Beyond the Spectrum: Unleashing the Potential of Infrared Radiation in Poultry Industry Advancements
<p>Different forms of infrared radiation and their uses in different sectors.</p> "> Figure 2
<p>Mechanism of action of IR at the cellular level. IR generates ROS and increases intracellular Ca<sup>2+</sup>. Changes in water dynamics affect membrane and mitochondrial function, releasing Ca<sup>2+</sup> into the cytosol. Elevated Ca<sup>2+</sup> activates enzymes in cellular respiration, producing ATP via TCA and ETC, essential for cellular processes, while ROS and Ca<sup>2+</sup> regulate cellular signaling.</p> "> Figure 3
<p>Overall impact of infrared radiation on poultry practices.</p> "> Figure 4
<p>Integrating infrared technology for optimizing poultry farming: (<b>a</b>) infrared heating system to improve heating control and preserve energy; (<b>b</b>) infrared beak trimming improves bird welfare; (<b>c</b>) infrared thermography to detect bird body temperature; and (<b>d</b>) infrared spectroscopy to evaluate poultry feed quality.</p> "> Figure 5
<p>Physical appearance of beak after trimming: (1–2) beak trimming using a heat blade showing crack in beak and abnormal shape; and (3–4) infrared beak trimming showing normal beak appearance.</p> "> Figure 6
<p>Infrared in computer vision for poultry monitoring.</p> "> Figure 7
<p>Effect of IR radiation on poultry growth parameters.</p> ">
Abstract
:Simple Summary
Abstract
1. Introduction
2. Applications of Infrared Radiation
3. Integrating Infrared Technology for Optimizing Poultry Farming
3.1. Infrared Heating Systems
- Facilitation of microclimatic adjustments within poultry houses to counteract winter cold peaks without compromising air circulation;
- Preservation of air moisture levels due to the selective heating nature of infrared radiation, which targets surfaces such as birds, litter, and individuals rather than heating the entire air mass;
- Maintenance of comfortable conditions for birds and humans through the emission of longwave IR radiation at minimal temperatures;
- Unified integration of IR heaters into existing infrastructure without impeding technological operations;
- Acceleration of winter warm-up times in poultry houses by up to 75%, optimizing operational efficiency.
3.2. Infrared Beak Trimmer
3.3. Infrared Thermography
3.4. Infrared Spectroscopy
3.5. Potential of Infrared in Computer Vision for Poultry Monitoring
4. Applications of Infrared in Poultry Production
4.1. Infrared Treatment to Improve Growth Performance
4.2. Infrared Technology in the Poultry Industry to Ensure Food Safety
4.3. Infrared for Precision Poultry Practices and Economic Gains
4.4. Infrared as Antitoxins and Reducing Noxious Gases
4.5. Infrared as an Immunity Booster in Poultry
5. Conclusions and Future Perspectives
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Struthers, S.; Classen, H.L.; Gomis, S.; Schwean-Lardner, K. The effect of beak tissue sloughing and post-treatment beak shape on the productivity of infrared beak treated layer pullets and hens. Poult. Sci. 2019, 98, 3637–3646. [Google Scholar] [CrossRef] [PubMed]
- Vatansever, F.; Hamblin, M.R. Far infrared radiation (FIR): Its biological effects and medical applications. Photonic Lase Med. 2012, 4, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Techtarget. What Is Infrared Radiation? 2023. Available online: https://www.techtarget.com (accessed on 20 January 2024).
- Tsagkaris, C.; Papazoglou, A.S.; Eleftheriades, A.; Tsakopoulos, S.; Alexiou, A.; Găman, M.A.; Moysidis, D.V. Infrared Radiation in the Management of Musculoskeletal Conditions and Chronic Pain: A Systematic Review. Eur. J. Investig. Health Psychol. Educ. 2022, 12, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Magnuson, M.; Agarwal, A.; Tan, X.; Richter, C.P. Infrared neural stimulation at different wavelengths and pulse shapes. Prog. Biophys. Mol. Biol. 2020, 162, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Tsai, S.R.; Hamblin, M.R. Biological effects and medical applications of infrared radiation. J. Photochem. Photobiol. B Biol. 2017, 170, 197–207. [Google Scholar] [CrossRef]
- Horton, L.; Brady, J.; Kincaid, C.M.; Torres, A.E.; Lim, H.W. The effects of infrared radiation on the human skin. Photodermatol. Photoimmunol. Photomed. 2023, 39, 549–555. [Google Scholar] [CrossRef]
- Shapiro, M.G. Infrared light excites cells by changing their electrical capacitance. Nat. Commun. 2012, 3, 736. [Google Scholar] [CrossRef]
- Yadav, O.P.; Barker, D.C. Challenges and Opportunities in the Poultry Industry: A Review. J. Anim. Sci. Biotechnol. 2022, 13, 1–15. [Google Scholar]
- Mottet, A.; Tempio, G. Global Poultry Production: Current State and Future Outlook and Challenges. World’s Poult. Sci. J. 2017, 73, 245–256. [Google Scholar] [CrossRef]
- Yahav, S. Infrared Heating in Poultry Production. World’s Poult. Sci. J. 2015, 71, 333–346. [Google Scholar]
- Yahav, S.; Giloh, M. Infrared Thermography and Broiler Welfare. World’s Poult. Sci. J. 2012, 68, 29–35. [Google Scholar]
- Evangelista, C.; Basiricò, L.; Bernabucci, U. An Overview on the Use of Near Infrared Spectroscopy (NIRS) on Farms for the Management of Dairy Cows. Agriculture 2021, 11, 296. [Google Scholar] [CrossRef]
- Marchant-Forde, R.M.; Boyle, L.A. Understanding How Infrared Beak Treatment Affects the Beak Tissue and Behavior of Laying Hens. Poult. Sci. 2020, 99, 1461–1471. [Google Scholar]
- Nowak, D.; Lewicki, P.P. Infrared Drying of Apple Slices. Innov. Food Sci. Emerg. Technol. 2004, 5, 353–360. [Google Scholar] [CrossRef]
- Riadh, M.H.; Ahmad, S.A.B.; Marhaban, M.H.; Che Soh, A. Infrared Heating in Food Drying: An Overview. Dry. Technol. 2015, 33, 322–335. [Google Scholar] [CrossRef]
- Krishnamurthy, K.; Khurana, H.K.; Soojin, J.; Joseph, I.; Ali, D. Infrared Heating in Food Processing: An Overview. Compr. Rev. Food Sci. Food Saf. 2008, 7, 2–13. [Google Scholar] [CrossRef]
- Hajrullin, D.A.; Teregulov, T.R. Princip infrakrasnogo obogreva [Principle of infrared heating]. EuroScience 2016, 22, 13–14. [Google Scholar]
- Sklyar, A.V.; Postnova, M.V. Infrared Heating Systems of Poultry Houses Microclimate. Sci. J. VolSU Nat. Sci. 2018, 8, 29–32. [Google Scholar] [CrossRef]
- Hughes, C.; Struthers, S.; Shynkaruk, T.; Gomis, S.; Gupta, A.; Schwean-Lardner, K. Research Note: Beak morphology of infrared beak–treated laying hens and its impact on production and welfare. Poult. Sci. 2020, 99, 1395–1399. [Google Scholar] [CrossRef]
- Carruthers, C.; Gabrush, T.; Schwean-Lardner, K.; Knezacek, D.; Classen, H.L.; Bennett, C. On-farm survey of beak characteristics in White Leghorns as a result of hot blade trimming or infrared beak treatment. J. Appl. Poult. Res. 2012, 21, 645–650. [Google Scholar] [CrossRef]
- Schwean-Lardner, K.; Annett-Christianson, C.B.; Rajendram, J.; Classen, H.L. Does age of hot-blade trimming impact the performance and welfare of 2 strains of White Leghorn hens? J. Appl. Poult. Res. 2016, 25, 547–560. [Google Scholar] [CrossRef]
- Yahav, S.; Giloh, M. Infrared thermography—Applications in poultry biological research. In Infrared Thermography; Prakash, R.V., Ed.; IntechOpen Limited: London, UK, 2012; pp. 93–116. [Google Scholar] [CrossRef]
- Jacob, F.G.; Baracho, M.D.S.; Naas, I.D.A.; Rafael, S.; Douglas D’Alessandro, S. The use of infrared thermography in the identification of pododermatitis in broilers. J. Braz. Assoc. Agric. Eng. 2016, 36, 253–259. [Google Scholar] [CrossRef]
- Alamprese, C.; Amigo, J.M.; Casiraghi, E.; Engelsen, S.B. Identification and quantification of turkey meat adulteration in fresh, frozen-thawed and cooked minced beef by FT-NIR spectroscopy and chemometrics. Meat Sci. 2016, 121, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Collell, C.; Gou, P.; Arnau, J.; Comaposada, J. Non-destructive estimation of moisture, water activity and NaCl at ham surface during resting and drying using NIR spectroscopy. Food Chem. 2011, 129, 601–607. [Google Scholar] [CrossRef] [PubMed]
- Neethirajan, S. Automated Tracking Systems for the Assessment of Farmed Poultry. Animals 2022, 12, 232. [Google Scholar] [CrossRef]
- Elmessery, W.M.; Gutiérrez, J.; Abd El-Wahhab, G.G.; Elkhaiat, I.A.; El-Soaly, I.S.; Alhag, S.K.; Al-Shuraym, L.A.; Akela, M.A.; Moghanm, F.S.; Abdelshafie, M.F. YOLO-Based Model for Automatic Detection of Broiler Pathological Phenomena through Visual and Thermal Images in Intensive Poultry Houses. Agriculture 2023, 13, 1527. [Google Scholar] [CrossRef]
- Abd Aziz, N.S.N.; Daud, S.M.; Dziyauddin, R.A.; Adam, M.Z.; Azizan, A. A Review on Computer Vision Technology for Monitoring Poultry Farm—Application, Hardware, and Software. IEEE Access 2020, 9, 12431–12445. [Google Scholar] [CrossRef]
- Son, J.H. Effects of using far infrared ray (FIR) on growth performance, noxious gas emission and blood biochemical profiles in broiler. Korean J. Poult. Sci. 2015, 42, 125–132. [Google Scholar] [CrossRef]
- Niu, G.; Zhang, T.; Tao, L. Development and validation of a near-infrared spectroscopy model for the prediction of muscle protein in Chinese native chickens. Poult. Sci. 2024, 103, 103532. [Google Scholar] [CrossRef]
- Gao, B.; Xu, X.; Han, L.; Liu, X. A novel near infrared spectroscopy analytical strategy for meat and bone meal species discrimination based on the insight of fraction composition complexity. Food Chem. 2021, 344, 128645. [Google Scholar] [CrossRef]
- Noel, S.J.; Jorgensen, H.J.H.; Bach Knudsen, K.E. Prediction of protein and amino acid composition and digestibility in individual feedstuffs and mixed diets for pigs using near-infrared spectroscopy. Anim. Nutr. 2021, 7, 1242–1252. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, U.F.; Costa, A.M.; Roque, J.V.; Cardoso, W.; Motoike, S.Y.; Barbosa, M.H.P.; Teofilo, R.F. Predicting oil content in ripe Macaw fruits (Acrocomia aculeata) from unripe ones by near infrared spectroscopy and PLS regression. Food Chem. 2021, 351, 129314. [Google Scholar] [CrossRef] [PubMed]
- Qin, F.L.; Wang, X.C.; Ding, S.R.; Li, G.S.; Hou, Z.C. Prediction of Peking duck intramuscle fat content by near-infrared spectroscopy. Poult. Sci. 2021, 100, 101281. [Google Scholar] [CrossRef]
- Capuano, E.; VanRuth, S.M. Infrared Spectroscopy: Applications. In Encyclopedia of Food and Health; Elsevier: Amsterdam, The Netherlands, 2016; pp. 424–431. [Google Scholar] [CrossRef]
- Faegheh, Z.; Cowieson, J.; Katrine, P.; Abdollahi, M.R.; Ravindran, V. Trends in feed evaluation for poultry with emphasis on in vitro techniques. Anim. Nutr. 2021, 7, 268–281. [Google Scholar] [CrossRef]
- Whittaker, A.L.; Muns, R.; Wang, D.; Martínez-Burnes, J.; Hernández-Ávalos, I.; Casas-Alvarado, A.; Domínguez-Oliva, A.; Mota-Rojas, D. Assessment of Pain and Inflammation in Domestic Animals Using Infrared Thermography: A Narrative Review. Animals 2023, 13, 2065. [Google Scholar] [CrossRef] [PubMed]
- Weimer, S.L.; Wideman, R.F.; Scanes, C.G.; Mauromoustakos, A.; Christensen, K.D.; Vizzier-Thaxton, Y. The utility of infrared thermography for evaluating lameness attributable to bacterial chondronecrosis with osteomyelitis. Poult. Sci. 2019, 98, 1575–1588. [Google Scholar] [CrossRef] [PubMed]
- Edgar, J.L.; Nicol, C.J.; Pugh, C.A.; Paul, E.S. Surface temperature changes in response to handling in domestic chickens. Physiol. Behav. 2013, 119, 195–200. [Google Scholar] [CrossRef]
- Moe, R.O.; Bohlin, J.; Flø, A.; Vasdal, G.; Stubsjøen, S.M. Hot chicks, cold feet. Physiol. Behav. 2017, 179, 42–48. [Google Scholar] [CrossRef]
- McCafferty, D.J.; Gilbert, C.; Paterson, W.; Pomeroy, P.P.; Thompson, D.; Currie, J.I.; Ancel, A. Estimating metabolic heat loss in birds and mammals by combining infrared thermography with biophysical modelling. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2011, 158, 337–345. [Google Scholar] [CrossRef]
- Cai, Z.; Cui, J.; Yuan, H.; Cheng, M. Application and research progress of infrared thermography in temperature measurement of livestock and poultry animals: A review. Comp. Electron. Agric. 2023, 205, 107586. [Google Scholar] [CrossRef]
- Stokes, J.E.; Leach, K.A.; Main, D.C.J.; Whay, H.R. An investigation into the use of infrared thermography (IRT) as a rapid diagnostic tool for foot lesions in dairy cattle. Vet. J. 2012, 193, 674–678. [Google Scholar] [CrossRef] [PubMed]
- Oikonomou, G.; Trojacanec, P.; Ganda, E.K.; Bicalho, M.L.; Bicalho, R.C. Association of digital cushion thickness with sole temperature measured with the use of infrared thermography. J. Dairy Sci. 2014, 97, 4208–4215. [Google Scholar] [CrossRef] [PubMed]
- Samadi; Wajizah, S.; Munawar, A.A. Near infrared spectroscopy (NIRS) data analysis for a rapid and simultaneous prediction of feed nutritive parameters. Data Brief 2020, 29, 105211. [Google Scholar] [CrossRef] [PubMed]
- Bureau, S.; Cozzolino, D.; Clark, C.J. Contributions of Fourier-transform mid-infrared (FT-MIR) spectroscopy to the study of fruit and vegetables: A review. Postharvest Biol. Technol. 2019, 148, 1–14. [Google Scholar] [CrossRef]
- Yang, L.; Wu, T.; Liu, Y.; Zou, J.; Huang, Y.; Babu, V.S.; Lin, L. Rapid Identification of Pork Adulterated in the Beef and Mutton by Infrared Spectroscopy. J. Spectrosc. 2018, 2018, 2413874. [Google Scholar] [CrossRef]
- Barbin, D.F.; Badaró, A.T.; Honorato, D.C.B.; Iouko Ida, E.; Shimokomaki, M. Identification of turkey meat and processed products using near infrared spectroscopy. Food Control 2019, 107, 06816. [Google Scholar] [CrossRef]
- Marchi, M.D.; Manuelian, C.L.; Ton, S.; Manfrin, D.; Meneghesso, M.; Cassandro, M.; Penasa, M. Prediction of sodium content in commercial processed meat products using near infrared spectroscopy. Meat Sci. 2017, 125, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, X.; Bi, M.; Guo, J.; Wu, S.; Zhang, T. Development of an early warning algorithm to detect sick broilers. Comput. Electron. Agric. 2018, 144, 102–113. [Google Scholar] [CrossRef]
- Supriyanto, E.; Isnanto, R.R.; Purnomo, S.H. Computer vision in chicken monitoring system using machine learning: A general review. E3S Web Conf. 2023, 448, 02014. [Google Scholar] [CrossRef]
- Zhuang, X.; Zhang, T. Detection of sick broilers by digital image processing and deep learning. Biosyst. Eng. 2019, 179, 106–116. [Google Scholar] [CrossRef]
- Cuan, K.; Zhang, T.; Li, Z.; Huang, J.; Ding, Y.; Fang, C. Automatic Newcastle disease detection using sound technology and deep learning method. Comput. Electron. Agric. 2022, 194, 106740. [Google Scholar] [CrossRef]
- Yang, X.; Bist, R.; Subedi, S.; Wu, Z.; Liu, T.; Zhai, L. An automatic classifier for monitoring applied behaviors of cage-free laying hens with deep learning. Eng. Appl. Artif. Intell. 2023, 123, 106377. [Google Scholar] [CrossRef]
- Subedi, S.; Bist, R.; Yang, X.; Chai, L. Tracking pecking behaviors and damages of cage-free laying hens with machine vision technologies. Comput. Electron. Agric. 2022, 204, 107545. [Google Scholar] [CrossRef]
- Nyalala, C.; Okinda, C.; Kunjie, T.; Korohou, T.; Nyalala, L.; Chao, Q. Weight and volume estimation of poultry and products based on computer vision systems: A review. Poult. Sci. 2021, 100, 101072. [Google Scholar] [CrossRef] [PubMed]
- Neethirajan, S. ChickTrack—A quantitative tracking tool for measuring chicken activity. Measurement 2022, 191, 110819. [Google Scholar] [CrossRef]
- Li, X. Y-BGD: Broiler counting based on multi-object tracking. Comput. Electron. Agric. 2022, 202, 107347. [Google Scholar] [CrossRef]
- Fang, C.; Huang, J.; Cuan, K.; Zhuang, X.; Zhang, T. Comparative study on poultry target tracking algorithms based on a deep regression network. Biosyst. Eng. 2019, 190, 176–183. [Google Scholar] [CrossRef]
- Wu, D.; Ying, Y.; Zhou, M.; Jinming, P.; Di, C. Improved ResNet-50 deep learning algorithm for identifying chicken gender. Comput. Electron. Agric. 2023, 205, 107622. [Google Scholar] [CrossRef]
- Cuan, K.; Li, Z.; Zhang, T.; Hao, Q. Gender determination of domestic chicks based on vocalization signals. Comput. Electron. Agric. 2022, 199, 107172. [Google Scholar] [CrossRef]
- Shen, P.N.; Lei, P.K.; Liu, Y.C.; Haung, Y.J.; Lin, J.L. Development of a temperature measurement system for a broiler flock with thermal imaging. Eng. Agric. Environ. Food 2016, 9, 291–295. [Google Scholar] [CrossRef]
- Bloch, V.; Barchilon, N.; Halachmi, I.; Druyan, S. Automatic broiler temperature measuring by thermal camera. Biosyst. Eng 2020, 199, 127–134. [Google Scholar] [CrossRef]
- Riber, A.B. Effects of color of light on preferences, performance, and welfare in broilers. Poult. Sci. 2015, 94, 1767–1775. [Google Scholar] [CrossRef]
- Hesham, M.H.; El Shereen, A.H.; Enas, S.N. Impact of different light colors in behavior, welfare parameters and growth performance of Fayoumi broiler chickens strain. J. Hell. Vet. Med. Soc. 2018, 69, 951–958. [Google Scholar] [CrossRef]
- Oke, O.E.; Oni, A.I.; Adebambo, P.O.; Oso, O.M.; Adeoye, M.M.; Lawal, T.G.; Afolayan, T.R.; Ogunbajo, O.E.; Ojelade, D.I.; Bakre, O.A.; et al. Evaluation of light colour manipulation on physiological response and growth performance of broiler chickens. Trop. Anim. Health Prod. 2021, 53, 6. [Google Scholar] [CrossRef] [PubMed]
- Ozkanlar, S.; Kara, H.; Gür, C.; Gedikli, S.; Kara, A.; Ozudogru, Z.; Ozdemir, D.; Kurt, N. Effects of photoperiod on thyroid gland development and function in growing chicks: A biochemical and morphometric study. Anim. Prod. Sci. 2021, 61, 1652–1658. [Google Scholar] [CrossRef]
- Wu, Y.; Huang, J.; Quan, S.; Yang, Y. Light regimen on health and growth of broilers: An update review. Poult. Sci. 2022, 101, 101545. [Google Scholar] [CrossRef] [PubMed]
- ÇOBAN, Ö.; Lacin, E.; Genc, M. The effect of photoperiod length on performance parameters, carcass characteristics and heterophil/lymphocyte-ratio in broilers. Kafkas Üniversitesi Vet. Fakültesi Derg. 2014, 20, 863–870. [Google Scholar]
- Patel, S.; Patel, A.S.; Patel, M.D.; Patel, A. Significance of light in poultry production: A review. Work 2016, 500, 50. [Google Scholar]
- Bowker, B.; Hawkins, S.; Zhuang, H.J.P.S. Measurement of water-holding capacity in raw and freeze-dried broiler breast meat with visible and near-infrared spectroscopy. Poult. Sci. 2014, 93, 1834–1841. [Google Scholar] [CrossRef]
- Barbin, D.F.; Kaminishikawahara, C.M.; Soares, A.L.; Mizubuti, I.Y.; Grespan, M.; Shimokomaki, M.; Hirooka, E.Y. Prediction of chicken quality attributes by near infrared spectroscopy. Food Chem. 2015, 168, 554–560. [Google Scholar] [CrossRef]
- Yang, Y.; Zhuang, H.; Yoon, S.C.; Wang, W.; Jiang, H.; Jia, B. Rapid classification of intact chicken breast fillets by predicting principal component score of quality traits with visible/near-Infrared spectroscopy. Food Chem. 2018, 244, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Gee, K. Poultry’s tough new problem: ‘Woody Breast’. Wall Str. J. Sect. Bus. Tech. 2016, 267, B1. [Google Scholar]
- Wold, J.P.; Veiseth-Kent, E.; Høst, V.; Løvland, A. Rapid on-line detection and grading of wooden breast myopathy in chicken fillets by near-infrared spectroscopy. PLoS ONE 2017, 12, e0173384. [Google Scholar] [CrossRef] [PubMed]
- Wold, J.P.; Måge, I.; Løvland, A.; Sanden, K.W.; Ofstad, R. Near-infrared spectroscopy detects woody breast syndrome in chicken fillets by the markers protein content and degree of water binding. Poult. Sci. 2019, 98, 480–490. [Google Scholar] [CrossRef]
- Chung, S.; Yoon, S.C. Detection of foreign materials on broiler breast meat using a fusion of visible near-infrared and shortwave infrared hyperspectral imaging. Appl. Sci. 2021, 11, 11987. [Google Scholar] [CrossRef]
- Thivaharan, S.; Nirmaliswarran, S.R.; Suriya, S.; Jaivant, B.R.; Shaji, R.; Thottahil, I.A.D. Identification of ILL Animals (Poultry) using Audio Processing and Thermal Imaging with Machine Learning. IJERT Conf. Proc. 2022, 10, 260–262. [Google Scholar]
- Glatz, P.C. Effect of poor feather cover on feed intake and production of aged laying hens. Asian-Australas. J. Anim. Sci. 2001, 14, 553–558. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Geng, J.; Pan, J.; Huang, X.; Rao, X. Feather damage monitoring system using rgb-depth-thermal model for chickens. Animals 2022, 13, 126. [Google Scholar] [CrossRef] [PubMed]
- Khaliduzzaman, A.; Fujitani, S.; Kondo, N.; Ogawa, Y.; Fujiura, T.; Suzuki, T.; Kashimori, A.; Syduzzaman, M.; Rahman, A. Non-invasive characterization of chick embryo body and cardiac movements using near infrared light. Eng. Agric. Environ. Food 2019, 12, 32–39. [Google Scholar] [CrossRef]
- Khaliduzzaman, A.; Kashimori, A.; Suzuki, T.; Ogawa, Y.; Kondo, N. Chick Embryo Growth Modeling Using Near-Infrared Sensor and Non-Linear Least Square Fitting of Egg Opacity Values. Sensors 2020, 20, 5888. [Google Scholar] [CrossRef]
- Syduzzaman, M.; Rahman, A.; Alin, K.; Fujitani, S.; Kashimori, A.; Suzuki, T.; Ogawa, Y.; Kondo, N. Noninvasive quantification of yolk content using Vis-NIR spectroscopy and its effect on hatching time and gender of broiler chicken. Eng. Agric. Environ. Food 2019, 12, 289–296. [Google Scholar] [CrossRef]
- Liu, L.; Ngadi, M.O. Detecting fertility and early embryo development of chicken eggs using near-infrared hyperspectral imaging. Food Bioprocess Technol. 2013, 6, 2503–2513. [Google Scholar] [CrossRef]
- Lim, C.I.; Kim, H.W.; You, A.S.; Heo, K.N.; Choo, H.J. Effects of far infrared ray illumination on the performance, blood biochemistry, and faecal microflora of laying hens at different production stages. South Afr. J. Anim. Sci. 2023, 53, 75–81. [Google Scholar] [CrossRef]
- Tucka, J.; Bennett, M.; Littlewood, T. Cell death and survival signaling in the cardiovascular system. Front. Biosci. 2012, 17, 248–261. [Google Scholar] [CrossRef] [PubMed]
Parameter | Radiation | Wavelength | Target | Results | Scientists |
---|---|---|---|---|---|
Feed efficiency | FIR | 8–10 μm | Broilers | Improved | [30] |
Heating system | IR heaters | 5.6–100 μm | Broilers | Improved | [18] |
Growth | FIR LED | 8–10 μm | Broilers | Improved | [30] |
Toxic gases | FIR radiation | 8–10 μm | Broilers | Decreased | [30] |
Feed Quality | IRS | 10–15 μm | Poultry, animals | Improved | [36,37] |
Blood profile | FIR | 8–10 μm | Broilers | Improved | [30] |
Immunity | IR, FIR | 8–20 μm | Broilers | Improved | [30] |
Beak trimming | IR | 8–20 μm | Broilers | Improved | [1,20] |
Body weight gain | FIR | Broilers | Improved | [30] | |
Hydrocarbon | FIR | Broilers | Decreased | [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayat, K.; Ye, Z.; Lin, H.; Pan, J. Beyond the Spectrum: Unleashing the Potential of Infrared Radiation in Poultry Industry Advancements. Animals 2024, 14, 1431. https://doi.org/10.3390/ani14101431
Hayat K, Ye Z, Lin H, Pan J. Beyond the Spectrum: Unleashing the Potential of Infrared Radiation in Poultry Industry Advancements. Animals. 2024; 14(10):1431. https://doi.org/10.3390/ani14101431
Chicago/Turabian StyleHayat, Khawar, Zunzhong Ye, Hongjian Lin, and Jinming Pan. 2024. "Beyond the Spectrum: Unleashing the Potential of Infrared Radiation in Poultry Industry Advancements" Animals 14, no. 10: 1431. https://doi.org/10.3390/ani14101431
APA StyleHayat, K., Ye, Z., Lin, H., & Pan, J. (2024). Beyond the Spectrum: Unleashing the Potential of Infrared Radiation in Poultry Industry Advancements. Animals, 14(10), 1431. https://doi.org/10.3390/ani14101431