]
- Mkonyi, L.; Rubanga, D.; Richard, M.; Zekeya, N.; Sawahiko, S.; Maiseli, B.; Machuve, D. Early identification of Tuta absoluta in tomato plants using deep learning. Sci. Afr. 2020, 10, e00590. [Google Scholar] [CrossRef]
- Karlekar, A.; Seal, A. SoyNet: Soybean leaf diseases classification. Comput. Electron. Agric. 2020, 172, 105342. [Google Scholar] [CrossRef]
- Liu, B.; Ding, Z.; Tian, L.; He, D.; Li, S.; Wang, H. Grape Leaf Disease Identification Using Improved Deep Convolutional Neural Networks. Front. Plant Sci. 2020, 11, 1082. [Google Scholar] [CrossRef]
- Ahmad, J.; Jan, B.; Farman, H.; Ahmad, W.; Ullah, A. Disease Detection in Plum Using Convolutional Neural Network under True Field Conditions. Sensors 2020, 20, 5569. [Google Scholar] [CrossRef]
- Rangarajan, A.K.; Purushothaman, R. Disease Classification in Eggplant Using Pre-trained VGG16 and MSVM. Sci. Rep. 2020, 10, 2322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, H.; Gu, Y.H.; Park, C.J.; Park, J.H.; Yoo, S.J. Transfer Learning-Based Search Model for Hot Pepper Diseases and Pests. Agriculture 2020, 10, 439. [Google Scholar] [CrossRef]
- Wang, F.; Rao, Y.L.; Luo, Q.; Jin, X.; Jiang, Z.H.; Zhang, W.; Li, S. Practical cucumber leaf disease recognition using improved Swin Transformer and small sample size. Comput. Electron. Agric. 2022, 199, 107163. [Google Scholar] [CrossRef]
- Subetha, T.; Khilar, R.; Christo, M.S. A comparative analysis on plant pathology classification using deep learning architecture—Resnet and VGG19. Mater. Today Proc. 2021. Epub ahead of printing. [Google Scholar] [CrossRef]
- Indu, V.T.; Priyadharsini, S.S. Crossover-based wind-driven optimized convolutional neural network model for tomato leaf disease classification. J. Plant Dis. Prot. 2021, 129, 559–578. [Google Scholar] [CrossRef]
- Vallabhajosyula, S.; Sistla, V.; Kolli, V.K.K. Transfer learning-based deep ensemble neural network for plant leaf disease detection. J. Plant Dis. Prot. 2021, 129, 545–558. [Google Scholar] [CrossRef]
- Hassan, S.M.; Maji, A.K.; Jasinski, M.F.; Leonowicz, Z.; Jasińska, E. Identification of Plant-Leaf Diseases Using CNN and Transfer-Learning Approach. Electronics 2021, 10, 1388. [Google Scholar] [CrossRef]
- Yadav, S.; Sengar, N.; Singh, A.; Singh, A.; Dutta, M.K. Identification of disease using deep learning and evaluation of bacteriosis in peach leaf. Ecol. Inform. 2021, 61, 101247. [Google Scholar] [CrossRef]
- Atila, Ü.; Uçar, M.; Akyol, K.; Uçar, E. Plant leaf disease classification using EfficientNet deep learning model. Ecol. Inform. 2021, 61, 101182. [Google Scholar] [CrossRef]
- Ahmad, I.; Hamid, M.; Yousaf, S.; Shah, S.T.; Ahmad, M.O. Optimizing Pretrained Convolutional Neural Networks for Tomato Leaf Disease Detection. Complexity 2020, 2020, 8812019:1–8812019:6. [Google Scholar] [CrossRef]
- Zhang, K.; Wu, Q.; Chen, Y. Detecting soybean leaf disease from synthetic image using multi-feature fusion faster R-CNN. Comput. Electron. Agric. 2021, 183, 106064. [Google Scholar] [CrossRef]
- Pandey, A.; Jain, K. A robust deep attention dense convolutional neural network for plant leaf disease identification and classification from smart phone captured real world images. Ecol. Inform. 2022, 70, 101725. [Google Scholar] [CrossRef]
- Jin, H.; Li, Y.; Qi, J.; Feng, J.; Tian, D.; Mu, W. GrapeGAN: Unsupervised image enhancement for improved grape leaf disease recognition. Comput. Electron. Agric. 2022, 198, 107055. [Google Scholar] [CrossRef]
- Javidan, S.M.; Banakar, A.; Vakilian, K.A.; Ampatzidis, Y. Diagnosis of Grape Leaf Diseases Using Automatic K-Means Clustering and Machine Learning. SSRN Electron. J. 2022, 3, 100081. [Google Scholar] [CrossRef]
- Zeng, W.; Li, H.; Hu, G.; Liang, D. Lightweight dense-scale network (LDSNet) for corn leaf disease identification. Comput. Electron. Agric. 2022, 197, 106943. [Google Scholar] [CrossRef]
- Yu, H.; Cheng, X.; Chen, C.; Heidari, A.A.; Liu, J.; Cai, Z.; Chen, H. Apple leaf disease recognition method with improved residual network. Multimed. Tools Appl. 2022, 81, 7759–7782. [Google Scholar] [CrossRef]
- Wei, K.; Chen, B.; Zhang, J.; Fan, S.; Wu, K.; Liu, G.; Chen, D. Explainable Deep Learning Study for Leaf Disease Classification. Agronomy 2022, 12, 1035. [Google Scholar] [CrossRef]
- Hanh, B.T.; Manh, H.V.; Nguyen, N.V. Enhancing the performance of transferred efficientnet models in leaf image-based plant disease classification. J. Plant Dis. Prot. 2022, 129, 623–634. [Google Scholar] [CrossRef]
- Ravi, V.; Acharya, V.; Pham, T.D. Attention deep learning-based large-scale learning classifier for Cassava leaf disease classification. Expert Syst. 2022, 39, e12862. [Google Scholar] [CrossRef]
- Li, X.; Li, S. Transformer Help CNN See Better: A Lightweight Hybrid Apple Disease Identification Model Based on Transformers. Agriculture 2022, 12, 884. [Google Scholar] [CrossRef]
- Sun, X.; Li, G.; Qu, P.; Xie, X.; Pan, X.; Zhang, W. Research on plant disease identification based on CNN. Cogn. Robot. 2022, 2, 155–163. [Google Scholar] [CrossRef]
- Jiang, J.; Liu, H.; Zhao, C.; He, C.; Ma, J.; Cheng, T.; Zhu, Y.; Cao, W.; Yao, X. Evaluation of Diverse Convolutional Neural Networks and Training Strategies for Wheat Leaf Disease Identification with Field-Acquired Photographs. Remote Sens. 2022, 14, 3446. [Google Scholar] [CrossRef]
- Memon, M.S.; Kumar, P.; Iqbal, R. Meta Deep Learn Leaf Disease Identification Model for Cotton Crop. Computers 2022, 11, 102. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, K.; Zhou, P.; Ban, X.; He, D. Improved cross entropy loss for noisy labels in vision leaf disease classification. IET Image Process. 2022, 16, 1511–1519. [Google Scholar] [CrossRef]
- Russel, N.S.; Selvaraj, A. Leaf species and disease classification using multiscale parallel deep CNN architecture. Neural Comput. Appl. 2022. [Google Scholar] [CrossRef]
- Gaikwad, S.S.; Rumma, S.S.; Hangarge, M. Fungi affected fruit leaf disease classification using deep CNN architecture. Int. J. Inf. Technol. 2022. [Google Scholar] [CrossRef]
- Prabu, M.; Chelliah, B.J. Mango leaf disease identification and classification using a CNN architecture optimized by crossover-based levy flight distribution algorithm. Neural Comput. Appl. 2022, 34, 7311–7324. [Google Scholar] [CrossRef]
- Kurmi, Y.; Saxena, P.; Kirar, B.S.; Gangwar, S.; Chaurasia, V.; Goel, A. Deep CNN model for crops’ diseases detection using leaf images. Multidimens. Syst. Signal Process. 2022, 33, 981–1000. [Google Scholar] [CrossRef]
- Nagi, R.; Tripathy, S.S. Deep convolutional neural network based disease identification in grapevine leaf images. Multimed. Tools Appl. 2022, 81, 24995–25006. [Google Scholar] [CrossRef]
- Subramanian, M.; Shanmugavadivel, K.; Nandhini, P.S. On fine-tuning deep learning models using transfer learning and hyper-parameters optimization for disease identification in maize leaves. Neural Comput. Appl. 2022, 34, 13951–13968. [Google Scholar] [CrossRef]
- Gajjar, R.; Gajjar, N.P.; Thakor, V.J.; Patel, N.P.; Ruparelia, S. Real-time detection and identification of plant leaf diseases using convolutional neural networks on an embedded platform. Vis. Comput. 2022, 38, 2923–2938. [Google Scholar] [CrossRef]
- Xu, Y.; Kong, S.; Gao, Z.; Chen, Q.; Jiao, Y.B.; Li, C. HLNet Model and Application in Crop Leaf Diseases Identification. Sustainability 2022, 14, 8915. [Google Scholar] [CrossRef]
- Singh, R.K.; Tiwari, A.; Gupta, R.K. Deep transfer modeling for classification of Maize Plant Leaf Disease. Multimed. Tools Appl. 2022, 81, 6051–6067. [Google Scholar] [CrossRef]
- Ruth, J.A.; Uma, R.; Meenakshi, A.; Ramkumar, P. Meta-Heuristic Based Deep Learning Model for Leaf Diseases Detection. Neural Process. Lett. 2022. [Google Scholar] [CrossRef]
- Pandian, J.A.; Kanchanadevi, K.; Kumar, V.D.; Jasińska, E.; Goňo, R.; Leonowicz, Z.; Jasinski, M.L. A Five Convolutional Layer Deep Convolutional Neural Network for Plant Leaf Disease Detection. Electronics 2022, 11, 1266. [Google Scholar] [CrossRef]
- Pandian, J.A.; Kumar, V.D.; Geman, O.; Hnatiuc, M.; Arif, M.; Kanchanadevi, K. Plant Disease Detection Using Deep Convolutional Neural Network. Appl. Sci. 2022, 12, 6982. [Google Scholar] [CrossRef]
- Borhani, Y.; Khoramdel, J.; Najafi, E. A deep learning based approach for automated plant disease classification using vision transformer. Sci. Rep. 2022, 12, 11554. [Google Scholar] [CrossRef] [PubMed]
- Yakkundimath, R.; Saunshi, G.; Anami, B.S.; Palaiah, S. Classification of Rice Diseases using Convolutional Neural Network Models. J. Inst. Eng. Ser. B 2022, 103, 1047–1059. [Google Scholar] [CrossRef]
- Chen, W.; Chen, J.; Zeb, A.; Yang, S.; Zhang, D. Mobile convolution neural network for the recognition of potato leaf disease images. Multimed. Tools Appl. 2022, 81, 20797–20816. [Google Scholar] [CrossRef]
- Yogeswararao, G.; Naresh, V.; Malmathanraj, R.; Palanisamy, P. An efficient densely connected convolutional neural network for identification of plant diseases. Multimed. Tools Appl. 2022. [Google Scholar] [CrossRef]
- Paymode, A.S.; Malode, V.B. Transfer learning for multi-crop leaf disease image classification using convolutional neural networks VGG. Artif. Intell. Agric. 2022, 6, 23–33. [Google Scholar] [CrossRef]
- Thakur, P.S.; Sheorey, T.; Ojha, A. VGG-ICNN: A Lightweight CNN model for crop disease identification. Multimed. Tools Appl. 2022. [Google Scholar] [CrossRef]
- Math, R.M.; Dharwadkar, D.N.V. Early detection and identification of grape diseases using convolutional neural networks. J. Plant Dis. Prot. 2022, 129, 521–532. [Google Scholar] [CrossRef]
- Kamal, K.; Yin, Z.; Wu, M.; Wu, Z. Depthwise separable convolution architectures for plant disease classification. Comput. Electron. Agric. 2019, 165, 104948. [Google Scholar]
- Elfatimi, E.; Eryigit, R.; Elfatimi, L. Beans Leaf Diseases Classification Using MobileNet Models. IEEE Access 2022, 10, 9471–9482. [Google Scholar] [CrossRef]
- Lim, S.; Kim, I.; Kim, T.; Kim, C.; Kim, S. Fast autoaugment. Adv. Neural Inf. Process. Syst. 2019, 32, 6665–6675. [Google Scholar]
- Hendrycks, D.; Mu, N.; Cubuk, E.D.; Zoph, B.; Gilmer, J.; Lakshminarayanan, B. Augmix: A simple data processing method to improve robustness and uncertainty. arXiv 2019, arXiv:1912.02781. [Google Scholar]
- Cubuk, E.D.; Zoph, B.; Shlens, J.; Le, Q.V. Randaugment: Practical automated data augmentation with a reduced search space. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 702–703. [Google Scholar]
- Ho, D.; Liang, E.; Chen, X.; Stoica, I.; Abbeel, P. Population based augmentation: Efficient learning of augmentation policy schedules. In Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 2731–2741. [Google Scholar]
- Sladojevic, S.; Arsenovic, M.; Anderla, A.; Culibrk, D.; Stefanovic, D. Deep neural networks based recognition of plant diseases by leaf image classification. Comput. Intell. Neurosci. 2016, 2016, 3289801. [Google Scholar] [CrossRef] [Green Version]
- Barbedo, J.G.A. Plant disease identification from individual lesions and spots using deep learning. Biosyst. Eng. 2019, 180, 96–107. [Google Scholar] [CrossRef]
- Coulibaly, S.; Kamsu-Foguem, B.; Kamissoko, D.; Traore, D. Deep neural networks with transfer learning in millet crop images. Comput. Ind. 2019, 108, 115–120. [Google Scholar] [CrossRef] [Green Version]
- Barbedo, J.G.A. A review on the main challenges in automatic plant disease identification based on visible range images. Biosyst. Eng. 2016, 144, 52–60. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, Z.; Xie, Y.; Gao, X.; Chen, Q. A watershed segmentation algorithm based on an optimal marker for bubble size measurement. Measurement 2019, 138, 182–193. [Google Scholar] [CrossRef]
- Barbedo, J.G. Factors influencing the use of deep learning for plant disease recognition. Biosyst. Eng. 2018, 172, 84–91. [Google Scholar] [CrossRef]
- Taherkhani, A.; Cosma, G.; McGinnity, T.M. AdaBoost-CNN: An adaptive boosting algorithm for convolutional neural networks to classify multi-class imbalanced datasets using transfer learning. Neurocomputing 2020, 404, 351–366. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the 26th Annual Conference on Neural Information Processing Systems 25, Lake Tahoe, NV, USA, 3–6 December 2012. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1989, 1, 541–551. [Google Scholar] [CrossRef]
Framework | Programming Language | Operating System Compatibility | Open Source | Interface |
---|---|---|---|---|
Keras [25] | Python | Windows, Linux, macOS | Yes | Yes |
Caffe [26] | C++ | Windows, Linux, macOS | Yes | Python C++, MATLAB |
Torch [27] | C, Lua | Windows, Linux, macOS | Yes | C, C++ |
TensorFlow [28] | Python, C++, CUDA | Windows, Linux, macOS | Yes | Java, Python, JavaScript |
Theano [29] | Python | Cross-platform | Yes | Python |
Matlab Toolbox [30] | MATLAB, C, C++, Java | Windows, Linux, macOS | No | MATLAB |
deeplearning4j [31] | Python, Java | Windows, Linux, macOS | Yes | Python Java, Clojure |
Ref. # | Species | Data Source | Model | Accuracy | Year | |
---|---|---|---|---|---|---|
1 | [59] | cucumber | self | CNN | 94.90 | 2015 |
2 | [64] | rice | self | CNN | 95.48 | 2015 |
3 | [4] | multiple | PlantVillage | GoogLeNet | 99.35 | 2016 |
4 | [57] | apple | PlantVillage | AlexNet | 97.30 | 2016 |
5 | [65] | wheat | self | VGG-FCN-VD16 | 97,95 | 2017 |
6 | [42] | rice | self | DCNN | 95.48 | 2017 |
7 | [52] | tomato | self | GoogLeNet | 99.18 | 2017 |
8 | [56] | apple | PlantVilage | AlexNet | 97.62 | 2017 |
9 | [31] | banana | PlantVillage | LeNet | 99.00 | 2017 |
10 | [66] | cassava | self | Inception-v3 | 93.00 | 2017 |
11 | [67] | apple | PlantVillage | VGG16 | 90.40 | 2017 |
12 | [60] | olive | PlantVillage | LeNet | 99.00 | 2017 |
13 | [68] | potato | PlantVillage | VGG | 96.00 | 2017 |
14 | [61] | radish | self | VGG-A | 93.30 | 2017 |
15 | [62] | radish | self | GoogLeNet | 90.00 | 2017 |
16 | [69] | tomato | Plantvillage | AlexNet | 95.60 | 2017 |
17 | [27] | multiple | PlantVillage | VGG | 99.53 | 2018 |
18 | [70] | mango | self | CNN | 96.67 | 2018 |
19 | [71] | tomato | PlantVillage | AlexNet | 97.49 | 2018 |
20 | [72] | banana | self | CNN | 93.60 | 2018 |
21 | [73] | wheat | self | ResNet-50 | 96.00 | 2019 |
22 | [39] | multiple | PlantVillage | ResNet50 | 99.80 | 2019 |
23 | [46] | tea | self | LeafNet | 90.16 | 2019 |
24 | [63] | rice | self | Lenet5 | 95.83 | 2019 |
25 | [55] | maize | PlantVillage | CNN | 92.85 | 2019 |
26 | [74] | guava | self | DCNN | 98.74 | 2019 |
27 | [75] | mango | self | MCNN | 97.13 | 2019 |
28 | [76] | multiple | PlantVillage | CNN | 96.46 | 2019 |
29 | [77] | multiple | PlantVillage | ResNet-50 | 95.61 | 2020 |
30 | [53] | maize | Kaggle | VGG16 | 98.20 | 2020 |
31 | [78] | multiple | PlantVillage | DCNN | 88.46 | 2020 |
32 | [79] | tomato | self | VGG16 | 91.90 | 2020 |
33 | [80] | soybean | self | CNN | 98.14 | 2020 |
34 | [81] | grape | self | DICNN | 97.22 | 2020 |
35 | [82] | plum | self | Inception-v3 | 92.00 | 2020 |
36 | [83] | eggplant | self | VGG16 | 99.40 | 2020 |
37 | [84] | pepper | self | ResNet50 | 88.38 | 2020 |
38 | [85] | cucumber | self | Efficient-B5-SwinT | 99.25 | 2021 |
39 | [38] | bean | Kaggle | GoogleNet | 93.75 | 2021 |
40 | [86] | apple | kaggle | VGG19 | 87.70 | 2021 |
41 | [87] | tomato | PlantVillage | AlexNet | 99.86 | 2021 |
42 | [88] | multiple | Kaggle | CNN | 100.00 | 2021 |
43 | [89] | multiple | PlantVillage | EfficientNetB0 | 99.56 | 2021 |
44 | [90] | peach | self | CNN | 98.75 | 2021 |
45 | [91] | multiple | PlantVillage | EfficientNet | 98.42 | 2021 |
46 | [92] | tomato | self | Inception v3 | 99.60 | 2021 |
47 | [32] | chili | self | SECNN | 99.12 | 2022 |
48 | [32] | chili | plantvillage | SECNN | 99.28 | 2022 |
49 | [32] | apple | plantvillage | SECNN | 99.78 | 2022 |
50 | [32] | maize | plantvillage | SECNN | 97.94 | 2022 |
51 | [32] | pepper | plantvillage | SECNN | 99.19 | 2022 |
52 | [32] | potato | plantvillage | SECNN | 100.00 | 2022 |
53 | [32] | tomato | plantvillage | SECNN | 97.90 | 2022 |
54 | [93] | soybean | self | R-CNN | 83.84 | 2022 |
55 | [94] | multiple | self | DADCNN-5 | 99.93 | 2022 |
56 | [95] | grape | self | InceptionV1 | 96.13 | 2022 |
57 | [96] | grape | PlantVillage | GoogleNet | 94.05 | 2022 |
58 | [97] | maize | PlantVillage | GhostNet | 92.90 | 2022 |
59 | [97] | maize | PlantVillage | LDSNet | 95.40 | 2022 |
60 | [98] | apple | kaggle | Resnet | 95.80 | 2022 |
61 | [99] | multiple | kaggle | Resnet | 99.89 | 2022 |
62 | [100] | multiple | PlantVillage | EfcientNet-B3 | 98.91 | 2022 |
63 | [101] | cassava | kaggle | CNN | 87.00 | 2022 |
64 | [102] | apple | self | ConvVIT | 96.85 | 2022 |
65 | [103] | multiple | kaggle | EfficientNet | 99.70 | 2022 |
66 | [104] | wheat | PlantVillage | Inception-v3 | 92.53 | 2022 |
67 | [105] | cotton | self | CNN | 98.53 | 2022 |
68 | [106] | cassava | self | ResNet-50 | 89.70 | 2022 |
69 | [107] | multiple | Plantvillage | CNN | 98.61 | 2022 |
70 | [107] | multiple | MepcoTropicLeaf | CNN | 90.02 | 2022 |
71 | [108] | multiple | self | AlexNet | 86.85 | 2022 |
72 | [109] | mango | self | MobilenetV2 | 99.43 | 2022 |
73 | [110] | pepper | PlantVillage | CNN | 95.80 | 2022 |
74 | [110] | potato | PlantVillage | CNN | 94.10 | 2022 |
75 | [110] | tomato | PlantVillage | CNN | 92.60 | 2022 |
76 | [111] | grape | PlantVillage | CNN | 98.40 | 2022 |
77 | [112] | maize | Kaggle | InceptionV3 | 99.66 | 2022 |
78 | [113] | multiple | self | CNN | 96.88 | 2022 |
79 | [114] | multiple | PlantVillage | CNN | 99.86 | 2022 |
80 | [115] | maize | PlantVillage | AlexNet | 99.16 | 2022 |
81 | [116] | multiple | Kaggle | CNN | 99.00 | 2022 |
82 | [117] | multiple | PlantVillage | CNN | 98.41 | 2022 |
83 | [118] | multiple | PlantVillage | DCNN | 99.79 | 2022 |
84 | [119] | wheat | PlantVillage | ResNet152 | 95.00 | 2022 |
85 | [120] | rice | self | VGG16 | 92.24 | 2022 |
86 | [121] | potato | PlantVillage | MobileNet V2 | 97.73 | 2022 |
87 | [122] | cucumber | PlantVillage | DCCNN | 98.23 | 2022 |
88 | [122] | popato | PlantVillage | DCCNN | 99.83 | 2022 |
89 | [122] | grape | PlantVillage | DCCNN | 99.78 | 2022 |
90 | [122] | apple | PlantVillage | DCCNN | 99.78 | 2022 |
91 | [122] | maize | PlantVillage | DCCNN | 98.85 | 2022 |
92 | [123] | grape | PlantVillage | VGG16 | 98.40 | 2022 |
93 | [123] | tomato | PlantVillage | VGG16 | 95.71 | 2022 |
94 | [124] | multiple | PlantVillage | VGG-ICNN | 99.16 | 2022 |
95 | [124] | apple | PlantVillage | VGG-ICNN | 94.24 | 2022 |
96 | [124] | maize | PlantVillage | VGG-ICNN | 91.36 | 2022 |
97 | [124] | rice | PlantVillage | VGG-ICNN | 96.67 | 2022 |
98 | [125] | grape | PlantVillage | CNN | 99.34 | 2022 |
99 | [126] | multiple | PlantVillage | MobileNet | 98.34 | 2022 |
100 | [127] | bean | Kaggle | MobileNet | 97.00 | 2022 |
Dataset | Number of Classes | Number of Images Not Augmented | Source |
---|---|---|---|
PlantVillage | 39 | 61,486 | Kaggle |
Kaggle (plant pathology) | 12 | 18,632 | Kaggle |
Kaggle (cassava) | 5 | 15,000 | Kaggle |
Kaggle (rice) | 4 | 1200 | Kaggle |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tugrul, B.; Elfatimi, E.; Eryigit, R. Convolutional Neural Networks in Detection of Plant Leaf Diseases: A Review. Agriculture 2022, 12, 1192. https://doi.org/10.3390/agriculture12081192
Tugrul B, Elfatimi E, Eryigit R. Convolutional Neural Networks in Detection of Plant Leaf Diseases: A Review. Agriculture. 2022; 12(8):1192. https://doi.org/10.3390/agriculture12081192
Chicago/Turabian StyleTugrul, Bulent, Elhoucine Elfatimi, and Recep Eryigit. 2022. "Convolutional Neural Networks in Detection of Plant Leaf Diseases: A Review" Agriculture 12, no. 8: 1192. https://doi.org/10.3390/agriculture12081192
APA StyleTugrul, B., Elfatimi, E., & Eryigit, R. (2022). Convolutional Neural Networks in Detection of Plant Leaf Diseases: A Review. Agriculture, 12(8), 1192. https://doi.org/10.3390/agriculture12081192