Application of Local Search Particle Swarm Optimization Based on the Beetle Antennae Search Algorithm in Parameter Optimization
<p>Flow chart of the PSO algorithm.</p> "> Figure 2
<p>Flow chart of the BAS algorithm.</p> "> Figure 3
<p>Flow chart of the W-K-BSO algorithm.</p> "> Figure 4
<p>Evolutionary curves of the test functions.</p> "> Figure 5
<p>PTS subsystem.</p> "> Figure 6
<p>Optimization curves of the W-K-BSO algorithm.</p> "> Figure 7
<p>The step response and error curves obtained using the PID parameters optimized by the W-K-BSO algorithm.</p> "> Figure 8
<p>The step response and error curves obtained using the PID parameters optimized by the W-K-BSO algorithm. (<b>a</b>) The comparison of the step response; (<b>b</b>) The comparison of the step response output error.</p> ">
Abstract
:1. Introduction
- We utilize chaotic mapping to optimize population diversity, resulting in a stochastic and uniform distribution of individuals, thereby enhancing the algorithm’s convergence rate without compromising the inherent randomness of the population.
- The inertia weight is updated using a linearly decreasing differential approach, mitigating the deficiency of conventional linear decrement strategies that may fail to identify the optimal value direction in the initial stages, leading to convergence towards local optima in later stages.
- We synergistically control the algorithm using a contraction factor and inertia weight, ensuring convergence while effectively managing global and local search performance. The contraction factor includes an acceleration coefficient derived from the beetle’s antennae position increments. These three factors collectively dictate the updating mechanism. By treating the particle’s position as the centroid of the beetle, we generate positions for the beetle’s left and right antennae, calculate their fitness values, and create new positions and increments. These new positions serve as the current positions of the particles. We also incorporate the impact of antennae position increments on the current particle positions into the velocity update rule. Finally, we test the algorithm using benchmark functions and apply it to the optimization of PID in photovoltaic tracking systems.
2. Theoretical Foundations
2.1. Fundamental Particle Swarm Optimization
2.2. Beetle Antennae Search Algorithm
- Initialization of beetle’s position and direction: The position and orientation of the beetle are randomly generated and normalized:
- Antennae placement for scent detection: In nature, as a beetle uses its antennae to detect food scent without knowing the precise location of the food, it determines its next movement based on the scent detected by its antennae. The positions of the beetle’s left and right antennae, and , can be represented as:
- Determining the Movement Direction: Based on the chosen fitness function, the fitness values of both antennae are computed, and the beetle moves towards the antenna receiving the lower fitness value.
- Iterative Update of Position:
- Updating the Perception Length and Search Step Length: Upon completing the movement, both the antennae’s perception length and the search step length are updated:
Algorithm 1: BAS algorithm |
2.3. Benchmark Functions
2.4. Fitness Function
3. A Hybrid PSO Algorithm Incorporating BAS Algorithm for Local Search
3.1. Enhancing Population Diversity through Chaotic Mapping
3.2. Enhanced Inertia Weight and Contraction Factor
3.3. Refined Velocity Update Rule
4. Simulation Analysis
5. Experimental Validation
6. Conclusions
- Utilizing Logistic chaotic mapping for population initialization to generate high-quality initial solutions;
- Introducing a linear decreasing strategy to the inertia weight to improve algorithm efficiency;
- Employing a contraction factor and inertia weight to collaboratively control the global and local search performance of the algorithm; Introducing the influence of beetle position increments on particles and establishing new velocity update rules.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xia, W.; Mao, Y.; Zhang, L.; Guo, T.; Wang, H.; Bao, Q. Extended State Kalman Filter-Based Model Predictive Control for Electro-Optical Tracking Systems with Disturbances: Design and Experimental Verification. Actuators 2024, 13, 113. [Google Scholar] [CrossRef]
- Zhuang, S.; Li, J.; Wang, H.; Deng, J.; Mao, Y. Multi-Channel Phase-Compensated Active Disturbance Rejection Control with an Improved Backstepping Strategy for Electro-Optical Tracking Systems. Actuators 2024, 13, 117. [Google Scholar] [CrossRef]
- Xiao, L. Parameter tuning of PID controller for beer filling machine liquid level control based on improved genetic algorithm. Comput. Intell. Neurosci. 2021, 2021, 7287796. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Jiang, Y.; Yang, W.; Xu, Y.; Yao, J.; Zhao, Y. Kinematics characteristics analysis of a 3-UPS/S parallel airborne stabilized platform. Aerosp. Sci. Technol. 2023, 134, 108163. [Google Scholar] [CrossRef]
- Khan, A.H.; Cao, X.; Li, S.; Katsikis, V.N.; Liao, L. BAS-ADAM: An ADAM based approach to improve the performance of beetle antennae search optimizer. IEEE/CAA J. Autom. Sin. 2020, 7, 461–471. [Google Scholar] [CrossRef]
- Aner, E.A.; Awad, M.I.; Shehata, O.M. Performance evaluation of PSO-PID and PSO-FLC for continuum robot’s developed modeling and control. Sci. Rep. 2024, 14, 733. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, T.; Zhang, G.; Kong, M. Parameter optimization of PID controller based on an enhanced whale optimization algorithm for AVR system. Oper. Res. 2023, 23, 44. [Google Scholar] [CrossRef]
- Ye, K.; Shu, L.; Xiao, Z.; Li, W. An improved beetle swarm antennae search algorithm based on multiple operators. Soft Comput. 2024, 28, 6555–6570. [Google Scholar] [CrossRef]
- Sasmal, B.; Hussien, A.G.; Das, A.; Dhal, K.G. A comprehensive survey on aquila optimizer. Arch. Comput. Methods Eng. 2023, 30, 4449–4476. [Google Scholar] [CrossRef]
- Ji, T.; Wei, H.; Wang, J.; Tian, S.; Yao, Y.; Hu, S. Research into the Beetle Antennae Optimization-Based PID Servo System Control of an Industrial Robot. Mathematics 2023, 11, 4066. [Google Scholar] [CrossRef]
- Sharma, S.; Bharti, R.K. New efficient Hadoop scheduler: Generalized particle swarm optimization and simulated annealing-dominant resource fairness. Concurr. Comput. Pract. Exp. 2023, 35, e7528. [Google Scholar] [CrossRef]
- Kaya, S. A hybrid firefly and particle swarm optimization algorithm with local search for the problem of municipal solid waste collection: A real-life example. Neural Comput. Appl. 2023, 35, 7107–7124. [Google Scholar] [CrossRef]
- Kanadath, A.; Jothi, J.A.A.; Urolagin, S. Multilevel colonoscopy histopathology image segmentation using particle swarm optimization techniques. SN Comput. Sci. 2023, 4, 427. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Li, J.; Chen, D. Optimal dispatching method for integrated energy system based on robust economic model predictive control considering source–load power interval prediction. Glob. Energy Interconnect. 2022, 5, 564–578. [Google Scholar] [CrossRef]
- Jiyue, E.; Liu, J.; Wan, Z. A novel adaptive algorithm of particle swarm optimization based on the human social learning intelligence. Swarm Evol. Comput. 2023, 80, 101336. [Google Scholar]
- Parque, V.; Khalifa, A. PID Tuning Using Differential Evolution With Success-Based Particle Adaptations. IEEE Access 2023, 11, 136219–136268. [Google Scholar] [CrossRef]
- Zheng, Y.; Sun, R.; Liu, Y.; Wang, Y.; Song, R.; Li, Y. A Hybridization Grey Wolf Optimizer to Identify Parameters of Helical Hydraulic Rotary Actuator. Actuators 2023, 12, 220. [Google Scholar] [CrossRef]
- Hasan, M.K.; Chuah, T.C.; El-Saleh, A.A.; Shafiq, M.; Shaikh, S.A.; Islam, S.; Krichen, M. Constriction factor particle swarm optimization based load balancing and cell association for 5G heterogeneous networks. Comput. Commun. 2021, 180, 328–337. [Google Scholar] [CrossRef]
- Huang, C.; Zhao, Y.; Yan, W.; Liu, Q.; Zhou, J. A new method for predicting crosstalk of random cable bundle based on BAS-BP neural network algorithm. IEEE Access 2020, 8, 20224–20232. [Google Scholar] [CrossRef]
- Ju, X.; Lu, J.; Rong, B.; Jin, H. Parameter identification of displacement model for giant magnetostrictive actuator using differential evolution algorithm. Actuators 2023, 12, 76. [Google Scholar] [CrossRef]
- Naik, R.B.; Singh, U. A review on applications of chaotic maps in pseudo-random number generators and encryption. Ann. Data Sci. 2024, 11, 25–50. [Google Scholar] [CrossRef]
Function Name | Expression | Peak Value |
---|---|---|
Sphere | single-peak | |
Griewank | multi-peak | |
Rosenbrock | single-peak | |
Ackley | multi-peak | |
Step | single-peak | |
Rastrigin | multi-peak | |
Schaffer | multi-peak | |
Schwefel 1.2 | single-peak | |
Quartic | multi-peak |
Parameter | Value |
---|---|
10 | |
(s) | 1000 |
(s) | 200 |
(s) | 1.5 |
Function | Search Range | Dimension | Theoretical Extremum |
---|---|---|---|
[−100,100] | 30/100/500/100 | ||
[−600,600] | 30/100/500/100 | ||
[−30,30] | 30/100/500/100 | ||
[−32,32] | 30/100/500/100 | ||
[−100,100] | 30/100/500/100 | ||
[−5.12,5.12] | 30/100/500/100 | ||
[−100,100] | 2 | ||
[−100,100] | 30/100/500/100 | ||
[−1.28,1.28] | 30/100/500/100 |
Function | Dimension | Best | Worst | ||||
---|---|---|---|---|---|---|---|
BAS | SPSO | W-K-BSO | BAS | SPSO | W-K-BSO | ||
30 | 1.941 | 0 | 7.382 | 0 | |||
100 | 19.650 | 0.250 | 0 | 30.480 | 0.722 | 0 | |
500 | 143.7 | 26.750 | 0 | 173.9 | 46.130 | 0 | |
1000 | 302.8 | 324 | 0 | 339 | 497.6 | 0 | |
30 | 0.115 | 0 | 0.302 | 0.025 | 0 | ||
100 | 0.308 | 0 | 0.519 | 0.036 | 0 | ||
500 | 0.536 | 37.940 | 0 | 0.701 | 133.5 | 0 | |
1000 | 0.648 | 392.2 | 0 | 0.824 | 1045 | 0 | |
30 | 181.8 | 20.130 | 28.730 | 907.7 | 199.7 | 28.860 | |
100 | 2612 | 258.3 | 98.670 | 6275 | 881.1 | 98.810 | |
500 | 22340 | 10320 | 498.6 | 28710 | 21200 | 498.8 | |
1000 | 47930 | 96830 | 998.5 | 58660 | 143000 | 998.8 | |
30 | 2.263 | 2.661 | 0 | 3.978 | 11.770 | 0 | |
100 | 3.389 | 10.870 | 0 | 3.842 | 14.320 | 0 | |
500 | 3.722 | 14.200 | 0 | 3.907 | 15.820 | 0 | |
1000 | 3.778 | 14.520 | 0 | 3.916 | 15.990 | 0 | |
30 | 9 | 0 | 0 | 18 | 11 | 4 | |
100 | 35 | 41 | 15 | 57 | 379 | 27 | |
500 | 228 | 17330 | 154 | 264 | 46260 | 190 | |
1000 | 470 | 55060 | 372 | 520 | 255400 | 427 | |
30 | 66.600 | 33.900 | 0 | 126.7 | 73.720 | 0 | |
100 | 534.7 | 204.1 | 0 | 700.1 | 369.5 | 0 | |
500 | 4256 | 2737 | 0 | 4695 | 3445 | 0 | |
1000 | 9239 | 6329 | 0 | 9969 | 8351 | 0 | |
2 | 0 | 0 | 0 | 0 | 0 | ||
30 | 4.833 | 0 | 17.300 | 0.137 | 0 | ||
100 | 45.350 | 23.060 | 0 | 230.6 | 82.070 | 0 | |
500 | 1116 | 70810 | 0 | 22070 | 154100 | 0 | |
1000 | 3689 | 412700 | 0 | 126000 | 975900 | 0 | |
30 | 8.986 | 0.035 | 54.960 | 0.274 | |||
100 | 451.1 | 1.921 | 798.8 | 5.429 | |||
500 | 18760 | 541.8 | 27190 | 1248 | |||
1000 | 88310 | 3850 | 112100 | 8253 |
Function | Dimension | Avg | Sd | ||||
---|---|---|---|---|---|---|---|
BAS | SPSO | W-K-BSO | BAS | SPSO | W-K-BSO | ||
30 | 3.723 | 0 | 1.251 | 0 | |||
100 | 25.337 | 0.438 | 0 | 2.985 | 0.114 | 0 | |
500 | 156.6 | 36.465 | 0 | 6.439 | 4.597 | 0 | |
1000 | 322.8 | 395.5 | 0 | 8.196 | 40.077 | 0 | |
30 | 0.192 | 0 | 0 | ||||
100 | 0.364 | 0 | 0 | ||||
500 | 0.615 | 77.134 | 0 | 22.083 | 0 | ||
1000 | 0.724 | 737.5 | 0 | 158.6 | 0 | ||
30 | 488.7 | 38.434 | 28.808 | 195.1 | 36.933 | 0.029 | |
100 | 3714 | 444.9 | 98.743 | 719.0 | 137.3 | 0.037 | |
500 | 26000 | 14820 | 498.7 | 1442 | 2616 | 0.055 | |
1000 | 53110 | 116300 | 998.7 | 2557 | 13230 | 0.070 | |
30 | 3.068 | 8.773 | 0 | 0.380 | 2.375 | 0 | |
100 | 3.569 | 13.035 | 0 | 0.380 | 2.375 | 0 | |
500 | 3.824 | 14.797 | 0 | 0.041 | 0.371 | 0 | |
1000 | 3.856 | 15.250 | 0 | 0.028 | 0.363 | 0 | |
30 | 13.867 | 0.933 | 1.567 | 2.837 | 2.065 | 1.174 | |
100 | 48.367 | 132.2 | 19.367 | 5.601 | 76.793 | 3.049 | |
500 | 251 | 29980 | 175.7 | 8.521 | 8293 | 8.975 | |
1000 | 498.9 | 145500 | 392.2 | 11.090 | 44910 | 12.204 | |
30 | 97.121 | 52.308 | 0 | 14.154 | 12.365 | 0 | |
100 | 638.2 | 275.9 | 0 | 44.330 | 44.201 | 0 | |
500 | 4539 | 3102 | 0 | 110.8 | 177.3 | 0 | |
1000 | 9628 | 7465 | 0 | 184.7 | 381.4 | 0 | |
2 | 0 | 0 | 0 | 0 | |||
30 | 10.182 | 0 | 3.256 | 0.025 | 0 | ||
100 | 96.752 | 52.222 | 0 | 37.376 | 11.811 | 0 | |
500 | 5721 | 108000 | 0 | 4887 | 19520 | 0 | |
1000 | 27910 | 601300 | 0 | 29170 | 130600 | 0 | |
30 | 26.391 | 0.119 | 11.834 | 0.055 | |||
100 | 623.5 | 3.337 | 108.8 | 0.840 | |||
500 | 23120 | 743.4 | 1989 | 164.5 | |||
1000 | 97580 | 5909 | 5316 | 975.5 |
Function | Algorithm with the Fastest Convergence Speed | Algorithm with the Smallest Convergence Error | Algorithm That Found the Global Optimum |
---|---|---|---|
W-K-BSO | W-K-BSO | W-K-BSO | |
W-K-BSO | W-K-BSO | W-K-BSO, SPSO, CFPSO | |
W-K-BSO | W-K-BSO | None | |
W-K-BSO | W-K-BSO | W-K-BSO | |
W-K-BSO | W-K-BSO | None | |
W-K-BSO | W-K-BSO | W-K-BSO | |
W-K-BSO | W-K-BSO | W-K-BSO, SPSO, CFPSO, PSO, BAS | |
W-K-BSO | W-K-BSO | W-K-BSO | |
W-K-BSO | W-K-BSO | W-K-BSO |
Function | BAS vs. W-K-BSO | SPSO vs. W-K-BSO | CFPSO vs. W-K-BSO | W-K-PSO vs. W-K-BSO | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
p-Value | Win | p-Value | Win | p-Value | Win | p-Value | Win | |||||||||
465 | 0 | + | 465 | 0 | + | 465 | 0 | + | 1 | 2 | = | |||||
0 | 36 | − | 39 | 97 | = | 0 | 36 | − | 465 | 0 | + | |||||
361 | 104 | + | 276 | 189 | = | 300 | 165 | = | 465 | 0 | + | |||||
171 | 39 | + | 406 | 59 | + | 35 | 85 | = | 153 | 37 | + | |||||
355 | 110 | + | 465 | 0 | + | 451 | 14 | + | 0 | 465 | − | |||||
465 | 0 | + | 465 | 0 | + | 465 | 0 | + | 1 | 2 | = | |||||
1 | 0 | = | 465 | 0 | + | 465 | 0 | + | 465 | 0 | + | |||||
465 | 0 | + | 183 | 282 | = | 333 | 132 | + | 0 | 465 | − | |||||
465 | 0 | + | 465 | 0 | + | 465 | 0 | + | 0 | 465 | − | |||||
+/=/− | 7/1/1 | 6/3/0 | 6/2/1 | 4/2/3 |
Parameter | |||
---|---|---|---|
Result | 0.0981 | 68.2177 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, T.; Deng, S.; Duan, Q.; Mao, Y. Application of Local Search Particle Swarm Optimization Based on the Beetle Antennae Search Algorithm in Parameter Optimization. Actuators 2024, 13, 270. https://doi.org/10.3390/act13070270
Feng T, Deng S, Duan Q, Mao Y. Application of Local Search Particle Swarm Optimization Based on the Beetle Antennae Search Algorithm in Parameter Optimization. Actuators. 2024; 13(7):270. https://doi.org/10.3390/act13070270
Chicago/Turabian StyleFeng, Teng, Shuwei Deng, Qianwen Duan, and Yao Mao. 2024. "Application of Local Search Particle Swarm Optimization Based on the Beetle Antennae Search Algorithm in Parameter Optimization" Actuators 13, no. 7: 270. https://doi.org/10.3390/act13070270
APA StyleFeng, T., Deng, S., Duan, Q., & Mao, Y. (2024). Application of Local Search Particle Swarm Optimization Based on the Beetle Antennae Search Algorithm in Parameter Optimization. Actuators, 13(7), 270. https://doi.org/10.3390/act13070270