Comparative Transcriptome Analysis of Sexual Differentiation in Male and Female Gonads of Nao-Zhou Stock Large Yellow Croaker (Larimichthys crocea)
<p>Histological characteristics of testes (<b>a</b>) and ovaries (<b>b</b>) of Nao-zhou stock large yellow croaker. Notes: Sp: sperm; Spe: sperm cell; Sl: sperm lobule; Yg: yolk granule; N: nucleus; Yv: yolk vesicle; Nu: Nucleolus.</p> "> Figure 2
<p>Volcano map of differentially expressed genes in Nao-zhou stock large yellow croaker. Note: The horizontal axis shows the log<sub>2</sub> value (fold change), the vertical axis is the −log<sub>10</sub> value (<span class="html-italic">p</span> value), green dots represent upregulated genes, red dots represent downregulated genes, and blue dots represent genes with no significance. The dotted lines represent the threshold of log<sub>2</sub>(FC) values.</p> "> Figure 3
<p>Violin plot and cluster heat map of 6 samples. Note: (<b>a</b>) represents the correlation of samples between and within groups. (<b>b</b>) shows cluster results of DEGs. The color indicates the expression amount (logarithm) or the difference multiple (logarithm). The redder color indicates that the gene expression level is higher or the difference factor is larger, and the blue color indicates the opposite.</p> "> Figure 4
<p>Top 30 GO enrichment pathways of differentially expressed genes in the gonads of Nao-zhou stock large yellow croaker. Note: The horizontal axis shows the gene name, and the vertical axis shows the gene ratio.</p> "> Figure 5
<p>Top 30 KEGG enrichment pathways of differentially expressed genes in the gonads of Nao-zhou stock large yellow croaker. Note: The horizontal axis shows the gene name, and the vertical axis shows the gene ratio.</p> "> Figure 6
<p>GO (<b>a</b>) and KEGG (<b>b</b>) enriched pathways of the top 20 differentially expressed genes associated with sex in Nao-zhou stock large yellow croaker.</p> "> Figure 7
<p>Protein-protein interaction (PPI) network diagram of DEGs in female and male Nao-zhou stock large yellow croaker. Note: Different background colors represent the network degree values of proteins. The inner circle of the PPI network shows hub genes, while the outer two circles are non-hub genes. Number of gene nodes is represented by color depth.</p> "> Figure 8
<p>Relative expression levels of 15 genes in the testis and ovary of Nao-zhou stock large yellow croaker. Note: Data are presented as mean ± S.E.M. (n = 3). The asterisks indicate that the differences between the mean values are statistically significant between gonads. *: 0.01 < <span class="html-italic">p</span> < 0.05; **: 0.001 < <span class="html-italic">p</span> < 0.01; ***: <span class="html-italic">p</span> < 0.001.</p> "> Figure 9
<p>qRT-PCR verification of sex-related differentially expressed genes. Note: The horizontal axis shows the gene name, and the vertical axis shows the relative expression level.</p> "> Figure 10
<p>Chord diagram of the functional classification of twelve candidate genes. Note: The left half represents candidate genes and expression levels, and the right half represents GO enriched pathways related to reproduction.</p> ">
1. Introduction
2. Materials and Methods
2.1. Experimental Fish Sampling
2.2. Gonad Tissue Sections
2.3. RNA Extraction and Detection
2.4. Transcriptome Library Construction and Sequencing
2.5. Transcriptome Assembly and Annotation
2.6. Gene Expression Levels and Differential Enrichment Analysis
2.7. Protein-Protein Interaction Network (PPI) Analysis of Key DEGs Between Sexes
2.8. RT-qPCR
3. Results
3.1. Histological Characteristics of the Gonads of Nao-Zhou Stock Large Yellow Croaker
3.2. Transcriptome Results and Quality
3.3. Differential Gene Identification and Enrichment Analysis
3.4. Predicted Function of the Sex-Biased Genes
3.5. PPI Network Analysis of Key DEGs Between Sexes
3.6. qRT-PCR Validation of Differential Sex Expression of Genes
4. Discussion
4.1. Histological Analysis of Gonad Development in Testis and Ovary of Nao-Zhou Stock Large Yellow Croaker (Larimichthys crocea)
4.2. DEGs Related to Male and Female Gonadal Reproduction in Nao-Zhou Stock Large Yellow Croaker
4.3. Signaling Pathways Related to Gonadal Reproductive Regulation in Nao-Zhou Stock Yellow Croaker
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hayashida, T.; Soma, S.; Nakamura, Y.; Higuchi, K.; Kazeto, Y.; Gen, K. Transcriptome characterization of gonadal sex differentiation in Pacific bluefin tuna, Thunnus orientalis (Temminck et Schlegel). Sci. Rep. 2023, 13, 13867. [Google Scholar] [CrossRef] [PubMed]
- Nagahama, Y.; Chakraborty, T.; Paul-Prasanth, B.; Ohta, K.; Nakamura, M. Sex determination, gonadal sex differentiation, and plasticity in vertebrate species. Physiol. Rev. 2021, 101, 1237–1308. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Guan, T.; Gu, J.; Zhu, C.; Pan, Z.; Wang, H.; Li, J. Comparative transcriptome analysis of gonads in male and female Pseudobagrus ussuriensis (Bagridae, Siluriformes). Comp. Biochem. Physiol. D Genom. Proteom. 2023, 47, 101105. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Chen, L.; Zhou, Z.; Xiao, J.; Chen, B.; Huang, P.; Li, C.; Xue, Y.; Liu, R.; Bai, Y.; et al. Comparative transcriptome analysis of early sexual differentiation in the male and female gonads of common carp (Cyprinus carpio). Aquaculture 2023, 563, 738984. [Google Scholar] [CrossRef]
- Mei, J.; Gui, J.-F. Genetic basis and biotechnological manipulation of sexual dimorphism and sex determination in fish. Sci. China Life Sci. 2015, 58, 124–136. [Google Scholar] [CrossRef]
- Mustapha, U.F.; Peng, Y.; Huang, Y.; Assan, D.; Zhi, F.; Shi, G.; Huang, Y.; Li, G.; Jiang, D. Comparative transcriptome analysis of the differentiating gonads in Scatophagus argus. Front. Mar. Sci. 2022, 9, 962534. [Google Scholar] [CrossRef]
- Wang, N.; Wang, R.; Wang, R.; Chen, S. Transcriptomics analysis revealing candidate networks and genes for the body size sexual dimorphism of Chinese tongue sole (Cynoglossus semilaevis). Funct. Integr. Genom. 2018, 18, 327–339. [Google Scholar] [CrossRef]
- Luckenbach, J.A.; Fairgrieve, W.T.; Hayman, E.S. Establishment of monosex female production of sablefish (Anoplopoma fimbria) through direct and indirect sex control. Aquaculture 2017, 479, 285–296. [Google Scholar] [CrossRef]
- Wang, H.-P.; Gao, Z.; Rapp, D.; O’Bryant, P.; Yao, H.; Cao, X. Effects of temperature and genotype on sex determination and sexual size dimorphism of bluegill sunfish Lepomis macrochirus. Aquaculture 2014, 420–421, S64–S71. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, W.; He, Y.; Wu, J.; Dawar, F.U.; Ren, F.; Zhao, X.; Mei, J. Sex biased expression of ghrelin and GHSR associated with sexual size dimorphism in yellow catfish. Gene 2016, 578, 169–176. [Google Scholar] [CrossRef]
- Tao, W.; Zhu, X.; Cao, J.; Xiao, H.; Dong, J.; Kocher, T.D.; Lu, M.; Wang, D. Screening and characterization of sex-linked DNA markers in Mozambique tilapia (Oreochromis mossambicus). Aquaculture 2022, 557, 738331. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, T.; Zhao, C.; Wang, D.; Zhang, X.; Zhang, H.; Chi, M.; Yin, S.; Jia, Y. Evolutionary conservation and divergence of Vasa, Dazl and Nanos1 during embryogenesis and gametogenesis in dark sleeper (Odontobutis potamophila). Gene 2018, 672, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Zhai, G.; Shu, T.; Chen, K.; Lou, Q.; Jia, J.; Huang, J.; Shi, C.; Jin, X.; He, J.; Jiang, D.; et al. Successful Production of an All-Female Common Carp (Cyprinus carpio L.) Population Using cyp17a1-Deficient Neomale Carp. Engineering 2021, 8, 181–189. [Google Scholar] [CrossRef]
- Wang, P.; Wang, L.; Yang, J.; Luan, P.; Zhang, X.; Kuang, Y.; Sun, X. Sex-biased miRNAs of yellow catfish (Pelteobagrus fulvidraco) and their potential role in reproductive development. Aquaculture 2018, 485, 73–80. [Google Scholar] [CrossRef]
- Molina, W.F.; Benetti, D.D.; Fiorentino, J.N.; Lima-Filho, P.A.D.; Alencar, C.E.R.D.; Costa, G.W.W.F.D.; Motta-Neto, C.C.D.; Nóbrega, M.F.D. Early sex shape dimorphism (SShD) in Rachycentron canadum (Linnaeus, 1766) and its applications for monosex culture. Aquaculture 2018, 495, 320–327. [Google Scholar] [CrossRef]
- Zhong, Y.; Lian, Q.; Chen, Y.; Duan, Y.; He, P.; Wu, M. Comparative transcriptome analysis reveals differentially expressed genes and signaling pathways between male and female mature gonads of Hemibarbus maculatus. J. World Aquac. Soc. 2023, 54, 764–777. [Google Scholar] [CrossRef]
- He, F.X.; Jiang, D.N.; Huang, Y.Q.; Mustapha, U.F.; Yang, W.; Cui, X.F.; Tian, C.X.; Chen, H.P.; Shi, H.J.; Deng, S.P.; et al. Comparative transcriptome analysis of male and female gonads reveals sex-biased genes in spotted scat (Scatophagus argus). Fish. Physiol. Biochem. 2019, 45, 1963–1980. [Google Scholar] [CrossRef]
- Mustapha, U.F.; Jiang, D.; Liang, Z.; Gu, H.; Yang, W.; Chen, H.; Deng, S.; Wu, T.; Tian, C.; Zhu, C.; et al. Male-specific Dmrt1 is a candidate sex determination gene in spotted scat (Scatophagus argus). Aquaculture 2018, 495, 351–358. [Google Scholar] [CrossRef]
- Myosho, T.; Otake, H.; Masuyama, H.; Matsuda, M.; Kuroki, Y.; Fujiyama, A.; Naruse, K.; Hamaguchi, S.; Sakaizumi, M. Tracing the Emergence of a Novel Sex-Determining Gene in Medaka, Oryzias luzonensis. Genetics 2012, 191, 163–170. [Google Scholar] [CrossRef]
- Li, M.; Hong, N.; Xu, H.; Yi, M.; Li, C.; Gui, J.; Hong, Y. Medaka vasa is required for migration but not survival of primordial germ cells. Mech. Dev. 2009, 126, 366–381. [Google Scholar] [CrossRef]
- Kohno, S.; Vang, D.; Ang, E.; Brunell, A.M.; Lowers, R.H.; Schoenfuss, H.L. Estrogen-induced ovarian development is time-limited during the temperature-dependent sex determination of the American alligator. Gen. Comp. Endocrinol. 2020, 291, 113397. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, T.; Kai, W.; Tasumi, S.; Oka, A.; Matsunaga, T.; Mizuno, N.; Fujita, M.; Suetake, H.; Suzuki, S.; Hosoya, S.; et al. A trans-species missense SNP in Amhr2 is associated with sex determination in the tiger pufferfish, Takifugu rubripes (fugu). PLoS Genet. 2012, 8, e1002798. [Google Scholar] [CrossRef] [PubMed]
- Deng, D.; Xing, S.; Liu, X.; Ji, Q.; Zhai, Z.; Peng, W. Transcriptome analysis of sex-biased gene expression in the spotted-wing Drosophila, Drosophila suzukii (Matsumura). G3 Genes Genomes Genet. 2022, 12, jkac127. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Sun, Y.; Li, X.; Zhou, Z.; Ma, K.; Guo, W.; Liang, Y.; Xie, X.; Zhang, J.; Wang, Q.; et al. A Transcriptomic Analysis of Gonads from the Low-Temperature-Induced Masculinization of Takifugu rubripes. Animals 2021, 11, 3419. [Google Scholar] [CrossRef]
- Tao, W.; Chen, J.; Tan, D.; Yang, J.; Sun, L.; Wei, J.; Conte, M.A.; Kocher, T.D.; Wang, D. Transcriptome display during tilapia sex determination and differentiation as revealed by RNA-Seq analysis. BMC Genom. 2018, 19, 363. [Google Scholar] [CrossRef]
- Lin, X.; Zhou, D.; Zhang, X.; Li, G.; Zhang, Y.; Huang, C.; Zhang, Z.; Tian, C. A First Insight into the Gonad Transcriptome of Hong Kong Catfish (Clarias fuscus). Animals 2021, 11, 1131. [Google Scholar] [CrossRef]
- Guan, W.Z.; Jiang, K.; Lai, X.L.; Dong, Y.T.; Qiu, G.F. Comprehensive Transcriptome Analysis of Gonadal and Somatic Tissues for Identification of Sex-Related Genes in the Largemouth Bass Micropterus salmoides. Mar. Biotechnol. 2022, 24, 588–598. [Google Scholar] [CrossRef]
- Cen, H.; Li, H.; Chen, R.; Hu, W.; Yang, Y.; Li, W.; Yin, X.; Liu, B.; Xu, D. Exploring the sex dimorphism in the expression of intestinal barrier and immune-related genes and intestinal microbiota in cage-cultured large yellow croaker (Larimichthys crocea) during the overwintering period along the Zhoushan coast. Front. Mar. Sci. 2024, 11, 1391035. [Google Scholar] [CrossRef]
- Chen, H.; Li, Z.; Wang, Y.; Huang, H.; Yang, X.; Li, S.; Yang, W.; Li, G. Comparison of Gonadal Transcriptomes Uncovers Reproduction-Related Genes with Sexually Dimorphic Expression Patterns in Diodon hystrix. Animals 2021, 11, 1042. [Google Scholar] [CrossRef]
- Yang, E.; Amenyogbe, E.; Zhang, J.; Wang, W.; Huang, J.; Chen, G. Integrated transcriptomics and metabolomics analysis of the intestine of cobia (Rachycentron canadum) under hypoxia stress. Aquac. Rep. 2022, 25, 101261. [Google Scholar] [CrossRef]
- Yu, M.; Xie, Q.; Wei, F.; Wu, X.; Xu, W.; Zhan, W.; Liu, F.; Guo, D.; Niu, B.; Lou, B. Development and identification of a sex-specific molecular marker in Dai-qu stock large yellow croaker (Larimichthys crocea). Aquaculture 2022, 555, 738172. [Google Scholar] [CrossRef]
- Micale, G.; Continella, A.; Ferro, A.; Giugno, R.; Pulvirenti, A. GASOLINE: A Cytoscape app for multiple local alignment of PPI networks. F1000Res 2014, 3, 140. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y. China fishery statistics yearbook published Guangdong’s total aquatic product output ranked first in China for the first time. Ocean Fish. 2020, 6, 12–13. Available online: http://qikan.cqvip.com/Qikan/Article/Detail?id=7102533376 (accessed on 10 November 2024).
- Suede, S.H.; Malik, A.; Sapra, A. Histology, Spermatogenesis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK553142/#_ncbi_dlg_citbx_NBK553142 (accessed on 10 November 2024).
- Nishimura, H.; L’Hernault, S.W. Spermatogenesis. Curr. Biol. 2017, 25, R988–R994. [Google Scholar] [CrossRef]
- O’Donnell, L.; Stanton, P.; de Kretser, D.M. Endocrinology of the Male Reproductive System and Spermatogenesis. In Endotext; Feingold, K.R., Anawalt, B., Boyce, A., Chrousos, G., Dungan, K., Grossman, A., Hershman, J.M., Hofland, J., Kaltsas, G., Koch, C., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK279031/ (accessed on 10 November 2024).
- Lancaster, K.; Trauth, S.E.; Gribbins, K.M. Testicular histology and germ cell cytology during spermatogenesis in the Mississippi map turtle, Graptemys pseudogeographica kohnii, from Northeast Arkansas. Spermatogenesis 2014, 4, e992654. [Google Scholar] [CrossRef]
- White-Cooper, H.; Bausek, N. Evolution and spermatogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 1465–1480. [Google Scholar] [CrossRef]
- Shibata, M.; Makihara, N.; Iwasawa, A. The Yolk Sac’s Essential Role in Embryonic Development. Rev. Agric. Sci. 2023, 11, 243–258. [Google Scholar] [CrossRef]
- Griswold, M.D. Spermatogenesis: The Commitment to Meiosis. Physiol. Rev. 2016, 96, 1–17. [Google Scholar] [CrossRef]
- Jorgensen, P.; Steen, J.J.A.; Steen, H.; Kirschner, M.W. The mechanism and pattern of yolk consumption provide insight into embryonic nutrition in Xenopus. Development 2009, 136, 1539–1548. [Google Scholar] [CrossRef]
- Matson, C.K.; Zarkower, D. Sex and the singular DM domain: Insights into sexual regulation, evolution and plasticity. Nat. Rev. Genet. 2012, 13, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Li, M.H.; Yang, H.H.; Li, M.R.; Sun, Y.L.; Jiang, X.L.; Xie, Q.P.; Wang, T.R.; Shi, H.J.; Sun, L.N.; Zhou, L.Y.; et al. Antagonistic roles of Dmrt1 and Foxl2 in sex differentiation via estrogen production in tilapia as demonstrated by TALENs. Endocrinology 2013, 154, 4814–4825. [Google Scholar] [CrossRef] [PubMed]
- Webster, K.A.; Schach, U.; Ordaz, A.; Steinfeld, J.S.; Draper, B.W.; Siegfried, K.R. Dmrt1 is necessary for male sexual development in zebrafish. Dev. Biol. 2017, 422, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Liu, Y.; Wang, W.; Wang, Q.; Zhang, N.; Lin, F.; Wang, N.; Shao, C.; Dong, Z.; Li, Y.; et al. Genome editing reveals dmrt1 as an essential male sex-determining gene in Chinese tongue sole (Cynoglossus semilaevis). Sci. Rep. 2017, 7, 42213. [Google Scholar] [CrossRef]
- Masuyama, H.; Yamada, M.; Kamei, Y.; Fujiwara-Ishikawa, T.; Todo, T.; Nagahama, Y.; Matsuda, M. Dmrt1 mutation causes a male-to-female sex reversal after the sex determination by Dmy in the medaka. Chromosome Res. 2012, 20, 163–176. [Google Scholar] [CrossRef]
- Wen, A.Y.; You, F.; Sun, P.; Li, J.; Xu, D.D.; Wu, Z.H.; Ma, D.Y.; Zhang, P.J. CpG methylation of dmrt1 and cyp19a promoters in relation to their sexual dimorphic expression in the Japanese flounder Paralichthys olivaceus. J. Fish. Biol. 2014, 84, 193–205. [Google Scholar] [CrossRef]
- Zhou, H.; Zhuang, X.; Sun, Q.; Chen, Q.; Zheng, Y.; Liang, T.; Mahboob, S.; Wang, Q.; Zhang, R.; Al-Ghanim, K.A.; et al. Changes in DNA methylation during epigenetic-associated sex reversal under low temperature in Takifugu rubripes. PLoS ONE 2019, 14, e0221641. [Google Scholar] [CrossRef]
- Carlsson, P.; Mahlapuu, M. Forkhead transcription factors: Key players in development and metabolism. Dev. Biol. 2002, 250, 1–23. [Google Scholar] [CrossRef]
- Jackson, B.C.; Carpenter, C.; Nebert, D.W.; Vasiliou, V. Update of human and mouse forkhead box (FOX) gene families. Hum. Genomics. 2010, 4, 345–352. [Google Scholar] [CrossRef]
- Lin, H.Y.; Zhu, C.Q.; Zhang, H.H.; Shen, Z.C.; Zhang, C.X.; Ye, Y.X. The Genetic Network of Forkhead Gene Family in Development of Brown Planthoppers. Biology 2021, 10, 867. [Google Scholar] [CrossRef]
- Hacker, U.; Grossniklaus, U.; Gehring, W.J.; Jackle, H. Developmentally Regulated Drosophila Gene Family Encoding the ForkHead Domain. Proc. Natl. Acad. Sci. USA 1992, 89, 8754–8758. [Google Scholar] [CrossRef] [PubMed]
- Shingleton, A.W.; Vea, I.M. Sex-specific regulation of development, growth and metabolism. Semin. Cell Dev. Biol. 2023, 138, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Dhakal, P.; Kelleher, A.M.; Behura, S.K.; Spencer, T.E. Sexually dimorphic effects of forkhead box a2 (FOXA2) and uterine glands on decidualization and fetoplacental development. Proc. Natl. Acad. Sci. USA 2020, 117, 23952–23959. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Fu, G.; Lee, M.; Yeo, S.; Yue, G.H. Genes for editing to improve economic traits in aquaculture fish species. Aquac. Fish. 2024; in press. [Google Scholar] [CrossRef]
- Li, J.; Ge, W. Zebrafish as a model for studying ovarian development: Recent advances from targeted gene knockout studies. Mol. Cell. Endocrinol. 2020, 507, 110778. [Google Scholar] [CrossRef]
- Bertucci, J.I.; Blanco, A.M.; Sundarrajan, L.; Rajeswari, J.J.; Velasco, C.; Unniappan, S. Nutrient Regulation of Endocrine Factors Influencing Feeding and Growth in Fish. Front. Endocrinol. 2019, 10, 425301. [Google Scholar] [CrossRef]
- Zang, S.; Wang, R.; Liu, Y.; Zhao, S.; Su, L.; Dai, X.; Chen, H.; Yin, Z.; Zheng, L.; Liu, Q.; et al. Insulin Signaling Pathway Mediates FoxO–Pepck Axis Regulation of Glucose Homeostasis in Drosophila suzukii. Int. J. Mol. Sci. 2023, 25, 10441. [Google Scholar] [CrossRef]
- Pisarska, M.D.; Barlow, G.; Kuo, F.T. Minireview: Roles of the forkhead transcription factor FOXL2 in granulosa cell biology and pathology. Endocrinology 2011, 152, 1199–1208. [Google Scholar] [CrossRef]
- Vizziano, D.; Randuineau, G.; Baron, D.; Cauty, C.; Guiguen, Y. Characterization of early molecular sex differentiation in rainbow trout, Oncorhynchus mykiss. Dev. Dyn. 2007, 236, 2198–2206. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, Z.; Chen, J. Research progress on genes regulating fish gonad differentiation. Acta Hydrobiol. Sin. 2015, 39, 798–810. [Google Scholar]
- Zhang, M.; Zhu, Y.; Li, W. Cloning and expression analysis of sox9a/b gene in large yellow croaker. J. Fish. China 2019, 43, 1691–1705. [Google Scholar]
- Klüver, N.; Kondo, M.; Herpin, A.; Mitani, H.; Schartl, M. Divergent expression patterns of Sox9 duplicates in teleosts indicate a lineage specific subfunctionalization. Dev. Genes Evol. 2005, 215, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Marí, A.; Yan, Y.L.; Bremiller, R.A.; Wilson, C.; Cañestro, C.; Postlethwait, J.H. Characterization and expression pattern of zebrafish Anti-Müllerian hormone (Amh) relative to sox9a, sox9b, and cyp19a1a, during gonad development. Gene Expr. Patterns 2005, 5, 655–667. [Google Scholar] [CrossRef] [PubMed]
- Takehana, Y.; Matsuda, M.; Myosho, T.; Suster, M.L.; Kawakami, K.; Kohara, Y.; Kuroki, Y.; Toyoda, A.; Fujiyama, A.; Hamaguchi, S.; et al. Co-option of Sox3 as the male-determining factor on the Y chromosome in the fish Oryzias dancena. Nat. Commun. 2014, 5, 4157. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhong, Z.W.; Feng, Y.; Zhang, Z.Y.; Ao, L.L.; Liu, H.; Wang, Y.L.; Jiang, Y.H. Expression pattern analysis of anti-Mullerian hormone in testis development of pearlscale angelfish (Centropyge vrolikii). J. Fish Biol. 2023, 102, 1067–1078. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, B.; Du, H. A review on sox genes in fish. Rev. Aquac. 2021, 13, 1986–2003. [Google Scholar] [CrossRef]
- Morinaga, C.; Saito, D.; Nakamura, S.; Sasaki, T.; Asakawa, S.; Shimizu, N.; Mitani, H.; Furutani-Seiki, M.; Tanaka, M.; Kondoh, H. The hotei mutation of medaka in the anti-Mullerian hormone receptor causes the dysregulation of germ cell and sexual development. Proc. Natl. Acad. Sci. USA 2007, 104, 9691–9696. [Google Scholar] [CrossRef]
- Yoshinaga, N.; Shiraishi, E.; Yamamoto, T.; Iguchi, T.; Abe, S.; Kitano, T. Sexually dimorphic expression of a teleost homologue of Müllerian inhibiting substance during gonadal sex differentiation in Japanese flounder, Paralichthys olivaceus. Biochem. Biophys. Res. Commun. 2004, 322, 508–513. [Google Scholar] [CrossRef]
- Marivin, E.; Yano, A.; Guérin, A.; Nguyen, T.V.; Fostier, A.; Bobe, J.; Guiguen, Y. Sex hormone-binding globulins characterization and gonadal gene expression during sex differentiation in the rainbow trout, Oncorhynchus mykiss. Mol. Reprod. Dev. 2014, 81, 757–765. [Google Scholar] [CrossRef]
- Su, M.; Duan, Z.; Shi, H.; Zhang, J. The effects of salinity on reproductive development and egg and larvae survival in the spotted scat Scatophagus argus under controlled conditions. Aquac. Res. 2019, 50, 1782–1794. [Google Scholar] [CrossRef]
- Miura, T.; Miura, C.; Konda, Y.; Yamauchi, K. Spermatogenesis-preventing substance in Japanese eel. Development 2002, 129, 2689–2697. [Google Scholar] [CrossRef] [PubMed]
- Pott, J.; Bae, Y.J.; Horn, K.; Teren, A.; Kühnapfel, A.; Kirsten, H.; Ceglarek, U.; Loeffler, M.; Thiery, J.; Kratzsch, J.; et al. Genetic Association Study of Eight Steroid Hormones and Implications for Sexual Dimorphism of Coronary Artery Disease. J. Clin. Endocrinol. Metab. 2019, 104, 5008–5023. [Google Scholar] [CrossRef] [PubMed]
- Maillard, V.; Desmarchais, A.; Durcin, M.; Uzbekova, S.; Elis, S. Docosahexaenoic acid (DHA) effects on proliferation and steroidogenesis of bovine granulosa cells. Reprod. Biol. Endocrinol. 2018, 16, 40. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Guo, Y.; Wang, D.; Zhao, M.; Hou, X.; Li, S.; Lin, H.; Zhang, Y. Beta-Hydroxysteroid Dehydrogenase Genes in Orange-Spotted Grouper (Epinephelus coioides): Genome-Wide Identification and Expression Analysis During Sex Reversal. Front. Genet. 2020, 11, 161. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.; Ao, L.; Wang, Y.; Wang, S.; Zhao, L.; Ma, S.; Jiang, Y. Comparison of differential expression genes in ovaries and testes of Pearlscale angelfish Centropyge vrolikii based on RNA-Seq analysis. Fish Physiol. Biochem. 2021, 47, 1565–1583. [Google Scholar] [CrossRef]
- Lv, C.; Huang, H.L.; Yi, D.J.; Peng, T.L.; Tan, H.J.; Quan, R.P.; Deng, H.W.; Xiao, H.M. Mutant Zp1 impedes incorporation of ZP3 and ZP4 in the zona pellucida, resulting in zona absence and female infertility in rats. Biol. Reprod. 2021, 104, 1262–1270. [Google Scholar] [CrossRef]
- Litscher, E.S.; Wassarman, P.M. The Fish Egg’s Zona Pellucida. Curr. Top. Dev. Biol. 2018, 130, 275–305. [Google Scholar] [CrossRef]
- Chuang-Ju, L.; Qi-Wei, W.; Xi-Hua, C.; Li, Z.; Hong, C.; Fang, G.; Jian-Fang, G. Molecular characterization and expression pattern of three zona pellucida 3 genes in the Chinese sturgeon, Acipenser sinensis. Fish Physiol. Biochem. 2011, 37, 471–484. [Google Scholar] [CrossRef]
- Tsakogiannis, A.; Manousaki, T.; Lagnel, J.; Sterioti, A.; Pavlidis, M.; Papandroulakis, N.; Mylonas, C.C.; Tsigenopoulos, C.S. The transcriptomic signature of different sexes in two protogynous hermaphrodites: Insights into the molecular network underlying sex phenotype in fish. Sci. Rep. 2018, 8, 3564. [Google Scholar] [CrossRef]
- Liu, K.; Rajareddy, S.; Liu, L.; Jagarlamudi, K.; Boman, K.; Selstam, G.; Reddy, P. Control of mammalian oocyte growth and early follicular development by the oocyte PI3 kinase pathway: New roles for an old timer. Dev. Biol. 2006, 299, 1–11. [Google Scholar] [CrossRef]
- Jia, K.; Chen, D.; Riddle, D.L. The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development 2004, 131, 3897–3906. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.L.; Liu, P.; Jia, F.L.; Li, J.; Gao, B.Q. De novo Transcriptome Analysis of Portunus trituberculatus Ovary and Testis by RNA-Seq: Identification of Genes Involved in Gonadal Development. PLoS ONE 2015, 10, e0128659. [Google Scholar] [CrossRef] [PubMed]
Gene | Forward Primer 5′-3′ | Reverse Primer 5′-3′ |
---|---|---|
dmrt1 | AACAGCAACAACAACAACAGCAACA | TCACACTCAGCGTGGACATCAGA |
foxm1 | TGTCGCCTCCTCGGTCTATCTG | ACTCTGGCTCGTCCTTCACCTT |
amh | GTCTTCTGCTGTGGAACGCTGAT | GCTTGTTGTCTGGTGGTCTCCTT |
cyp21a2 | ACAGAGCCATCAGAGACAGCAGTA | CAGCAAGTAGGCGGTGAACAGAA |
foxl1 | ACTCCATCCGCCACAACCTCT | GCTCCTTGCCTTCCTCTTCCTC |
dmrt2a | GACGGCAGTAGAAGTGACGACAAG | TCCACCACCAGCAGGCAGTT |
sox19b | CAGAGGACAGAGGCGTAAGATGG | GTCTTGCGGCGTGGCTTGTA |
hsd3b7 | GGATTCCTCGGCAGACACCTACT | GTCCGCTCTGTGCTGAGTTCATT |
Foxh1 | GGCAGTGGAGTTGAGTCGTGTTC | GTGGCTCCGATTCTGGCTTGTG |
foxr1 | AGCCTCAAAGTCCAGCAGATTTACC | AGGTTGTGTCGGATGGTGTTCTTC |
hsd17b12a | TCCTCAACATCTCTTCTGCCAGTG | TGACGCCTGTACTCCTCCTGAA |
hsd17b10 | TGAAGCGAGGCATCGGAACATC | AACGGCGGTGGAAGAAGAAGAAG |
zp3b | TGCGGAACTCAACTCTCATCAACAA | AATGGCATCCACAGCATACCTCTT |
zp3d.2 | GCGACGAACAGAGACTACCAGAGA | TGCTCACCTTCCACCTCAATCCA |
sox11 | ACGAAGAAGTGCGGAACAACAACA | TGCTGGAGGAGGAGGAGGATGT |
β-actin | CAGCACACCGATGGAGACAGATG | ATGCCATTCTTGAGCGGAGACAT |
Gonad | Symbol | Log2(FC) | Description |
---|---|---|---|
Ovary | zp2l2 | 11.14630802 | zona pellucida sperm-binding protein 4 |
gdf9 | 11.05705205 | growth differentiation factor 9 | |
zp3c | 10.70730617 | zona pellucida sperm-binding protein 3 | |
zar1l | 10.62065522 | zygote arrest 1 like | |
sox19b | 10.1033617 | transcription factor Sox-19b-like | |
zar1 | 8.386104813 | zygote arrest 1 | |
hsd17b1 | 7.970755402 | hydroxysteroid 17-beta dehydrogenase 1 | |
hsd17b12a | 7.970755402 | hydroxysteroid 17-beta dehydrogenase 12 | |
zp3d.2 | 7.81913224 | zona pellucida sperm-binding protein 3 | |
foxr1 | 7.702006538 | forkhead box protein N5 | |
zp3b | 7.185110583 | zona pellucida sperm-binding protein 3 | |
foxh1 | 5.586284908 | forkhead box protein H1 | |
figla | 5.203460558 | factor in the germline alpha | |
igf2bp3 | 4.574750365 | insulin like growth factor 2 mRNA binding protein 3 | |
FOXO3 | 3.869227906 | forkhead box protein O3 | |
sox8a | 3.460606657 | transcription factor Sox-8 | |
cpeb1a | 3.290123152 | cytoplasmic polyadenylation element binding protein 1 | |
sox13 | 3.24331826 | SRY-box transcription factor 13 | |
CYP27A | 2.982813489 | sterol 26-hydroxylase, mitochondrial | |
sox10 | 2.956931278 | SRY-box transcription factor 10 | |
stard10 | 2.900182693 | StAR related lipid transfer domain containing 10 | |
hsd17b10 | 2.89519422 | hydroxysteroid 17-beta dehydrogenase 10 | |
fgf20b | 2.777419716 | fibroblast growth factor 20 | |
gdf6a | 2.593524514 | growth differentiation factor 6 | |
sox17 | 2.550000123 | SRY-box transcription factor17 | |
igf2bp1 | 2.317251608 | insulin-like growth factor 2 mRNA-binding protein 1 | |
fstl4 | 2.288907325 | follistatin like 4 | |
cyp11a2 | 2.216067902 | cholesterol side-chain cleavage enzyme, mitochondrial | |
sox11 | 2.03493379 | SRY-box transcription factor 11 | |
cyp26a1 | 1.916668956 | cytochrome P450 26A1 | |
spag7 | 1.826827833 | sperm associated antigen 7 | |
SOX18 | 1.815129653 | transcription factor Sox-18B | |
HDAC2 | 1.702780298 | histone deacetylase 2 | |
luzp1 | 1.631532334 | leucine zipper protein 1 | |
igf2b | 1.562199298 | insulin like growth factor 2 | |
hsd3b1 | 1.208889923 | hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1 | |
Testis | fgf8b | −1.044873962 | fibroblast growth factor 8b |
spata20 | −1.216888207 | spermatogenesis associated 20 | |
fgf17 | −1.376083865 | fibroblast growth factor 17 | |
sox9b | −1.380135688 | transcription factor Sox-9 | |
dmrta2 | −1.409255147 | DMRT like family A2 | |
amh | −1.556690549 | anti-Mullerian hormone | |
cyp19a1a | −1.62147253 | aromatase-like | |
nanos1 | −1.826213949 | nanos homolog 1 | |
hdac5 | −1.829685137 | histone deacetylase 5 | |
FOXN2 | −1.971653054 | forkhead box N2 | |
FOXN2 | −1.971653054 | forkhead box N2 | |
cyp11c1 | −2.73085247 | cytochrome P450 11B, mitochondrial | |
bmper | −2.903704155 | BMP binding endothelial regulator | |
hdac8 | −2.906206302 | histone deacetylase 8 | |
SPAG1 | −2.930619527 | sperm associated antigen 1 | |
tdrd6 | −3.451861972 | tudor domain-containing protein 6 | |
tdrd12 | −3.58760714 | tudor domain-containing 12 | |
tdrd1 | −3.58760714 | tudor domain-containing 1 | |
tdrd7b | −3.591337951 | tudor domain-containing protein 7B | |
samhd1 | −3.795859283 | SAM and HD domain containing deoxynucleoside triphosphate triphosphohydrolase 1 | |
nanos2 | −4.461788579 | nanos homolog 2 | |
fgf23 | −5.392317423 | fibroblast growth factor 23 | |
spata22 | −5.900464543 | spermatogenesis associated 22 | |
dmrt2a | −6.097090013 | doublesex and mab-3 related transcription factor 2 | |
foxl1 | −6.354149184 | forkhead box protein L1 | |
spag6 | −6.42149634 | sperm associated antigen 6 | |
dmrt3a | −6.772589504 | doublesex and mab-3 related transcription factor 3 | |
dmrt1 | −6.985173364 | doublesex- and mab-3-related transcription factor 1 | |
wnt4b | −7.882643049 | protein Wnt-4 | |
fstl5 | −8.448460501 | follistatin like 5 | |
fgf13b | −8.518325308 | fibroblast growth factor 13 | |
fgfbp1b | −11.66370634 | fibroblast growth factor-binding protein 1 | |
pdgfc | −11.75335605 | platelet derived growth factor C | |
spef2 | −12.2123807 | sperm flagellar 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Wen, Z.; Amenyogbe, E.; Jin, J.; Lu, Y.; Wang, Z.; Huang, J. Comparative Transcriptome Analysis of Sexual Differentiation in Male and Female Gonads of Nao-Zhou Stock Large Yellow Croaker (Larimichthys crocea). Animals 2024, 14, 3261. https://doi.org/10.3390/ani14223261
Wang H, Wen Z, Amenyogbe E, Jin J, Lu Y, Wang Z, Huang J. Comparative Transcriptome Analysis of Sexual Differentiation in Male and Female Gonads of Nao-Zhou Stock Large Yellow Croaker (Larimichthys crocea). Animals. 2024; 14(22):3261. https://doi.org/10.3390/ani14223261
Chicago/Turabian StyleWang, Haojie, Zirui Wen, Eric Amenyogbe, Jinghui Jin, Yi Lu, Zhongliang Wang, and Jiansheng Huang. 2024. "Comparative Transcriptome Analysis of Sexual Differentiation in Male and Female Gonads of Nao-Zhou Stock Large Yellow Croaker (Larimichthys crocea)" Animals 14, no. 22: 3261. https://doi.org/10.3390/ani14223261