Experimental Aerodynamics of a Small Fixed-Wing Unmanned Aerial Vehicle Coated with Bio-Inspired Microfibers Under Static and Dynamic Stall
<p>(<b>A</b>) Concept of a shark skin denticle, (<b>B</b>) close perspective of bio-inspired microfibers, scale bar ≈ 100 µm, (<b>C</b>) surface coating from top, and (<b>D</b>) flow mechanism within the fibers and outside. Adapted from [<a href="#B26-aerospace-11-00947" class="html-bibr">26</a>].</p> "> Figure 2
<p>Planform drawing of UAV model with microfiber coverage (dimensions in mm).</p> "> Figure 3
<p>(<b>a</b>) Microfiber schematic (dimensions in µm); (<b>b</b>) wing covered with microfiber coating (zoomed-in picture adapted from Doosttalab et al. [<a href="#B26-aerospace-11-00947" class="html-bibr">26</a>]).</p> "> Figure 4
<p>Wind tunnel model setup of the ‘high-speed, long-range’ (HSLR) variant of the Switchblade UAV.</p> "> Figure 5
<p>Lift coefficients, <span class="html-italic">C<sub>L</sub></span> as a function of angle of attack, <span class="html-italic">α</span>.</p> "> Figure 6
<p>Drag polars; lift coefficients, <span class="html-italic">C<sub>L</sub></span> as a function of drag coefficients, <span class="html-italic">C<sub>D</sub></span>.</p> "> Figure 7
<p>Lift-to-drag ratio, <span class="html-italic">L</span>/<span class="html-italic">D</span> as a function of angle of attack, <span class="html-italic">α</span>.</p> "> Figure 8
<p>High angle of attack, <span class="html-italic">α</span> lift-to-drag ratio, <span class="html-italic">L</span>/<span class="html-italic">D</span> enhancement.</p> "> Figure 9
<p>Time-averaged velocity over a curved APG section representative of an airfoil in turbulent flow with a freestream velocity of 30 m/s.</p> "> Figure 10
<p>Elevon deflection performance: pitching moment coefficient, <span class="html-italic">C<sub>M</sub></span> as a function of elevon deflection angle, <span class="html-italic">δ<sub>e</sub></span> for the baseline and micropillar cases.</p> "> Figure 11
<p>Dynamic pitch coefficients for different surface cases and wing coverage: (<b>a</b>) <span class="html-italic">C<sub>A</sub></span>; (<b>b</b>) <span class="html-italic">C<sub>N</sub></span>; (<b>c</b>) <span class="html-italic">C<sub>M</sub></span>. The black arrow indicates the direction of the pitch up maneuver.</p> "> Figure 12
<p>Dynamic derivatives in pitch: <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mrow> <msub> <mi>A</mi> <mi>q</mi> </msub> </mrow> </msub> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mrow> <msub> <mi>M</mi> <mi>q</mi> </msub> </mrow> </msub> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mrow> <msub> <mi>M</mi> <mi>q</mi> </msub> </mrow> </msub> </mrow> </semantics></math> as a function of mean angle of attack.</p> ">
Abstract
:1. Introduction
2. Test Setup
2.1. Switchblade UAV Model
2.2. Bio-Inspired Microfiber Films
2.3. Wind Tunnel
2.4. Static Angles of Attack Program
2.5. Dynamic Stall Program
3. Results and Discussion
3.1. Static Angles of Attack
3.2. Dynamic Stall
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
UAV | Unmanned Aerial Vehicle |
UAS | Unmanned Aerial System |
HSLR | High-Speed, Long-Range |
LSHE | Low-Speed, High-Endurance |
AoA | Angle of Attack |
References
- GrandView. Commercial Drone Market Size, Share and Trends Analysis Report by Product (Fixed-Wing, Rotary Blade, Hybrid), by Application, by End-Use, by Region, and Segment Forecasts, 2021–2028; GrandView: San Francisco, CA, USA, 2021. [Google Scholar]
- Raymer, D. Aircraft Design: A Conceptual Approach; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2012; pp. 223–225. [Google Scholar] [CrossRef]
- Lin, J.C. Review of research on low-profile vortex generators to control boundary-layer separation. Prog. Aerosp. Sci. 2002, 38, 389–420. [Google Scholar] [CrossRef]
- Lissaman, P. Low-Reynolds-number airfoils. Annu. Rev. Fluid Mech. 1983, 15, 223–239. [Google Scholar] [CrossRef]
- Zhen, T.K.; Zubair, M.; Ahmad, K.A. Experimental and Numerical Investigation of the Effects of Passive Vortex Generators on Aludra UAV Performance. Chin. J. Aeronaut. 2011, 24, 577–583. [Google Scholar] [CrossRef]
- Zhu, C.; Chen, J.; Wu, J.; Wang, T. Dynamic stall control of the wind turbine airfoil via single-row and double-row passive vortex generators. Energy 2019, 189, 116272. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Z.J. Effects of Surface Roughness on Separated and Transitional Flows over a Wing. AIAA J. 2012, 50, 593–609. [Google Scholar] [CrossRef]
- Ben-Gida, H.; Stefanini, J.; Stalnov, O.; Gurka, R. Application of passive flow control techniques to attenuate the unsteady near wake of airborne turrets in subsonic flow. Aerosp. Sci. Technol. 2021, 119, 107129. [Google Scholar] [CrossRef]
- Serdar Genç, M.; Koca, K.; Açikel, H.H. Investigation of pre-stall flow control on wind turbine blade airfoil using roughness element. Energy 2019, 176, 320–334. [Google Scholar] [CrossRef]
- Winzen, A.; Klaas, M.; Schröder, W. High-Speed Particle Image Velocimetry and Force Measurements of Bio-Inspired Surfaces. J. Aircr. 2015, 52, 471–485. [Google Scholar] [CrossRef]
- Hu, H.; Tamai, M. Bioinspired Corrugated Airfoil at Low Reynolds Numbers. J. Aircr. 2008, 45, 2068–2077. [Google Scholar] [CrossRef]
- Bie, D.; Li, D.; Xiang, J.; Li, H.; Kan, Z.; Sun, Y. Design, aerodynamic analysis and test flight of a bat-inspired tailless flapping wing unmanned aerial vehicle. Aerosp. Sci. Technol. 2021, 112, 106557. [Google Scholar] [CrossRef]
- Sui, T.; Zou, T.; Riskin, D. Optimum Design of a Novel Bio-Inspired Bat Robot. IEEE Robot. Autom. Lett. 2022, 7, 3419–3426. [Google Scholar] [CrossRef]
- Fish, F.E. Biomimetics and the Application of the Leading-Edge Tubercles of the Humpback Whale Flipper. In Flow Control Through Bio-Inspired Leading-Edge Tubercles: Morphology, Aerodynamics, Hydrodynamics and Applications; New, D.T.H., Ng, B.F., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–39. [Google Scholar] [CrossRef]
- Guerreiro, J.L.E.; Sousa, J.M.M. Low-Reynolds-Number Effects in Passive Stall Control Using Sinusoidal Leading Edges. AIAA J. 2012, 50, 461–469. [Google Scholar] [CrossRef]
- Rose, B.; Vt, G. Aerodynamics with state-of-the-art bioinspired technology: Tubercles of humpback whale. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2021, 235, 2359–2377. [Google Scholar] [CrossRef]
- Dou, Z.; Wang, J.; Chen, D. Bionic research on fish scales for drag reduction. J. Bionic Eng. 2012, 9, 457–464. [Google Scholar] [CrossRef]
- Chen, D.; Chen, H.; Cui, X. Dual-coupling drag reduction inspired by tuna skin: Fan-shaped imbricated fish scale composited with flexible coating. AIP Adv. 2022, 12, 035218. [Google Scholar] [CrossRef]
- Mosghani, M.M.; Alidoostan, M.A.; Binesh, A. Numerical analysis of drag reduction of fish scales inspired Ctenoid-shape microstructured surfaces. Chem. Eng. Commun. 2021, 210, 970–985. [Google Scholar] [CrossRef]
- Muthuramalingam, M.; Puckert, D.K.; Rist, U.; Bruecker, C. Transition delay using biomimetic fish scale arrays. Sci. Rep. 2020, 10, 14534. [Google Scholar] [CrossRef] [PubMed]
- Bixler, G.D.; Bhushan, B. Fluid Drag Reduction with Shark-Skin Riblet Inspired Microstructured Surfaces. Adv. Funct. Mater. 2013, 23, 4507–4528. [Google Scholar] [CrossRef]
- Friedmann, E.; Portl, J.; Richter, T. A Study of Shark Skin and Its Drag Reducing Mechanism. In Advances in Mathematical Fluid Mechanics: Dedicated to Giovanni Paolo Galdi on the Occasion of His 60th Birthday; Rannacher, R., Sequeira, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 271–285. [Google Scholar] [CrossRef]
- Domel, A.G.; Domel, G.; Weaver, J.C.; Saadat, M.; Bertoldi, K.; Lauder, G.V. Hydrodynamic properties of biomimetic shark skin: Effect of denticle size and swimming speed. Bioinspir. Biomim. 2018, 13, 056014. [Google Scholar] [CrossRef]
- Afroz, F.; Lang, A.; Habegger, M.L.; Motta, P.; Hueter, R. Experimental study of laminar and turbulent boundary layer separation control of shark skin. Bioinspir. Biomim. 2016, 12, 016009. [Google Scholar] [CrossRef]
- Yu, C.; Liu, M.; Zhang, C.; Yan, H.; Zhang, M.; Wu, Q.; Liu, M.; Jiang, L. Bio-inspired drag reduction: From nature organisms to artificial functional surfaces. Giant 2020, 2, 100017. [Google Scholar] [CrossRef]
- Evans, H.B.; Hamed, A.M.; Gorumlu, S.; Doosttalab, A.; Aksak, B.; Chamorro, L.P.; Castillo, L. Engineered bio-inspired coating for passive flow control. Proc. Natl. Acad. Sci. USA 2018, 115, 1210–1214. [Google Scholar] [CrossRef]
- Doosttalab, A.; Dharmarathne, S.; Bocanegra Evans, H.; Hamed, A.M.; Gorumlu, S.; Aksak, B.; Chamorro, L.P.; Tutkun, M.; Castillo, L. Flow modulation by a mushroom-like coating around the separation region of a wind-turbine airfoil section. J. Renew. Sustain. Energy 2018, 10, 043305. [Google Scholar] [CrossRef]
- Santos, D.; Rogers, J.; De Rezende, A.; Maldonado, V. Exploring the Performance Boundaries of a Small Reconfigurable Multi-Mission UAV through Multidisciplinary Analysis. Aerospace 2023, 10, 684. [Google Scholar] [CrossRef]
- Santos, D.; Ramirez, D.; Rogers, J.; Zamora, J.; Rezende, A.; Maldonado, V. Full-Cycle Design and Analysis of the Switchblade Reconfigurable Unmanned Aerial System. In Proceedings of the AIAA Aviation Forum 2022, Chicago, IL, USA, 27 June–1 July 2022. [Google Scholar] [CrossRef]
- Maldonado, V.; Santos, D.; Wilt, M.; Ramirez, D.; Shoemaker, J.; Ayele, W.; Beeson, B.; Lisby, B.; Zamora, J.; Antu, C. ‘Switchblade’: Wide-Mission Performance Design of a Multi-Variant Unmanned Aerial System. In Proceedings of the AIAA Scitech 2021 Forum, Virtual Event, 11–15 & 19–21 January 2021. [Google Scholar] [CrossRef]
- Santos, D.; Doosttalab, A.; Maldonado, V. Increasing the Aerodynamic Performance of a Small Flying Wing UAV Using Passive Bio-Inspired Microfibers. In Proceedings of the Paper AIAA 2023-4045, AIAA Aviation Forum, San Diego, CA, USA, 12–16 June 2023. [Google Scholar] [CrossRef]
- Cook, M.J. Flight Dynamics Principles: A Linear Systems Approach to Aircraft Stability and Control, 3rd ed.; Butterworth-Heinemann: Oxford, UK, 2013. [Google Scholar]
- Vicroy, D.D.; Loeser, T.D.; Schütte, A. Static and Forced-Oscillation Tests of a Generic Unmanned Combat Air Vehicle. J. Aircr. 2012, 49, 1558–1583. [Google Scholar] [CrossRef]
- Phan, H.V.; Park, H.C. Insect-inspired, tailless, hover-capable flapping-wing robots: Recent progress, challenges, and future directions. Prog. Aerosp. Sci. 2019, 111, 100573. [Google Scholar] [CrossRef]
- Chen, L.; Cheng, C.; Zhou, C.; Zhang, Y.; Wu, J. Flapping rotary wing: A novel low-Reynolds number layout merging bionic features into micro rotors. Prog. Aerosp. Sci. 2024, 146, 100984. [Google Scholar] [CrossRef]
- Marusic, I.; Monty, J.P.; Hultmark, M.; Smits, A.J. On the logarithmic region in wall turbulence. Fluid Mech. 2013, 716, 389–420. [Google Scholar] [CrossRef]
- Österlund, J.M.; Johansson, A.V.; Nagib, H.M.; Hites, M.H. A note on the overlap region in turbulent boundary layers. Phys. Fluids 2000, 12, 1–4. [Google Scholar] [CrossRef]
- Maldonado, V.; Peralta, N.; Gorumlu, S.; Ayele, W. On the figure of merit and streamwise flow of a propulsive rotor with synthetic jets. Aerosp. Sci. Technol. 2021, 113, 106712. [Google Scholar] [CrossRef]
Wing Area [m2] | Aspect Ratio | Span [m] | LE Sweep | Taper Ratio |
---|---|---|---|---|
0.324 | 6.3 | 1.43 | 24° | 0.35 |
Surface | Region | AoA (α) [deg] | Airspeed, U∞/Re | Elevon Deflection, δe |
---|---|---|---|---|
no fibers | N/A | −2° to 17° | cruise | N/A |
no fibers | N/A | −2° to 17° | stall | N/A |
140 µm fibers | 1, 2, 3 | −2° to 17° | cruise | N/A |
140 µm fibers | 1, 2, 3 | −2° to 17° | stall | N/A |
140 µm fibers | 1, 2 | −2° to 17° | cruise | N/A |
140 µm fibers | 1, 2 | −2° to 17° | stall | N/A |
70 µm fibers | 1, 2, 3 | −2° to 17° | cruise | N/A |
70 µm fibers | 1, 2, 3 | −2° to 17° | stall | N/A |
no fibers | N/A | 2° | cruise | −18.7° to 24.7° |
no fibers | N/A | 7° | cruise | −18.7° to 24.7° |
no fibers | N/A | 12° | cruise | −18.7° to 24.7° |
140 µm fibers | 1, 2, 3 | 2° | cruise | −18.7° to 24.7° |
140 µm fibers | 1, 2, 3 | 7° | cruise | −18.7° to 24.7° |
140 µm fibers | 1, 2, 3 | 12° | cruise | −18.7° to 24.7° |
140 µm fibers | 1, 2 | 2° | cruise | −18.7° to 24.7° |
140 µm fibers | 1, 2 | 7° | cruise | −18.7° to 24.7° |
140 µm fibers | 1, 2 | 12° | cruise | −18.7° to 24.7° |
Surface | Region | Mean AoA (α) [deg] | Airspeed, U∞/Re | k | A [deg] |
---|---|---|---|---|---|
no fibers | N/A | 0.0, 5.0, 10.0 | cruise, stall | 0.022, 0.039 | 5.0 |
no fibers | N/A | 0.0, 5.0, 10.0 | cruise, stall | 0.011, 0.020 | 5.0 |
no fibers | N/A | 0.0, 5.0, 10.0 | cruise, stall | 0.022, 0.039 | 10.0 |
no fibers | N/A | 0.0, 5.0, 10.0 | cruise, stall | 0.011, 0.020 | 10.0 |
70 µm fibers | 1, 2, 3 | 0.0, 5.0, 10.0 | cruise, stall | 0.022, 0.039 | 5.0 |
70 µm fibers | 1, 2, 3 | 0.0, 5.0, 10.0 | cruise, stall | 0.011, 0.020 | 5.0 |
70 µm fibers | 1, 2, 3 | 0.0, 5.0, 10.0 | cruise, stall | 0.022, 0.039 | 10.0 |
70 µm fibers | 1, 2, 3 | 0.0, 5.0, 10.0 | cruise, stall | 0.011, 0.020 | 10.0 |
70 µm fibers | 1, 2 | 0.0, 5.0, 10.0 | cruise, stall | 0.022, 0.039 | 5.0 |
70 µm fibers | 1, 2 | 0.0, 5.0, 10.0 | cruise, stall | 0.011, 0.020 | 5.0 |
70 µm fibers | 1, 2 | 0.0, 5.0, 10.0 | cruise, stall | 0.022, 0.039 | 10.0 |
70 µm fibers | 1, 2 | 0.0, 5.0, 10.0 | cruise, stall | 0.011, 0.020 | 10.0 |
Case | Mean AoA | Load Factor Increment, ∆n |
---|---|---|
Baseline | 0.0 | −0.14 |
70 µm, top of wing | 0.0 | −0.17 |
70 µm, outboard | 0.0 | −0.21 |
Baseline | 5.0 | −0.10 |
70 µm, top of wing | 5.0 | −0.08 |
70 µm, outboard | 5.0 | −0.10 |
Baseline | 10.0 | −0.04 |
70 µm, top of wing | 10.0 | −0.03 |
70 µm, outboard | 10.0 | −0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, D.; Fernandes, G.D.; Doosttalab, A.; Maldonado, V. Experimental Aerodynamics of a Small Fixed-Wing Unmanned Aerial Vehicle Coated with Bio-Inspired Microfibers Under Static and Dynamic Stall. Aerospace 2024, 11, 947. https://doi.org/10.3390/aerospace11110947
Santos D, Fernandes GD, Doosttalab A, Maldonado V. Experimental Aerodynamics of a Small Fixed-Wing Unmanned Aerial Vehicle Coated with Bio-Inspired Microfibers Under Static and Dynamic Stall. Aerospace. 2024; 11(11):947. https://doi.org/10.3390/aerospace11110947
Chicago/Turabian StyleSantos, Dioser, Guilherme D. Fernandes, Ali Doosttalab, and Victor Maldonado. 2024. "Experimental Aerodynamics of a Small Fixed-Wing Unmanned Aerial Vehicle Coated with Bio-Inspired Microfibers Under Static and Dynamic Stall" Aerospace 11, no. 11: 947. https://doi.org/10.3390/aerospace11110947
APA StyleSantos, D., Fernandes, G. D., Doosttalab, A., & Maldonado, V. (2024). Experimental Aerodynamics of a Small Fixed-Wing Unmanned Aerial Vehicle Coated with Bio-Inspired Microfibers Under Static and Dynamic Stall. Aerospace, 11(11), 947. https://doi.org/10.3390/aerospace11110947