Liver Receptor homolog-1 Regulates Apoptosis of Bovine Ovarian Granulosa Cells by Progestogen Receptor Signaling Pathway
<p>LRH-1 high expression in the atretic follicles. (<b>A</b>) Immunochemistry assay was performed to visualize the localization of LRH-1 in bovine ovarian cells. Immuno-specific staining was brown, indicating LRH-1-positive cells. Immunohistochemistry was performed on three different ovarian slides from each of three bovines. Atretic follicles were indicated with the red arrow, whereas healthy follicles were indicated with black arrows. Bar: 200 μm. (<b>B</b>) The LRH-1 levels of granulosa cells in atretic follicles or healthy follicles. Data are shown as the means ± SEM of three biological replicates. ** <span class="html-italic">p</span> < 0.01, comparing the indicated groups. TCs, theca cells; GCs, granulosa cells.</p> "> Figure 2
<p>DLPC induced LRH-1 expression. (<b>A</b>) The mRNA levels of LRH-1 in granulosa cells by treatment with various concentrations of LRH-1 agonist (DLPC). (<b>B</b>) Western blotting of LRH-1 protein in granulosa cells by treatment with various concentrations of DLPC. (<b>C</b>) The protein levels of LRH-1 in the different groups. Data are expressed as the mean ± SEM from three biological replicates. * <span class="html-italic">p</span> < 0.05, *** <span class="html-italic">p</span> < 0.001, comparing the indicated groups.</p> "> Figure 3
<p>DLPC blocked progestogen receptor signaling pathway. (<b>A</b>) The effect of DLPC on 17 beta-estradiol (E2) production of granulosa cells. The concentration of oestradiol was detected by ELISA assay. (<b>B</b>) The effect of DLPC on progestogen (P4) production of granulosa cells. (<b>C</b>) The mRNA levels of progestogen receptor in granulosa cells by treatment with DLPC. (<b>D</b>) Immunofluorescence of progestogen receptor in granulosa cells by treatment with 50 μM DLPC or/and 10 μM P4. (<b>E</b>) Quantification of progestogen receptor was analyzed with Image J software. Bar: 200 μm. Data are expressed as the mean ± SEM from three independent replicates. Values with different letters (a, b, c) indicate significant differences in bars (<span class="html-italic">p</span> < 0.05). * <span class="html-italic">p</span> < 0.05, *** <span class="html-italic">p</span> < 0.001, comparing the indicated groups.</p> "> Figure 4
<p>DLPC activation promoted apoptosis via progestogen signaling. (<b>A</b>) The viability of granulosa cells was shown by CCK-8 assay in different treatments. (<b>B</b>) Representative images of apoptosis with annexin V-FITC staining by a flow cytometry instrument in 50 μM DLPC-, 50 μM DLPC + 5 μM P4-, 50 μM DLPC + 10 μM P4-, 50 μM DLPC + 100 μM P4-exposed granulosa cells. (<b>C</b>) The percentage of apoptosis in the different treatment groups. (<b>D</b>) Western blotting of Bcl2 and cleaved-caspase 3 in granulosa cells by treatment with 50 μM DLPC, 50 μM DLPC + 1 μM P4, 50 μM DLPC + 5 μM P4, 50 μM DLPC + 10 μM P4 and 50 μM DLPC + 100 μM P4, respectively. (<b>E</b>,<b>F</b>) The ratios of Bcl-2 to β-actin, cleaved-caspase 3 to β-actin expression were normalized, and the values were shown, respectively. Data are shown as the means ± SEM of three biological replicates. Values with different letters (a, b, c) indicate significant differences in bars (<span class="html-italic">p</span> < 0.05). ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001, comparing the indicated groups.</p> ">
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Primary Cell Cultures and Treatment
2.3. Steroid Assay
2.4. Measurement of Cell Viability
2.5. Apoptosis Measurements
2.6. Immunohistochemistry
2.7. Quantitative Real-Time PCR
2.8. Western Blotting
2.9. Immunofluorescence
2.10. Statistical Analysis
3. Results
3.1. LRH-1 High Expression in the Atretic Follicles
3.2. DLPC Induced LRH-1 Expression
3.3. LRH-1 Activation Blocked Progestogen Receptor Signaling Pathway
3.4. LRH-1 Mediated Apoptosis via Progestogen Signaling
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gougeon, A. Dynamics of follicular growth in the human: A model from preliminary results. Hum. Reprod. 1986, 1, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Hughes, F.M.; Gorospe, W.C. Biochemical identification of apoptosis (programmed cell death) in granulosa cells: Evidence for a potential mechanism underlying follicular atresia. Endocrinology 1991, 129, 2415–2422. [Google Scholar] [CrossRef] [PubMed]
- Manabe, N.; Goto, Y.; Matsuda-Minehata, F.; Inoue, N.; Maeda, A.; Sakamaki, K.; Miyano, T. Regulation mechanism of selective atresia in porcine follicles: Regulation of granulosa cell apoptosis during atresia. J. Reprod. Dev. 2004, 50, e493514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhardwaj, J.K.; Sharma, R.K. Scanning electron microscopic changes in granulosa cells during follicular atresia in caprine ovary. Scanning 2011, 33, 21–24. [Google Scholar] [CrossRef]
- Mataki, C.; Magnier, B.C.; Houten, S.M.; Annicotte, J.-S.; Argmann, C.; Thomas, C.; Overmars, H.; Kulik, W.; Metzger, D.; Auwerx, J.; et al. Compromised Intestinal Lipid Absorption in Mice with a Liver-Specific Deficiency of Liver Receptor Homolog 1. Mol. Cell. Biol. 2007, 27, 8330–8339. [Google Scholar] [CrossRef] [Green Version]
- Kramer, H.B.; Lai, C.F.; Patel, H.; Periyasamy, M.; Lin, M.L.; Feller, S.M.; Fuller-Pace, F.V.; Meek, D.W.; Ali, S.; Buluwela, L. LRH-1 drives colon cancer cell growth by repressing the expression of the CDKN1A gene in a p53-dependent manner. Nucleic Acids Res. 2016, 44, 582–594. [Google Scholar] [CrossRef] [Green Version]
- Baquié, M.; St-Onge, L.; Kerr-Conte, J.; Cobo-Vuilleumier, N.; Lorenzo, P.; Moreno, C.M.J.; Cederroth, C.R.; Nef, S.; Borot, S.; Bosco, D.; et al. The liver receptor homolog-1 (LRH-1) is expressed in human islets and protects β-cells against stress-induced apoptosis. Hum. Mol. Genet. 2017, 27, 406. [Google Scholar] [CrossRef] [Green Version]
- Saxena, D.; Escamilla-Hernandez, R.; Little-Ihrig, L.; Zeleznik, A.J. Liver receptor homolog-1 and steroidogenic factor-1 have similar actions on rat granulosa cell steroidogenesis. Endocrinology 2007, 148, 726–734. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Large, M.J.; Duggavathi, R.; DeMayo, F.J.; Lydon, J.P.; Schoonjans, K.K.; Murphy, B.D. Liver receptor homolog-1 is essential for pregnancy. Nat. Med. 2013, 19, 1061–1066. [Google Scholar] [CrossRef] [Green Version]
- Duggavathi, R.; Volle, D.H.; Mataki, C.; Antal, M.C.; Messaddeq, N.; Auwerx, J.; Murphy, B.D.; Schoonjans, K. Liver receptor homolog 1 is essential for ovulation. Genes Dev. 2008, 22, 1871–1876. [Google Scholar] [CrossRef] [Green Version]
- Lin, Q.; Aihara, A.; Chung, W.; Li, Y.; Huang, Z.; Chen, X.; Weng, S.; Carlson, R.I.; Wands, J.R.; Dong, X. LRH1 as a driving factor in pancreatic cancer growth. Cancer Lett. 2014, 345, 85–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Zou, Z.; Luo, X.; Mi, Y.; Chang, H.; Xing, D. LRH1 enhances cell resistance to chemotherapy by transcriptionally activating MDC1 expression and attenuating DNA damage in human breast cancer. Oncogene 2018, 37, 3243–3259. [Google Scholar] [CrossRef] [PubMed]
- Saxena, D.; Safi, R.; Little-Ihrig, L.; Zeleznik, A.J. Liver receptor homolog-1 stimulates the progesterone biosynthetic pathway during follicle-stimulating hormone-induced granulosa cell differentiation. Endocrinology 2004, 145, 3821–3829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labelle-Dumais, C.; Pare, J.F.; Belanger, L.; Farookhi, R.; Dufort, D. Impaired progesterone production in Nr5a2 mice leads to a reduction in female reproductive function. Biol. Reprod. 2007, 77, 217–225. [Google Scholar] [CrossRef]
- Mishra, B.; Park, J.Y.; Wilson, K.; Jo, M. X-linked lymphocyte regulated gene 5c-like (Xlr 5c-like) is a novel target of progesterone action in granulosa cells of periovulatory rat ovaries. Mol. Cell. Endocrinol. 2015, 412, 226–238. [Google Scholar] [CrossRef] [Green Version]
- Pompei, L.M.; Cunha, E.P.; Steiner, M.L.; Theodoro, T.R.; Mader, A.M.; Petri, G.; Pinhal, M.A.; Fernandes, C.E. Effects of estradiol, progestogens, and of tibolone on breast proliferation and apoptosis. Climacteric 2015, 18, 518–522. [Google Scholar] [CrossRef]
- Annie, L.; Gurusubramanian, G.; Roy, V.K. Estrogen and progesterone dependent expression of visfatin/NAMPT regulates proliferation and apoptosis in mice uterus during estrous cycle. J. Steroid. Biochem. Mol. Biol. 2019, 185, 225–236. [Google Scholar] [CrossRef]
- Chang, W.T.; Hsieh, B.S.; Cheng, H.L.; Lee, K.T.; Chang, K.L. Progesterone augments epirubicin-induced apoptosis in HA22T/VGH cells by increasing oxidative stress and upregulating Fas/FasL. J. Surg. Res. 2014, 188, 432–441. [Google Scholar] [CrossRef]
- Wu, N.Y.; Huang, H.S.; Chao, T.H.; Chou, H.M.; Fang, C.; Qin, C.Z.; Lin, C.Y.; Chu, T.Y.; Zhou, H.H. Progesterone Prevents High-Grade Serous Ovarian Cancer by Inducing Necroptosis of p53-Defective Fallopian Tube Epithelial Cells. Cell Rep. 2017, 18, 2557–2565. [Google Scholar] [CrossRef]
- Feng, Z.; Marti, A.; Jehn, B.; Altermatt, H.J.; Chicaiza, G.; Jaggi, R. Glucocorticoid and progesterone inhibit involution and programmed cell death in the mouse mammary gland. J. Cell Biol. 1995, 131, 1095–1103. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Abrahams, V.M.; Luo, G.; Norwitz, N.G.; Snegovskikh, V.V.; Ng, S.W.; Norwitz, E.R. Progesterone Inhibits Apoptosis in Fetal Membranes by Altering Expression of Both Pro- and Antiapoptotic Proteins. Reprod. Sci. 2018, 25, 1161–1167. [Google Scholar] [CrossRef] [PubMed]
- Rueda, B.R.; Hendry, I.R.; Hendry, I.W.; Stormshak, F.; Slayden, O.D.; Davis, J.S. Decreased progesterone levels and progesterone receptor antagonists promote apoptotic cell death in bovine luteal cells. Biol. Reprod. 2000, 62, 269–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makrigiannakis, A.; Coukos, G.; Christofidou-Solomidou, M.; Montas, S.; Coutifaris, C. Progesterone is an autocrine/paracrine regulator of human granulosa cell survival in vitro. Ann. N. Y. Acad. Sci. 2000, 900, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Friberg, P.A.; Larsson, D.G.; Billig, H. Dominant role of nuclear progesterone receptor in the control of rat periovulatory granulosa cell apoptosis. Biol. Reprod. 2009, 80, 1160–1167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glister, C.; Tannetta, D.S.; Groome, N.P.; Knight, P.G. Interactions between follicle-stimulating hormone and growth factors in modulating secretion of steroids and inhibin-related peptides by nonluteinized bovine granulosa cells. Biol. Reprod. 2001, 65, 1020–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otala, M.; Mäkinen, S.; Tuuri, T.; Sjöberg, J.; Pentikäinen, V.; Matikainen, T.; Dunkel, L. Effects of testosterone, dihydrotestosterone, and 17beta-estradiol on human ovarian tissue survival in culture. Fertil. Steril. 2004, 82, 1077–1085. [Google Scholar] [CrossRef]
- Chou, C.H.; Chen, M.J. The Effect of Steroid Hormones on Ovarian Follicle Development. Vitam. Horm. 2018, 107, 155–175. [Google Scholar] [PubMed]
- Kim, J.W.; Havelock, J.C.; Carr, B.R.; Attia, G.R. The orphan nuclear receptor, liver receptor homolog-1, regulates cholesterol side-chain cleavage cytochrome p450 enzyme in human granulosa cells. J. Clin. Endocrinol. Metab. 2005, 90, 1678–1685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, N.; Kim, J.W.; Rainey, W.E.; Carr, B.R.; Attia, G.R. The role of the orphan nuclear receptor, liver receptor homologue-1, in the regulation of human corpus luteum 3beta-hydroxysteroid dehydrogenase type II. J. Clin. Endocrinol. Metab. 2003, 88, 6020–6028. [Google Scholar] [CrossRef] [Green Version]
- Yazawa, T.; Inanoka, Y.; Mizutani, T.; Kuribayashi, M.; Umezawa, A.; Miyamoto, K. Liver receptor homolog-1 regulates the transcription of steroidogenic enzymes and induces the differentiation of mesenchymal stem cells into steroidogenic cells. Endocrinology 2009, 150, 3885–3893. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.K.; Moore, D.D. Liver receptor homolog-1, an emerging metabolic modulator. Front. Biosci. 2008, 13, 5950–5958. [Google Scholar] [CrossRef]
- Hinshelwood, M.M.; Repa, J.J.; Shelton, J.M.; Richardson, J.A.; Mangelsdorf, D.J.; Mendelson, C.R. Expression of LRH-1 and SF-1 in the mouse ovary: Localization in different cell types correlates with differing function. Mol. Cell Endocrinol. 2003, 207, 39–45. [Google Scholar] [CrossRef]
- Hammes, S.R.; Levin, E.R. Extranuclear steroid receptors: Nature and actions. Endocr. Rev. 2007, 28, 726–741. [Google Scholar] [CrossRef] [PubMed]
- Svensson, E.C.; Markström, E.; Andersson, M.; Billig, H. Progesterone receptor-mediated inhibition of apoptosis in granulosa cells isolated from rats treated with human chorionic gonadotropin. Biol. Reprod. 2000, 63, 1457–1464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quirk, S.M.; Cowan, R.G.; Harman, R.M. Progesterone receptor and the cell cycle modulate apoptosis in granulosa cells. Endocrinology 2004, 145, 5033–5043. [Google Scholar] [CrossRef] [PubMed]
- Falender, A.E.; Lanz, R.; Malenfant, D.; Belanger, L.; Richards, J.S. Differential expression of steroidogenic factor-1 and FTF/LRH-1 in the rodent ovary. Endocrinology 2003, 144, 3598–3610. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Feng, J.; Li, L.; Wu, Y.; Xie, H.; Yin, Y.; Ye, J.; Li, Z. Liver receptor homologue 1, a novel prognostic marker in colon cancer patients. Oncol. Lett. 2018, 16, 2833–2838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gene Name | Primer Sequences (5′–3′) | GenBank Accession No. |
---|---|---|
LRH-1 | F: TCTTTGAACACCACCCAATACCA | XM_015470800.1 |
R: ATCTGCTGGTCGGAAAGGC | ||
PGR | F: TCCCCCCACTGATCAACTTG | NM_001205356.1 |
R: TCCGAAAACCTGGCAGTGA | ||
β-actin | F: TCACCAACTGGGACGACA | NM_173979.3 |
R: GCATACAGGGACAGCACA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, D.; Jiang, X.; Wang, Y.; Song, S. Liver Receptor homolog-1 Regulates Apoptosis of Bovine Ovarian Granulosa Cells by Progestogen Receptor Signaling Pathway. Animals 2022, 12, 1213. https://doi.org/10.3390/ani12091213
Xu D, Jiang X, Wang Y, Song S. Liver Receptor homolog-1 Regulates Apoptosis of Bovine Ovarian Granulosa Cells by Progestogen Receptor Signaling Pathway. Animals. 2022; 12(9):1213. https://doi.org/10.3390/ani12091213
Chicago/Turabian StyleXu, Dejun, Xiaohan Jiang, Yukun Wang, and Shuaifei Song. 2022. "Liver Receptor homolog-1 Regulates Apoptosis of Bovine Ovarian Granulosa Cells by Progestogen Receptor Signaling Pathway" Animals 12, no. 9: 1213. https://doi.org/10.3390/ani12091213
APA StyleXu, D., Jiang, X., Wang, Y., & Song, S. (2022). Liver Receptor homolog-1 Regulates Apoptosis of Bovine Ovarian Granulosa Cells by Progestogen Receptor Signaling Pathway. Animals, 12(9), 1213. https://doi.org/10.3390/ani12091213