Cooperative Low-Carbon Trajectory Planning of Multi-Arrival Aircraft for Continuous Descent Operation
<p>A typical CDO process of an arrival aircraft.</p> "> Figure 2
<p>The explicit guidance for aircraft speed control.</p> "> Figure 3
<p>A simplified standard terminal arrival route for busy terminal areas.</p> "> Figure 4
<p>(<b>a</b>) Traditional open path arrival route structure to downwind leg; (<b>b</b>) T-shaped arrival route structure.</p> "> Figure 5
<p>Alternative route assembly schematic.</p> "> Figure 6
<p>Alternative set of 4D trajectories based on downwind leg segmentation.</p> "> Figure 7
<p>Correspondence between flight distance and time of critical waypoint.</p> "> Figure 8
<p>The chromosome model of decision variables in the MIP planning model.</p> "> Figure 9
<p>Diagram illustrating priority landing for aircraft on a direct final approach.</p> "> Figure 10
<p>Standard arrival flight procedures of ZSQD TMA.</p> "> Figure 11
<p>Alternative routes of T-shaped arrival route structure (schematic diagram not to scale).</p> "> Figure 12
<p>Actual and optimized vertical profile of B737-800.</p> "> Figure 13
<p>Variation in flight time and fuel consumption with different optimization objectives. (<b>a</b>) Flight time distribution; (<b>b</b>) fuel consumption distribution.</p> "> Figure 14
<p>Space–time diagram of multi-aircraft trajectory planning. Analysis of selected alternative routes and waiting times with the objective of minimizing total cost.</p> "> Figure 15
<p>Horizontal trajectory comparison. (<b>a</b>) Actual horizontal trajectories; (<b>b</b>) optimized horizontal trajectories.</p> "> Figure 16
<p>Vertical profile comparison. (<b>a</b>) Actual trajectory vertical profile; (<b>b</b>) optimized altitude profile.</p> "> Figure 17
<p>Fuel flow comparison of Aircraft 11. (<b>a</b>) Actual trajectory fuel profile; (<b>b</b>) optimized trajectory fuel profile.</p> "> Figure 18
<p>Comparison of fuel consumption of the 22 aircraft.</p> "> Figure 19
<p>The distribution of flight times under different numbers of arrival flights.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Optimal Control Model for CDO
2.1.1. CDO Phase
2.1.2. Mathematical Model
- (1)
- Objective Function
- (2)
- Control Variables
- (3)
- Constraint Conditions
2.1.3. CDO Profile Solving Model
2.2. Low-Carbon Multi-Arrival Aircraft 4D Trajectory Cooperative Planning
2.2.1. T-Shaped Arrival Routes
2.2.2. Alternative Route Generation
2.2.3. Multi-Aircraft 4D Trajectory MIP Planning Model
3. Experimental Results and Discussion
3.1. Arrival Routes and Available Data
3.2. Alternative Trajectory Analysis
- (1)
- 4D Trajectory Alternative Set Analysis
- (2)
- Analysis of the trajectory planning results of the 4D trajectory alternative set for different optimization objectives
3.3. Convergence Trajectory Scheduling Results and Horizontal Trajectory Analysis
3.4. Vertical Profile and Fuel Consumption Comparison
3.5. Analysis of High-Traffic Scenarios
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lowther, M.B.; Clarke, J.P.B.; Ren, L. En Route Speed Optimization for Continuous Descent Arrival. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA, USA, 2008. [Google Scholar]
- ICAO. Continuous Descent Operations (CDO) Manual: Doc 9931; International Civil Aviation Organization: Montréal, QC, Canada, 2010; pp. 21–36. [Google Scholar]
- Jong, P.M.A.; Gelder, N.; Verhoeven, R.P.M.; Bussink, F.J.L.; Kohrs, R.; van Paassen, M.M.; Mulder, M. Time and energy management during descent and approach: Batch simulation study. J. Aircr. 2015, 52, 190–203. [Google Scholar] [CrossRef]
- Bennell, J.; Mesgarpour, M.; Potts, C. Dynamic scheduling of aircraft landings. Eur. J. Oper. Res. 2017, 258, 315–327. [Google Scholar] [CrossRef]
- Ji, X.P.; Cao, X.B.; Tang, K. Sequence searching and evaluation: A unified approach for aircraft arrival sequencing and scheduling problems. Memetic Comput. 2016, 8, 109–123. [Google Scholar] [CrossRef]
- Sölveling, G.; Clarke, J.P. Scheduling of airport runway operations using stochastic branch and bound methods. Transp. Res. Part C Emerg. Technol. 2014, 45, 119–137. [Google Scholar] [CrossRef]
- Girish, B.S. An efficient hybrid particle swarm optimization algorithm in a rolling horizon framework for the aircraft landing problem. Appl. Soft Comput. 2016, 44, 200–221. [Google Scholar]
- Zhang, J.; Zhao, P.; Zhang, Y.; Dai, X.; Sui, D. Criteria selection and multi-objective optimization of aircraft landing problem. J. Air Transp. Manag. 2020, 82, 101734. [Google Scholar] [CrossRef]
- Lieder, A.; Briskorn, D.; Stolletz, R. A dynamic programming approach for the aircraft landing problem with aircraft classes. Eur. J. Oper. Res. 2015, 243, 61–69. [Google Scholar] [CrossRef]
- Zhang, J.; Pengli, Z.; Chunwei, Y.; Rong, H.U. A New Meta-Heuristic Approach for Aircraft Landing Problem. Trans. Nanjing Univ. Aeronaut. Astronaut. 2020, 37, 197–208. [Google Scholar]
- Du, Z.; Zhang, J.; Kang, B. A Data-Driven Method for Arrival Sequencing and Scheduling Problem. Aerospace 2023, 10, 62. [Google Scholar] [CrossRef]
- Ahmed, K.; Bousson, K.; Coelho, M.d.F. A modified dynamic programming approach for 4D minimum fuel and emissions trajectory optimization. Aerospace 2021, 8, 135. [Google Scholar] [CrossRef]
- Jiang, H.; Liu, J. Survey Review of Arrival and Departure Flight Optimal Scheduling. Aeronaut. Comput. Tech. 2021, 51, 130–134. [Google Scholar]
- Xue, D.; Hsu, L.T.; Wu, C.L.; Lee, C.-H.; Ng, K.K. Cooperative surveillance systems and digital-technology enabler for a real-time standard terminal arrival schedule displacement. Adv. Eng. Inform. 2021, 50, 101402. [Google Scholar] [CrossRef]
- Carr, G.C.; Erzberger, H.; Neuman, F. Fast-time study of airline-influenced arrival sequencing and scheduling. J. Guid. Control Dyn. 2000, 23, 526–531. [Google Scholar] [CrossRef]
- Hasevoets, N.; Conroy, P. Arrival Manager-Implementation Guidelines and Lessons Learned, Eurocontrol; Technical Report; EUROCONTROL: Brussels, Belgium, 2010. [Google Scholar]
- Ben-Asher, J.Z. Optimal Control Theory with Aerospace Applications; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2010. [Google Scholar]
- Tang, G.; Jiang, F.; Li, J. Fuel-optimal low-thrust trajectory optimization using indirect method and successive convex programming. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 2053–2066. [Google Scholar] [CrossRef]
- Franco, A.; Rivas, D. Optimization of Multiphase Aircraft Trajectories Using Hybrid Optimal Control. J. Guid. Control Dyn. 2015, 38, 452–467. [Google Scholar] [CrossRef]
- Tian, Y.; He, X.; Xu, Y.; Wan, L.; Ye, B. 4D trajectory optimization of commercial flight for green civil aviation. IEEE Access 2020, 8, 62815–62829. [Google Scholar] [CrossRef]
- Garcia-Heras, J.; Soler, M.; Saez, F.J. Collocation methods to minimum-fuel trajectory problems with required time of arrival in ATM. J. Aerosp. Inf. Syst. 2016, 13, 243–265. [Google Scholar] [CrossRef]
- Park, S.G.; Dutta, P.; Menon, P.K. Optimal Trajectory Option Sets for In-Flight Climb-Descend Trajectory Negotiations. In Proceedings of the 17th AIAA Aviation Technology, Integration, and Operations Conference, Denver, CO, USA, 5–9 June 2017; p. 3432. [Google Scholar]
- Park, S.G.; Clarke, J.P. Optimal control based vertical trajectory determination for continuous descent arrival procedures. J. Aircr. 2015, 52, 1469–1480. [Google Scholar] [CrossRef]
- Luchinskiy, D.G.; Schuet, S.; Brenton, J.; Timucin, D.; Smith, D.; Kaneshige, J. Fast optimization for aircraft descent and approach trajectory. In Proceedings of the Annual Conference of the PHM Society, St. Petersburg, FL, USA, 2–5 October 2017; Volume 9. [Google Scholar]
- Ma, L.; Tian, Y.; Zhang, Y.; Chu, P. Trajectory Optimization of Aircraft for A Continuous Descent Continuous Procedure. In Proceedings of the Chinese Automation Congress (CAC), Shanghai, China, 6–8 November 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 2063–2067. [Google Scholar]
- Wang, C.; Chen, H.; Qin, H.; Liu, B. A 4D Trajectory Prediction Method of Continuous Descent Op-eration in Congested Terminal Control Area. J. Southwest Jiaotong Univ. 2024, 1–8. Available online: https://link.cnki.net/urlid/51.1277.U.20231204.1042.008 (accessed on 4 December 2023).
- Yang, C.; Yu, Y.; Li, Q.; Ren, Z. Trajectory optimization for arrival aircraft using a hybrid IPSO-SQP algorithm. In Proceedings of the Guidance, Navigation & Control Conference, Nanjing, China, 12–14 August 2016; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar]
- Yu, H.; Mulder, J.A. Arrival trajectory optimization for passenger aircraft using genetic algorithms. In Proceedings of the 11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference, Including the AIAA Balloon Systems Conference and 19th AIAA Lighter-Than, Virginia Beach, VA, USA, 20–22 September 2011; p. 6804. [Google Scholar]
- Sáez, R.; Prats, X. Comparison of fuel consumption of continuous descent operations with required times of arrival: Path stretching vs. powered descents. In Proceedings of the 9th International Conference on Research in Air Transportation (ICRAT 2020), Tampa, FL, USA, 15 September 2020; pp. 23–26. [Google Scholar]
- Pawełek, A.; Lichota, P.; Dalmau, R.; Prats, X. Fuel-efficient trajectories traffic synchronization. J. Aircr. 2019, 56, 481–492. [Google Scholar] [CrossRef]
- Toratani, D. Application of merging optimization to an arrival manager algorithm considering trajectory-based operations. Transp. Res. Part C Emerg. Technol. 2019, 109, 40–59. [Google Scholar] [CrossRef]
- Hong, Y.; Choi, B.; Lee, K.; Kim, Y. Dynamic robust sequencing and scheduling under uncertainty for the point merge system in terminal airspace. IEEE Trans. Intell. Transp. Syst. 2017, 19, 2933–2943. [Google Scholar] [CrossRef]
- Liang, M.; Delahaye, D.; Maréchal, P. Integrated sequencing and merging aircraft to parallel runways with automated conflict resolution and advanced avionics capabilities. Transp. Res. Part C Emerg. Technol. 2017, 85, 268–291. [Google Scholar] [CrossRef]
- Sáez, R.; Prats, X.; Polishchuk, T.; Polishchuk, V. Traffic synchronization in terminal airspace to enable continuous descent operations in trombone sequencing and merging procedures: An implementation study for Frankfurt airport. Transp. Res. Part C Emerg. Technol. 2020, 121, 102875. [Google Scholar] [CrossRef]
- Sáez, R.; Polishchuk, T.; Schmidt, C.; Hardell, H.; Smetanová, L.; Polishchuk, V.; Prats, X. Automated sequencing and merging with dynamic aircraft arrival routes and speed management for continuous descent operations. Transp. Res. Part C Emerg. Technol. 2021, 132, 103402. [Google Scholar] [CrossRef]
- Wang, C.; Xu, C.; Li, W.; Li, S.; Sun, S. Four-Dimensional Trajectory Optimization for CO2 Emission Benchmarking of Arrival Traffic Flow with Point Merge Topology. Aerospace 2024, 11, 673. [Google Scholar] [CrossRef]
- Fan, W.; Sun, Y.; Zhu, T.; Wen , Y. Emissions of HC, CO, NOx, CO2, and SO2 from civil aviation in China in 2010. Atmos. Environ. 2012, 56, 52–57. [Google Scholar]
- Baughcum, S.L.; Tritz, T.G.; Henderson, S.C.; Pickett, D.C. Scheduled Civil Aircraft Emission Inventories for 1992: Database Development and Analysis; Boeing Commercial Airplane Co.: Seattle, WA, USA, 1996. [Google Scholar]
- Xue, D.; Liu, Z.; Wang, B.; Yang, J. Impacts of COVID-19 on aircraft usage and fuel consumption: A case study on four Chinese international airports. J. Air Transp. Manag. 2021, 95, 102106. [Google Scholar] [CrossRef] [PubMed]
- Airbus, S. Getting to Grips with Cost Index. In Flight Operations Support & Line Assistance; Smart Cockpit: Geneva, Switzerland, 1998. [Google Scholar]
- Fan, L.; Zhen, Z.; Xue, F.; Wang, Q. 4D trajectory prediction and optimization method for civil aircraft based on cost index. Civ. Aircr. Des. Res. 2020, 9, 85–91. [Google Scholar]
Aircraft ID | Type | Entering Waypoint | Entering Time | Entering Altitude/m | Calibrated Airspeed/kn |
---|---|---|---|---|---|
1 | B737 | P74 | 17:00:00 | 6900 | 310 |
2 | B738 | HCH | 17:00:35 | 4400 | 240 |
3 | B737 | VEVED | 17:05:00 | 6300 | 320 |
4 | B738 | WFG | 17:05:05 | 5100 | 280 |
5 | B738 | P74 | 17:07:00 | 6600 | 320 |
6 | A320 | WFG | 17:07:00 | 5100 | 280 |
7 | B738 | HCH | 17:08:00 | 4500 | 250 |
8 | B738 | WFG | 17:10:00 | 5100 | 270 |
9 | A320 | HCH | 17:11:00 | 4100 | 240 |
10 | B738 | VEVED | 17:11:30 | 6400 | 300 |
11 | A320 | WFG | 17:16:00 | 5100 | 260 |
12 | A320 | WFG | 17:17:30 | 5100 | 270 |
13 | A319 | VEVED | 17:19:30 | 6900 | 320 |
14 | A320 | VEVED | 17:28:00 | 6900 | 300 |
15 | A320 | HCH | 17:29:00 | 4400 | 250 |
16 | B738 | HCH | 17:30:30 | 5000 | 270 |
17 | B738 | WFG | 17:34:30 | 4300 | 260 |
18 | A333 | VEVED | 17:41:00 | 6800 | 320 |
19 | A320 | WFG | 17:48:00 | 4700 | 250 |
20 | B738 | HCH | 17:49:10 | 4700 | 260 |
21 | A332 | P74 | 17:55:00 | 7500 | 320 |
22 | A320 | WFG | 17:56:00 | 4800 | 250 |
Air Route | Flight Time/s | Fuel Consumption/kg | CO2 Emission/kg | SO2 Emission/g | NOx Emission/g |
---|---|---|---|---|---|
Actual route | 1240 | 482.10 | 1518.62 | 385.68 | 4387.11 |
j = 1 | 852 | 350.36 | 1103.63 | 280.29 | 3188.28 |
j = 2 | 864 | 354.39 | 1116.33 | 283.51 | 3224.95 |
j = 3 | 875 | 361.49 | 1138.69 | 289.19 | 3289.56 |
j = 4 | 886 | 368.66 | 1161.28 | 294.93 | 3354.81 |
j = 5 | 897 | 378.8 | 1193.22 | 303.04 | 3447.08 |
j = 6 | 910 | 383.18 | 1207.02 | 306.54 | 3486.94 |
j = 7 | 926 | 396.42 | 1248.72 | 317.14 | 3607.42 |
j = 8 | 934 | 400.48 | 1261.51 | 320.38 | 3644.37 |
j = 9 | 946 | 413.17 | 1301.49 | 330.54 | 3759.85 |
j = 10 | 958 | 413.70 | 1303.16 | 330.96 | 3764.67 |
j = 11 | 974 | 420.77 | 1325.43 | 336.62 | 3829.01 |
j = 12 | 986 | 431.65 | 1359.70 | 345.32 | 3928.02 |
j = 13 | 999 | 443.35 | 1396.55 | 354.68 | 4034.49 |
j = 14 | 1010 | 450.42 | 1418.82 | 360.34 | 4098.82 |
j = 15 | 1021 | 457.55 | 1441.28 | 366.04 | 4163.71 |
j = 16 | 1032 | 464.71 | 1463.84 | 371.77 | 4228.86 |
Optimization Objective | Total Time/min | Fuel Consumption/kg | CO2 Emission/kg | SO2 Emission/g | NOx Emission/g |
---|---|---|---|---|---|
Minimum flight time | 302.7 | 7217.66 | 22,735.63 | 5774.13 | 87,607.01 |
The combined total cost is minimal | 322.6 | 6956.82 | 21,913.983 | 5565.46 | 84,031.04 |
Minimum fuel consumption | 335.5 | 6949.90 | 21,892.19 | 5559.92 | 834,03.09 |
Number of Arriving Aircraft | Scheduling Method | Total Time/min | Fuel Consumption/kg | CO2 Emission/kg | SO2 Emission/g | NOx Emission/kg |
---|---|---|---|---|---|---|
30 | Air traffic controller direction | 559.5 | 12,315.65 | 38,794.30 | 9852.52 | 143.16 |
Planned trajectories | 436.8 | 9367.72 | 29,508.32 | 7494.18 | 109.89 | |
40 | Air traffic controller direction | 751.8 | 16,939.51 | 53,359.46 | 13,551.61 | 200.35 |
Planned trajectories | 583.5 | 12,879.30 | 40,254.80 | 10,303.44 | 149.59 | |
45 | Air traffic controller direction | 833.0 | 18,778.03 | 59,150.79 | 15,022.42 | 220.00 |
Planned trajectories | 658.8 | 14,673.37 | 46,221.12 | 11,738.70 | 170.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, C.; Wang, C.; Chen, H.; Xu, C.; Wang, J. Cooperative Low-Carbon Trajectory Planning of Multi-Arrival Aircraft for Continuous Descent Operation. Aerospace 2024, 11, 1024. https://doi.org/10.3390/aerospace11121024
Feng C, Wang C, Chen H, Xu C, Wang J. Cooperative Low-Carbon Trajectory Planning of Multi-Arrival Aircraft for Continuous Descent Operation. Aerospace. 2024; 11(12):1024. https://doi.org/10.3390/aerospace11121024
Chicago/Turabian StyleFeng, Cun, Chao Wang, Hanlu Chen, Chenyang Xu, and Jinpeng Wang. 2024. "Cooperative Low-Carbon Trajectory Planning of Multi-Arrival Aircraft for Continuous Descent Operation" Aerospace 11, no. 12: 1024. https://doi.org/10.3390/aerospace11121024
APA StyleFeng, C., Wang, C., Chen, H., Xu, C., & Wang, J. (2024). Cooperative Low-Carbon Trajectory Planning of Multi-Arrival Aircraft for Continuous Descent Operation. Aerospace, 11(12), 1024. https://doi.org/10.3390/aerospace11121024