Single-Nucleus RNA Sequencing Reveals the Transcriptome Profiling of Ovarian Cells in Adolescent Cyprinus carpio
<p>Cell types in the common carp ovary. (<b>A</b>) Observation of histological features of major cell types in the ovary using H&E staining. Scale bar = 200 µm (top), 50 µm (bottom); red arrows, oocyte; red arrowheads, oogonia; black arrowheads, granulosa cell. (<b>B</b>) Visualization of snRNA-seq data in t-SNE to reveal distinct cell clusters.</p> "> Figure 2
<p>The pseudotime trajectory analyses. (<b>A</b>) Differentiation trajectories of germ cells. (<b>B</b>) Differentiation trajectories of granulosa cells. The numbers inside the black circles represent the branch points of different cell states; different colors in the top two figures represent different cell types; the colors from dark to light in the middle two figures represent the degree of differentiation; different colors in the bottom two figures represent different cell states.</p> "> Figure 3
<p>Functional annotation of dynamic expression genes in germ cells. (<b>A</b>) The bar plot of GO enrichment analysis of dynamic expression genes in germ cells. The number on the bar means gene numbers enriched in this term. BP, biological processes; CC, cell component; MF, molecular function. (<b>B</b>) The bubble diagram of KEGG enrichment analysis of dynamic expression genes in germ cells. The greater the enrichment factor, the more reliable the significance of differential gene enrichment in this pathway.</p> "> Figure 4
<p>Functional annotation of dynamic expression genes in granulosa cells. (<b>A</b>) The bar plot of GO enrichment analysis of dynamic expression genes in granulosa cells. The number on the bar means gene numbers enriched in this term. BP, biological processes; CC, cell component; MF, molecular function. (<b>B</b>) The bubble diagram of KEGG enrichment analysis of dynamic expression genes in granulosa cells. The greater the enrichment factor, the more reliable the significance of differential gene enrichment in this pathway.</p> ">
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Hematoxylin and Eosin (H&E) Staining
2.3. Library Preparation and Sequencing
2.4. Read Filtering and Alignment
2.5. Cell Identification and Gene Expression Quantification
2.6. Identification of Cell Types
2.7. Construction of Pseudotime Trajectories
2.8. GO and KEGG Pathway Enrichment
3. Results
3.1. Major Cell Types in Adolescent Common Carp Ovaries
3.2. Overview of Common Carp Ovary Single-Nucleus Transcriptome Sequencing
3.3. Identification of Cell Types in Common Carp Ovaries
3.4. Trajectory Analyses of Germ Cells and Granulosa Cells
3.5. Gene Expression Dynamics During the Differentiation of Germ Cells and Granulosa Cells
3.6. Functional Analysis of Dynamic Expression Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Zhai, G.; Shu, T.; Chen, K.; Lou, Q.; Jia, J.; Huang, J.; Shi, C.; Jin, X.; He, J.; Jiang, D.; et al. Successful production of an all-female common carp (Cyprinus carpio L.) population using cyp17a1-deficient neomale carp. Engineering 2022, 8, 181–189. [Google Scholar] [CrossRef]
- Hou, M.X.; Wang, Q.; Zhang, J.; Zhao, R.; Cao, Y.M.; Yu, S.T.; Wang, K.K.; Chen, Y.J.; Ma, Z.Y.; Sun, X.Q.; et al. Differential expression of miRNAs, lncRNAs, and circRNAs between ovaries and testes in common carp (Cyprinus carpio). Cells 2023, 12, 2631. [Google Scholar] [CrossRef] [PubMed]
- Nagahama, Y.; Chakraborty, T.; Paul-Prasanth, B.; Ohta, K.; Nakamura, M. Sex determination, gonadal sex differentiation, and plasticity in vertebrate species. Physiol. Rev. 2021, 101, 1237–1308. [Google Scholar] [CrossRef] [PubMed]
- Raz, E. Primordial germ-cell development: The zebrafish perspective. Nat. Rev. Genet. 2003, 4, 690–700. [Google Scholar] [CrossRef]
- Hou, M.X.; Feng, K.; Luo, H.R.; Jiang, Y.Y.; Xu, W.; Li, Y.M.; Song, Y.L.; Chen, J.; Tao, B.B.; Zhu, Z.Y.; et al. Complete depletion of primordial germ cells results in masculinization of Monopterus albus, a protogynous hermaphroditic fish. Mar. Biotechnol. 2022, 24, 320–334. [Google Scholar] [CrossRef]
- Lubzens, E.; Young, G.; Bobe, J.; Cerdà, J. Oogenesis in teleosts: How fish eggs are formed. Gen. Comp. Endocrinol. 2010, 165, 367–389. [Google Scholar] [CrossRef]
- Li, J.Z.; Ge, W. Zebrafish as a model for studying ovarian development: Recent advances from targeted gene knockout studies. Mol. Cell. Endocrinol. 2020, 507, 110778. [Google Scholar] [CrossRef]
- Gershon, E.; Dekel, N. Newly identified regulators of ovarian folliculogenesis and ovulation. Int. J. Mol. Sci. 2020, 21, 4565. [Google Scholar] [CrossRef]
- Tyler, C.R.; Sumpter, J.P. Oocyte growth and development in teleosts. Rev. Fish Biol. Fish. 1996, 6, 287–318. [Google Scholar] [CrossRef]
- Liu, C.; Peng, J.; Matzuk, M.M.; Yao, H.H. Lineage specification of ovarian theca cells requires multicellular interactions via oocyte and granulosa cells. Nat. Commun. 2015, 6, 6934. [Google Scholar] [CrossRef]
- Edson, M.A.; Nagaraja, A.K.; Matzuk, M.M. The mammalian ovary from genesis to revelation. Endocr. Rev. 2009, 30, 624–712. [Google Scholar] [CrossRef] [PubMed]
- Roberts, A.J.; Skinner, M.K. Mesenchymal-epithelial cell interactions in the ovary: Estrogen-induced theca cell steroidogenesis. Mol. Cell. Endocrinol. 1990, 72, R1–R5. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zheng, Y.X.; Li, J.Y.; Yu, Y.; Zhang, W.Q.; Song, M.S.; Liu, Z.P.; Min, Z.Y.; Hu, H.F.; Jing, Y.; et al. Single-cell transcriptomic atlas of primate ovarian aging. Cell 2020, 180, 585–600.e519. [Google Scholar] [CrossRef]
- Yoon, C.; Kawakami, K.; Hopkins, N. Zebrafish vasa homologue RNA is localized to the cleavage planes of 2- and 4-cell-stage embryos and is expressed in the primordial germ cells. Development 1997, 124, 3157–3166. [Google Scholar] [CrossRef] [PubMed]
- Ye, D.; Zhu, L.; Zhang, Q.; Xiong, F.; Wang, H.; Wang, X.; He, M.; Zhu, Z.; Sun, Y. Abundance of early embryonic primordial germ cells promotes zebrafish female differentiation as revealed by lifetime labeling of germline. Mar. Biotechnol. 2019, 21, 217–228. [Google Scholar] [CrossRef]
- Bollschweiler, D.; Radu, L.; Joudeh, L.; Plitzko, J.M.; Henderson, R.M.; Mela, I.; Pellegrini, L. Molecular architecture of the SYCP3 fibre and its interaction with DNA. Open Biol. 2019, 9, 190094. [Google Scholar] [CrossRef]
- Rimon-Dahari, N.; Yerushalmi-Heinemann, L.; Alyagor, L.; Dekel, N. Ovarian folliculogenesis. In Molecular Mechanisms of Cell Differentiation in Gonad Development; Piprek, R.P., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 167–190. [Google Scholar] [CrossRef]
- Magoffin, D.A. Ovarian theca cell. Int. J. Biochem. Cell. Biol. 2005, 37, 1344–1349. [Google Scholar] [CrossRef]
- Sacher, F.; Feregrino, C.; Tschopp, P.; Ewald, C.Y. Extracellular matrix gene expression signatures as cell type and cell state identifiers. Matrix Biol. Plus 2021, 10, 100069. [Google Scholar] [CrossRef]
- Mazzoni, T.S.; Grier, H.J.; Quagio-Grassiotto, I. Germline cysts and the formation of the germinal epithelium during the female gonadal morphogenesis in Cyprinus carpio (Teleostei: Ostariophysi: Cypriniformes). Anat. Rec. 2010, 293, 1158–1606. [Google Scholar] [CrossRef]
- Jiang, M.; Jia, S.; Chen, J.; Chen, K.; Ma, W.; Wu, X.; Luo, H.; Li, Y.; Zhu, Z.; Hu, W. Timing of gonadal development and dimorphic expression of sex-related genes in gonads during early sex differentiation in the Yellow River carp. Aquaculture 2020, 518, 734825. [Google Scholar] [CrossRef]
- Jia, Y.; Nan, P.; Zhang, W.; Wang, F.; Zhang, R.; Liang, T.; Ji, X.; Du, Q.; Chang, Z. Transcriptome analysis of three critical periods of ovarian development in Yellow River carp (Cyprinus carpio). Theriogenology 2018, 105, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Chen, L.; Zhou, Z.; Xiao, J.; Chen, B.; Huang, P.; Li, C.; Xue, Y.; Liu, R.; Bai, Y.; et al. Comparative transcriptome analysis of early sexual differentiation in the male and female gonads of common carp (Cyprinus carpio). Aquaculture 2023, 563, 738984. [Google Scholar] [CrossRef]
- Stevant, I.; Kuhne, F.; Greenfield, A.; Chaboissier, M.C.; Dermitzakis, E.T.; Nef, S. Dissecting cell lineage specification and sex fate determination in gonadal somatic cells using single-cell transcriptomics. Cell Rep. 2019, 26, 3272–3283. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, W.; Yang, Y.; Chen, K.; Li, Y.; Zhu, X.; Ye, H.; Xu, H. Transcriptome profiling of the ovarian cells at the single-cell resolution in adult Asian seabass. Front. Cell Dev. Biol. 2021, 9, 647892. [Google Scholar] [CrossRef]
- Gong, X.; Zhang, Y.; Ai, J.; Li, K. Application of single-cell RNA sequencing in ovarian development. Biomolecules 2023, 13, 47. [Google Scholar] [CrossRef]
- Habib, N.; Li, Y.; Heidenreich, M.; Swiech, L.; Avraham-Davidi, I.; Trombetta, J.J.; Hession, C.; Zhang, F.; Regev, A. Div-Seq: Single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons. Science 2016, 353, 925–928. [Google Scholar] [CrossRef]
- Wu, H.; Kirita, Y.; Donnelly, E.L.; Humphreys, B.D. Advantages of single-nucleus over single-cell RNA sequencing of adult kidney: Rare cell types and novel cell states revealed in fibrosis. Jasn. J. Am. Soc. Nephrol. 2019, 30, 23–32. [Google Scholar] [CrossRef]
- Koenitzer, J.R.; Wu, H.; Atkinson, J.J.; Brody, S.L.; Humphreys, B.D. Single-nucleus RNA-sequencing profiling of mouse lung. reduced dissociation bias and improved rare cell-type detection compared with single-cell RNA sequencing. Am. J. Respir. Cell Mol. Biol. 2020, 63, 739–747. [Google Scholar] [CrossRef]
- Alvarez, M.; Benhammou, J.N.; Rao, S.; Mishra, L.; Pisegna, J.R.; Pajukanta, P. isolation of nuclei from human snap-frozen liver tissue for single-nucleus RNA sequencing. Bio-Protocol 2023, 13, e46012023. [Google Scholar] [CrossRef]
- Li, J.T.; Wang, Q.; Huang Yang, M.D.; Li, Q.S.; Cui, M.S.; Dong, Z.J.; Wang, H.W.; Yu, J.H.; Zhao, Y.J.; Yang, C.R.; et al. Parallel subgenome structure and divergent expression evolution of allo-tetraploid common carp and goldfish. Nat. Genet. 2021, 53, 1493–1503. [Google Scholar] [CrossRef]
- Butler, A.; Hoffman, P.; Smibert, P.; Papalexi, E.; Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 2018, 36, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Baglama, J.; Reichel, L. Augmented implicitly restarted lanczos bidiagonalization methods. Siam. J. Sci. Comput. 2005, 27, 19–42. [Google Scholar] [CrossRef]
- Van, D.M.L. Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 2014, 15, 3221–3245. Available online: https://dl.acm.org/doi/10.5555/2627435.2697068 (accessed on 30 November 2023).
- Dai, M.; Pei, X.; Wang, X.-J. Accurate and fast cell marker gene identification with COSG. Brief. Bioinform. 2022, 23, bbab579. [Google Scholar] [CrossRef]
- Trapnell, C.; Cacchiarelli, D.; Grimsby, J.; Pokharel, P.; Li, S.; Morse, M.; Lennon, N.J.; Livak, K.J.; Mikkelsen, T.S.; Rinn, J.L. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 2014, 32, 381–386. [Google Scholar] [CrossRef]
- Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. ClusterProfiler: An R Package for comparing biological themes among gene clusters. Omics 2012, 16, 284–287. [Google Scholar] [CrossRef]
- Johnson, R.; Wolf, J.; Braunbeck, T. OECD Guidance Document for the Diagnosis of Endocrine-Related Histopathology of Fish Gonads; Organization for Economic Co-operation and Development: Paris, France, 2009; Available online: https://web-archive.oecd.org/2012-06-14/120522-42139437.pdf (accessed on 10 March 2021).
- Ringuette, M.J.; Sobieski, D.A.; Chamow, S.M.; Dean, J. Oocyte-specific gene expression: Molecular characterization of a cDNA coding for ZP-3, the sperm receptor of the mouse zona pellucida. Proc. Natl. Acad. Sci. USA 1986, 83, 4341–4345. [Google Scholar] [CrossRef]
- Shen, R.; Weng, C.; Yu, J.; Xie, T. eIF4A controls germline stem cell self-renewal by directly inhibiting BAM function in the Drosophila ovary. Proc. Natl. Acad. Sci. USA 2009, 106, 11623–11628. [Google Scholar] [CrossRef]
- Liu, X.; Huang, Y.; Tan, F.; Wang, H.Y.; Chen, J.Y.; Zhang, X.; Zhao, X.; Liu, K.; Wang, Q.; Liu, S.; et al. Single-Cell atlas of the Chinese tongue sole (Cynoglossus semilaevis) ovary reveals transcriptional programs of oogenesis in fish. Front. Cell Dev. Biol. 2022, 10, 828124. [Google Scholar] [CrossRef]
- Lacar, B.; Linker, S.B.; Jaeger, B.N.; Krishnaswami, S.R.; Barron, J.J.; Kelder, M.J.E.; Parylak, S.L.; Paquola, A.C.M.; Venepally, P.; Novotny, M.; et al. Nuclear RNA-seq of single neurons reveals molecular signatures of activation. Nat. Commun. 2016, 7, 11022. [Google Scholar] [CrossRef]
- Cui, M.; Wang, Z.; Chen, K.; Shah, A.M.; Tan, W.; Duan, L.; Sanchez-Ortiz, E.; Li, H.; Xu, L.; Liu, N.; et al. Dynamic transcriptional responses to injury of regenerative and non-regenerative cardiomyocytes revealed by single-nucleus RNA sequencing. Dev. Cell 2020, 53, 102–116.e108. [Google Scholar] [CrossRef] [PubMed]
- Slyper, M.; Porter, C.B.M.; Ashenberg, O.; Waldman, J.; Drokhlyansky, E.; Wakiro, I.; Smillie, C.; Smith-Rosario, G.; Wu, J.; Dionne, D.; et al. A single-cell and single-nucleus RNA-Seq toolbox for fresh and frozen human tumors. Nat. Med. 2020, 26, 792–802. [Google Scholar] [CrossRef] [PubMed]
- Weidinger, G.; Stebler, J.; Slanchev, K.; Dumstrei, K.; Wise, C.; Lovell-Badge, R.; Thisse, C.; Thisse, B.; Raz, E. Dead end, a novel vertebrate germ plasm component, is required for zebrafish primordial germ cell migration and survival. Curr. Biol. 2003, 13, 1429–1434. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhong, C.Y.; Yang, Y.; Wang, T.; Tao, Y.H.; Meng, Z.N.; Liu, X.C. Single-cell RNA sequencing reveals gonadal dynamic changes during sex differentiation in hermaphroditic protogynous orange-spotted grouper (Epinephelus coioides). Zool. Res. 2023, 44, 269–272. [Google Scholar] [CrossRef]
- Wu, X.; Xu, S.; Wang, P.; Wang, Z.Q.; Chen, H.; Xu, X.; Peng, B. ASPM promotes ATR-CHK1 activation and stabilizes stalled replication forks in response to replication stress. Proc. Natl. Acad. Sci. USA 2022, 119, e2203783119. [Google Scholar] [CrossRef]
- Richards, J.S. Maturation of ovarian follicles: Actions and interactions of pituitary and ovarian hormones on follicular cell differentiation. Physiol. Rev. 1980, 60, 51–89. [Google Scholar] [CrossRef]
- Dranow, D.B.; Hu, K.; Bird, A.M.; Lawry, S.T.; Adams, M.T.; Sanchez, A.; Amatruda, J.F.; Draper, B.W. Bmp15 is an oocyte-produced signal required for maintenance of the adult female sexual phenotype in zebrafish. PLoS. Genet. 2016, 12, e1006323. [Google Scholar] [CrossRef]
Clusters | Number of Cells | Proportion of Clusters | ||
---|---|---|---|---|
Germline stem cell | 88 | 3072 | 0.67% | 23.35% |
Oogonium | 192 | 1.46% | ||
Oocyte | 2792 | 21.22% | ||
Granulosa cell 1 | 827 | 2645 | 6.29% | 20.11% |
Granulosa cell 2 | 1049 | 7.97% | ||
Granulosa cell 3 | 678 | 5.15% | ||
Granulosa cell 4 | 91 | 0.69% | ||
Theca cell | 180 | 1.36% | ||
Ovarian stromal cell | 813 | 6.18% | ||
Epidermal cell | 4198 | 31.91% | ||
Immune cell | 644 | 4.90% | ||
T cell | 235 | 1.79% | ||
Others | 1368 | 10.40% | ||
Total | 13,155 | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, M.; Zhang, J.; Wang, Q.; Zhao, R.; Cao, Y.; Chen, Y.; Wang, K.; Ding, N.; Qi, Y.; Sun, X.; et al. Single-Nucleus RNA Sequencing Reveals the Transcriptome Profiling of Ovarian Cells in Adolescent Cyprinus carpio. Animals 2024, 14, 3263. https://doi.org/10.3390/ani14223263
Hou M, Zhang J, Wang Q, Zhao R, Cao Y, Chen Y, Wang K, Ding N, Qi Y, Sun X, et al. Single-Nucleus RNA Sequencing Reveals the Transcriptome Profiling of Ovarian Cells in Adolescent Cyprinus carpio. Animals. 2024; 14(22):3263. https://doi.org/10.3390/ani14223263
Chicago/Turabian StyleHou, Mingxi, Jin Zhang, Qi Wang, Ran Zhao, Yiming Cao, Yingjie Chen, Kaikuo Wang, Ning Ding, Yingjie Qi, Xiaoqing Sun, and et al. 2024. "Single-Nucleus RNA Sequencing Reveals the Transcriptome Profiling of Ovarian Cells in Adolescent Cyprinus carpio" Animals 14, no. 22: 3263. https://doi.org/10.3390/ani14223263