Biodegradable Microplastics from Agricultural Mulch Films: Implications for Plant Growth-Promoting Bacteria and Plant’s Oxidative Stress
<p>Proportion of biodegradable (BIO) microparticles with different sizes after production. Microparticles were separated by size in 6 fractions: >2.8 mm; 2.8–2 mm; 2–1 mm; 1–0.5 mm; 0.5–0.25 mm; and <0.25 mm.</p> "> Figure 2
<p>SEM images of biodegradable (BIO) microplastics; (<b>a</b>) BIO 2–1 mm (50×); (<b>a.1</b>) BIO 2–1 mm (1000×); (<b>a.2</b>) BIO 2–1 mm (1000×)—View with protuberances; (<b>b</b>) BIO 1–0.5mm (150×); (<b>b.1</b>) BIO 1–0.5 mm (600×)—Detail of a protuberance; (<b>c</b>) BIO 0.5–0.25 mm (40×); (<b>c.1</b>) BIO 0.5–0.25 mm (1000×)—Detail of the edge; (<b>c.2</b>) BIO 0.5–0.25mm (1000×)—detail of the surface; (<b>d</b>) BIO < 0.25 mm (600×); (<b>d.1</b>) BIO < 0.25 mm (1500×); (<b>e</b>) BIO UV (250×); (<b>e.1</b>) BIO UV (1200×)—Edge of the particle; (<b>e.2</b>) BIO UV (1000×)—Surface of the particle. White arrows indicate silicate particles (confirmed by EDS); black arrows indicate plastic protuberances.</p> "> Figure 3
<p>ATR-FTIR spectra of BIO microplastics and weathered BIO microplastics.</p> "> Figure 4
<p>Thermogravimetric analysis of BIO microplastics and weathered BIO microplastics.</p> "> Figure 5
<p>Bacterial growth. Effect of BIO microplastics exposure on protein content of distinct bacterial strains. <span class="html-italic">Bacillus</span> sp. J25 (blue circles), <span class="html-italic">Enterobacter ludwigii</span> sp. C11 (orange squares), <span class="html-italic">Kosakonia</span> sp. O21 (green triangles), <span class="html-italic">Rhizobium</span> E-20-8 (teal inverted triangles), and <span class="html-italic">Pseudomonas</span> sp. S22 (purple diamonds). BIO concentration of 1% (<span class="html-italic">w</span>/<span class="html-italic">v</span>). Particle sizes are grouped by the intervals of 2.8–2 mm; 2–1 mm; 1–0.5 mm; 0.5–0.25 mm; and <0.25 mm. Values are means of five replicates + standard error. Growths significantly different (<span class="html-italic">p</span> < 0.05) from the respective control (same bacterial strain not exposed to BIO microplastics) are marked with an asterisk.</p> "> Figure 6
<p>Bacterial growth with BIO microplastics as sole source of carbon. Growth estimated by protein content of <span class="html-italic">Bacillus</span> sp. J25 (blue), <span class="html-italic">Enterobacter ludwigii</span> sp. C11 (orange), and <span class="html-italic">Kosakonia</span> sp. O21 (Green) exposed to minimal medium (C) or supplemented with 0.1% BIO particles with size <0.25 mm (BIO). Values are means of five replicates + standard error. Growths significantly different (<span class="html-italic">p</span> < 0.05) from the respective control (same bacterial strain not exposed to BIO) are marked with an asterisk.</p> "> Figure 7
<p>Plant growth. Shoot (<b>a</b>) and root (<b>b</b>) growth of lettuce plants not inoculated or inoculated with <span class="html-italic">Kosakonia</span> sp. O21 grown at different concentrations of biodegradable (BIO) microplastics. Ni—no bacterial inoculation; B—inoculation with bacteria. Values are means of at least five replicates ± standard error. Different uppercase letters indicate significant differences (<span class="html-italic">p</span> < 0.05) among conditions in plants inoculated with bacteria, different lowercase letters indicate significant differences among conditions in plants not inoculated, and asterisks indicate significant differences between inoculated and not inoculated plants for the same condition.</p> "> Figure 8
<p>Biochemical parameters of the roots of not inoculated (dark bars) or inoculated (green bars) lettuce plants grown with biodegradable (BIO) microplastics at different concentrations (0% to 5%) in different inoculation conditions (Ni—no bacterial inoculation; B—bacterial inoculation with <span class="html-italic">Kosakonia</span> sp. O21); (<b>a</b>) Protein content; (<b>b</b>) Protein Carbonylation; (<b>c</b>) Superoxide dismutase activity (SOD); (<b>d</b>) Catalase activity (CAT); (<b>e</b>) Soluble carbohydrates; (<b>f</b>) Lipid peroxidation (LPO); (<b>g</b>) electron transport system activity (ETS); (<b>h</b>) Glutathione S-transferase (GST); (<b>i</b>) Principal coordinates ordination of biochemical parameters in the roots of inoculated and non-inoculated plants. Values are means of five replicates + standard error. Different lowercase letters indicate significant differences (<span class="html-italic">p</span> < 0.05) among conditions in non-inoculated plants, different uppercase letters indicate significant differences among conditions in inoculated plants, and asterisks indicate significant differences between inoculated and non-inoculated plants for the same BIO concentration.</p> "> Figure 9
<p>Photosynthetic pigments of the shoots of not inoculated (dark bars) or inoculated (green bars) lettuce plants grown with biodegradable microplastics (BIO) at different concentrations (0% to 5%) in different inoculation conditions (Ni—no bacterial inoculation; B—bacterial inoculation with <span class="html-italic">Kosakonia</span> sp. O21); (<b>a</b>) Chlorophyll a; (<b>b</b>) Chlorophyll b; (<b>c</b>) Carotenoids. Values are means of five replicates + standard error. Different lowercase letters indicate significant differences (<span class="html-italic">p</span> < 0.05) among conditions in non-inoculated plants, different uppercase letters indicate significant differences among conditions in inoculated plants, and asterisks indicate significant differences between inoculated and non-inoculated plants for the same BIO concentration.</p> "> Figure 10
<p>Biochemical parameters of the shoots of not inoculated (dark bars) or inoculated (green bars) lettuce plants grown with biodegradable microplastics (BIO) at different concentrations (0% to 5%) in different inoculation conditions (Ni—no bacterial inoculation; B—bacterial inoculation with <span class="html-italic">Kosakonia</span> sp. O21); (<b>a</b>) Protein content; (<b>b</b>) Protein Carbonylation; (<b>c</b>) Superoxide dismutase activity (SOD); (<b>d</b>) Catalase activity (CAT); (<b>e</b>) Soluble carbohydrates; (<b>f</b>) Lipid peroxidation (LPO); (<b>g</b>) electron transport system activity (ETS); (<b>h</b>) Glutathione S-transferase (GST); (<b>i</b>) Principal coordinates ordination of biochemical parameters in the roots of inoculated and non-inoculated plants. Values are means of five replicates + standard error. Different lowercase letters indicate significant differences (<span class="html-italic">p</span> < 0.05) among conditions in non-inoculated plants, different uppercase letters indicate significant differences among conditions in inoculated plants, and asterisks indicate significant differences between inoculated and non-inoculated plants for the same BIO concentration.</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Production of BIO Particles
2.1.1. Materials
2.1.2. Methodology
2.1.3. Analysis and Characterization of Mulch Particles
2.2. Bacterial Strains, Growth Conditions, and Tolerance
2.2.1. Bacterial Strains
2.2.2. Bacterium Tolerance to PE Microparticles
2.2.3. Determination of BIO Microplastics Degradation Capacity
2.3. In Planta Growth Assay with PE Microplastics
2.3.1. Plant Species and Seed Preparation
2.3.2. Soil Preparation
2.3.3. Plant Growth Assay
2.3.4. Photosynthetic Pigments
2.3.5. Biochemical Parameters
Extraction
Electron Transport System
Protein Content
Protein Carbonylation
Superoxide Dismutase
Catalase (CAT)
Soluble Carbohydrates
Lipid Peroxidation
Glutathione S-Transferase (GST)
Statistical Analysis
3. Results
3.1. Characterization of BIO Microparticles
3.1.1. Distribution of Microparticles by Size
3.1.2. SEM-EDS Analysis of Microparticles
3.1.3. ATR-FTIR Analysis of Microparticles
3.1.4. Thermogravimetric Analysis
3.1.5. Zeta Potential
3.2. Bacterium Tolerance to BIO
3.3. Bacterial Ability to Degrade BIO Microparticles
3.4. Influence of Kosakonia sp. O21 on Growth and Biochemistry of Plants Exposed to BIO Microplastics
3.4.1. Plant Growth
3.4.2. Root Biochemistry
Protein Content
Protein Carbonylation
Superoxide Dismutase (SOD)
Catalase (CAT)
Soluble Carbohydrates
Lipid Peroxidation
Electron Transport System (ETS)
Glutathione S-Transferase
Multivariate Analysis
3.4.3. Shoot Biochemistry
Photosynthetic Pigments
Protein Content
Protein Carbonylation
Superoxide Dismutase (SOD)
Catalase (CAT)
Soluble Carbohydrates
Lipid Peroxidation
Electron Transport System (ETS)
Glutathione S-Transferase (GST)
Multivariate Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Chen, Y.; Li, P.; Huang, H.; Xue, K.; Cai, S.; Liao, X.; Jin, S.; Zheng, D. Microplastics in soil affect the growth and physiological characteristics of Chinese fir and Phoebe bournei seedlings. Environ. Pollut. 2024, 358, 124503. [Google Scholar] [CrossRef] [PubMed]
- Menossi, M.; Cisneros, M.; Alvarez, V.A.; Casalongué, C. Current and emerging biodegradable mulch films based on polysaccharide bio-composites. A review. Agron. Sustain. Dev. 2021, 41, 53. [Google Scholar] [CrossRef]
- Song, Z.; Zhao, L.; Bi, J.; Tang, Q.; Wang, G.; Li, Y. Classification of Degradable Mulch Films and Their Promotional Effects and Limitations on Agricultural Production. Agriculture 2024, 14, 1235. [Google Scholar] [CrossRef]
- Moshood, T.D.; Nawanir, G.; Mahmud, F.; Mohamad, F.; Ahmad, M.H.; AbdulGhani, A. Sustainability of biodegradable plastics: New problem or solution to solve the global plastic pollution? Curr. Res. Green Sustain. Chem. 2022, 5, 100273. [Google Scholar] [CrossRef]
- Convertino, F.; Carroccio, S.C.; Cocca, M.C.; Dattilo, S.; Dell’Acqua, A.C.; Gargiulo, L.; Nizzetto, L.; Riccobene, P.M.; Schettini, E.; Vox, G.; et al. The fate of post-use biodegradable PBAT-based mulch films buried in agricultural soil. Sci. Total Environ. 2024, 948, 174697. [Google Scholar] [CrossRef] [PubMed]
- Martínez, A.; Perez-Sanchez, E.; Caballero, A.; Ramírez, R.; Quevedo, E.; Salvador-García, D. PBAT is biodegradable but what about the toxicity of its biodegradation products? J. Mol. Model. 2024, 30, 273. [Google Scholar] [CrossRef]
- ISO 4892; Plastics—Methods of Exposure to Laboratory Light Sources, Part 3: Fluorescent UV Lamps. ISO: Geneva, Switzerland, 2016.
- Pinto, S.C.; Marques, P.A.A.P.; Vicente, R.; Godinho, L.; Duarte, I. Hybrid Structures Made of Polyurethane/Graphene Nanocomposite Foams Embedded within Aluminum Open-Cell Foam. Metals 2020, 10, 768. [Google Scholar] [CrossRef]
- Gonçalves, G.; Domingues, E.M.; Ferreira, N.; Ranawadia, K.; Henriques, B.; Bessa, A.; Tavares, D.; Martins, N.; Pereira, E.; Marques, P.A. Enhanced Hg(II) removal using Thiourea-Functionalized graphene Oxide: Lab to pilot scale evaluation. Sep. Purif. Technol. 2024, 351, 128053. [Google Scholar] [CrossRef]
- Trindade, N. Use of Bacillus sp. in Cleaning Products. Master’s Thesis, University of Aveiro, Aveiro, Portugal, 2022. Available online: https://ria.ua.pt/handle/10773/37887 (accessed on 19 December 2024).
- Lopes, T.; Cardoso, P.; Matos, D.; Rocha, R.; Pires, A.; Marques, P.; Figueira, E. Graphene oxide influence in soil bacteria is dose dependent and changes at osmotic stress: Growth variation, oxidative damage, antioxidant response, and plant growth promotion traits of a Rhizobium strain. Nanotoxicology 2022, 16, 549–565. [Google Scholar] [CrossRef]
- Wróbel, M.; Szymańska, S.; Kowalkowski, T.; Hrynkiewicz, K. Selection of microorganisms capable of polyethylene (PE) and polypropylene (PP) degradation. Microbiol. Res. 2022, 267, 127251. [Google Scholar] [CrossRef]
- Rocha, R.; Lopes, T.; Fidalgo, C.; Alves, A.; Cardoso, P.; Figueira, E. Bacteria Associated with the Roots of Common Bean (Phaseolus vulgaris L.) at Different Development Stages: Diversity and Plant Growth Promotion. Microorganisms 2022, 11, 57. [Google Scholar] [CrossRef] [PubMed]
- Figueira, E. Aspectos da Tolerância Salina em Pisum sativum L.: Influência da Nutrição Azotada. Ph.D. Thesis, University of Aveiro, Aveiro, Portugal, 2000. [Google Scholar]
- Cardoso, P.; Freitas, R.; Figueira, E. Salt tolerance of rhizobial populations from contrasting environmental conditions: Understanding the implications of climate change. Ecotoxicology 2014, 24, 143–152. [Google Scholar] [CrossRef]
- Lopes, T.; Cruz, C.; Cardoso, P.; Pinto, R.; Marques PA, A.P.; Figueira, E. A Multifactorial Approach to Untangle Graphene Oxide (GO) Nanosheets Effects on Plants: Plant Growth-Promoting Bacteria Inoculation, Bacterial Survival, and Drought. Nanomaterials 2021, 11, 771. [Google Scholar] [CrossRef] [PubMed]
- Robinson, H.W.; Hogden, C.G. The biuret reaction in the determination of serum proteins. J. Biol. Chem. 1940, 135, 707–725. [Google Scholar] [CrossRef]
- Sekar, S.; Mahadevan, S.; Kumar SS, D.; Mandal, A.B. Thermokinetic responses of the metabolic activity of Staphylococcus lentus cultivated in a glucose limited mineral salt medium. J. Therm. Anal. Calorim. 2010, 104, 149–155. [Google Scholar] [CrossRef]
- Ilahi WF, F.; Ahmad, D.; Husain, M.C. Effects of root zone cooling on butterhead lettuce grown in tropical conditions in a coir-perlite mixture. Hortic. Environ. Biotechnol. 2017, 58, 1–4. [Google Scholar] [CrossRef]
- Rouphael, Y.; Cardarelli, M.; Bassal, A.; Leonardi, C.; Giuffrida, F.; Colla, G. Vegetable quality as affected by genetic*Agronomic and environmental factors. J. Food Agric. Environ. 2012, 10, 680–688. [Google Scholar]
- Malinconico, M. Soil Degradable Bioplastics for a Sustainable Modern Agriculture. In Green Chemistry and Sustainable Technology; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Wang, W.; Ge, J.; Yu, X.; Li, H. Environmental fate and impacts of microplastics in soil ecosystems: Progress and perspective. Sci. Total Environ. 2019, 708, 134841. [Google Scholar] [CrossRef]
- Wellburn, A.R.; Lichtenthaler, H. Formulae and Program to Determine Total Carotenoids and Chlorophylls A and B of Leaf Extracts in Different Solvents. In Advances in Photosynthesis Research: Proceedings of the VIth International Congress on Photosynthesis, Brussels, Belgium, August 1–6, 1983 Volume 2; Springer: Dodrecht, The Netherlands, 1984; pp. 9–12. [Google Scholar] [CrossRef]
- Cardoso, P.; Pinto, R.; Lopes, T.; Figueira, E. How Bacteria Cope with Oxidative Stress Induced by Cadmium: Volatile Communication Is Differentially Perceived Among Strains. Antioxidants 2024, 13, 565. [Google Scholar] [CrossRef]
- King, F.D.; Packard, T.T. Respiration and the activity of the respiratory electron transport system in marine zooplankton. Limnol. Oceanogr. 1975, 20, 849–854. [Google Scholar] [CrossRef]
- Mesquita, C.S.; Oliveira, R.; Bento, F.; Geraldo, D.; Rodrigues, J.V.; Marcos, J.C. Simplified 2,4-dinitrophenylhydrazine spectrophotometric assay for quantification of carbonyls in oxidized proteins. Anal. Biochem. 2014, 458, 69–71. [Google Scholar] [CrossRef] [PubMed]
- Beauchamp, C.; Fridovich, I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 1971, 44, 276–287. [Google Scholar] [CrossRef] [PubMed]
- Johansson, L.H.; Borg, L.H. A spectrophotometric method for determination of catalase activity in small tissue samples. Anal. Biochem. 1988, 174, 331–336. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Buege, J.A.; Aust, S.D. Microsomal lipid peroxidation. Methods Enzymol. 1978, 52, 302–310. [Google Scholar] [CrossRef]
- Habig, W.H.; Pabst, M.J.; Jakoby, W.B. Glutathione S-Transferases. J. Biol. Chem. 1974, 249, 7130–7139. [Google Scholar] [CrossRef]
- Garces, V.; García-Quintero, A.; Lerma, T.A.; Palencia, M.; Combatt, E.M.; Arrieta, Á.A. Characterization of Cassava Starch and Its Structural Changes Resulting of Thermal Stress by Functionally-Enhanced Derivative Spectroscopy (FEDS). Polysaccharides 2021, 2, 866–877. [Google Scholar] [CrossRef]
- De Oliveira AC, S.; Santos, T.A.; Ugucioni, J.C.; Da Rocha, R.A.; Borges, S.V. Effect of glycerol on electrical conducting of chitosan/polyaniline blends. J. Appl. Polym. Sci. 2021, 138, 51249. [Google Scholar] [CrossRef]
- Laorenza, Y.; Harnkarnsujarit, N. Surface adhesion and physical properties of modified TPS and PBAT multilayer film. Food Packag. Shelf Life 2024, 44, 101312. [Google Scholar] [CrossRef]
- Siew, Z.Z.; Chan EW, C.; Wong, C.W. Enhancing the Tearability and Barrier Properties of Cellulose Acetate Bioplastic Film with Polyethylene Glycol 1450 as an LDPE Replacement for Food Packaging. Food Bioprocess Technol. 2023, 17, 2265–2276. [Google Scholar] [CrossRef]
- Nunes, F.C.; Ribeiro, K.C.; Martini, F.A.; Barrioni, B.R.; Santos, J.P.F.; Carvalho, B.M. PBAT/PLA/cellulose nanocrystals biocomposites compatibilized with polyethylene grafted maleic anhydride (PE-g-MA). J. Appl. Polym. Sci. 2021, 138, 51342. [Google Scholar] [CrossRef]
- Syazwani, N.S.; Efzan, M.E.; Kok, C.; Nurhidayatullaili, M. Analysis on extracted jute cellulose nanofibers by Fourier transform infrared and X-Ray diffraction. J. Build. Eng. 2021, 48, 103744. [Google Scholar] [CrossRef]
- Bonilla, J.; Paiano, R.B.; Lourenço, R.V.; Bittante AM, Q.; Sobral, P.J. Biodegradability in aquatic system of thin materials based on chitosan, PBAT and HDPE polymers: Respirometric and physical-chemical analysis. Int. J. Biol. Macromol. 2020, 164, 1399–1412. [Google Scholar] [CrossRef] [PubMed]
- Ko, Y.; Yang, Y.; Kim, D.; Lee, Y.H.; Ghatge, S.; Hur, H. Fungal biodegradation of poly(butylene adipate-co-terephthalate)-polylactic acid-thermoplastic starch based commercial bio-plastic film at ambient conditions. Chemosphere 2024, 353, 141554. [Google Scholar] [CrossRef]
- Skvorčinskienė, R.; Kiminaitė, I.; Vorotinskienė, L.; Jančauskas, A.; Paulauskas, R. Complex study of bioplastics: Degradation in soil and characterization by FTIR-ATR and FTIR-TGA methods. Energy 2023, 274, 127320. [Google Scholar] [CrossRef]
- Sun, H.; Jiao, R.; Wang, D. The difference of aggregation mechanism between microplastics and nanoplastics: Role of Brownian motion and structural layer force. Environ. Pollut. 2020, 268, 115942. [Google Scholar] [CrossRef]
- Li, C.; Cui, Q.; Li, Y.; Zhang, K.; Lu, X.; Zhang, Y. Effect of LDPE and biodegradable PBAT primary microplastics on bacterial community after four months of soil incubation. J. Hazard. Mater. 2022, 429, 128353. [Google Scholar] [CrossRef]
- Sun, J.; Zheng, H.; Xiang, H.; Fan, J.; Jiang, H. The surface degradation and release of microplastics from plastic films studied by UV radiation and mechanical abrasion. Sci. Total Environ. 2022, 838, 156369. [Google Scholar] [CrossRef]
- Zaidi, Z.; Mawad, D.; Crosky, A. Soil Biodegradation of Unidirectional Polyhydroxybutyrate-Co-Valerate (PHBV) Biocomposites Toughened with Polybutylene-Adipate-Co-Terephthalate (PBAT) and Epoxidized Natural Rubber (ENR). Front. Mater. 2019, 6, 275. [Google Scholar] [CrossRef]
- Sun, J.; Wang, X.; Zheng, H.; Xiang, H.; Jiang, X.; Fan, J. Characterization of the degradation products of biodegradable and traditional plastics on UV irradiation and mechanical abrasion. Sci. Total Environ. 2023, 909, 168618. [Google Scholar] [CrossRef] [PubMed]
- Tong, H.; Zhong, X.; Duan, Z.; Yi, X.; Cheng, F.; Xu, W.; Yang, X. Micro- and nanoplastics released from biodegradable and conventional plastics during degradation: Formation, aging factors, and toxicity. Sci. Total Environ. 2022, 833, 155275. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Wang, L.; Lang, D.; Qian, Q.; Wang, W.; Wu, R.; Wang, J. UV and chemical aging alter the adsorption behavior of microplastics for tetracycline. Environ. Pollut. 2022, 318, 120859. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Chang, H.; Zheng, L.; Yan, Q.; Pfleger, B.F.; Klier, J.; Nelson, K.; Majumder, E.L.; Huber, G.W. A Review of Biodegradable Plastics: Chemistry, Applications, Properties, and Future Research Needs. Chem. Rev. 2023, 123, 9915–9939. [Google Scholar] [CrossRef]
- Demirgöz, D.; Elvira, C.; Mano, J.F.; Cunha, A.M.; Piskin, E.; Reis, R.L. Chemical modification of starch based biodegradable polymeric blends: Effects on water uptake, degradation behaviour and mechanical properties. Polym. Degrad. Stab. 2000, 70, 161–170. [Google Scholar] [CrossRef]
- Gunawardene OH, P.; Gunathilake, C.; Amaraweera, S.M.; Fernando NM, L.; Wanninayaka, D.B.; Manamperi, A.; Kulatunga, A.K.; Rajapaksha, S.M.; Dassanayake, R.S.; Fernando, C.A.N.; et al. Compatibilization of Starch/Synthetic Biodegradable Polymer Blends for Packaging Applications: A Review. J. Compos. Sci. 2021, 5, 300. [Google Scholar] [CrossRef]
- Campanale, C.; Savino, I.; Massarelli, C.; Uricchio, V.F. Fourier Transform Infrared Spectroscopy to Assess the Degree of Alteration of Artificially Aged and Environmentally Weathered Microplastics. Polymers 2023, 15, 911. [Google Scholar] [CrossRef]
- Liu, M.; Tong, S.; Tong, Z.; Guan, Y.; Sun, Y. A strong, biodegradable and transparent cellulose-based bioplastic stemmed from waste paper. J. Appl. Polym. Sci. 2023, 140, e53671. [Google Scholar] [CrossRef]
- Nomadolo, N.; Dada, O.E.; Swanepoel, A.; Mokhena, T.; Muniyasamy, S. A Comparative Study on the Aerobic Biodegradation of the Biopolymer Blends of Poly(butylene succinate), Poly(butylene adipate terephthalate) and Poly(lactic acid). Polymers 2022, 14, 1894. [Google Scholar] [CrossRef]
- Liu, L.; Zou, G.; Zuo, Q.; Li, S.; Bao, Z.; Jin, T.; Liu, D.; Du, L. It is still too early to promote biodegradable mulch film on a large scale: A bibliometric analysis. Environ. Technol. Innov. 2022, 27, 102487. [Google Scholar] [CrossRef]
- Zhao, Z.; Balu, R.; Gangadoo, S.; Duta, N.K.; Choudhury, N.R. Poly(butylene adipate-co-terephthalate)/Polylactic Acid/Tetrapod-Zinc Oxide Whisker Composite Films with Antibacterial Properties. Polymers 2024, 16, 1039. [Google Scholar] [CrossRef] [PubMed]
- Giri, J.; Lach, R.; Le, H.H.; Grellmann, W.; Saiter, J.; Henning, S.; Radusch, H.; Adhikari, R. Structural, thermal and mechanical properties of composites of poly(butylene adipate-co-terephthalate) with wheat straw microcrystalline cellulose. Polym. Bull. 2020, 78, 4779–4795. [Google Scholar] [CrossRef]
- Nobrega, M.M.; Olivato, J.B.; Müller CM, O.; Yamashita, F. Biodegradable starch-based films containing saturated fatty acids: Thermal, infrared and raman spectroscopic characterization. Polímeros 2012, 22, 475–480. [Google Scholar] [CrossRef]
- Bian, X.; Fan, S.; Xia, G.; Xin, J.H.; Jiang, S. Effect of UV-induced crosslink network structure on the properties of polylactic acid/polybutylene adipate terephthalate blend. J. Polym. Res. 2024, 31, 192. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, Z.; Zhang, X.; Shan, T.; Li, L.; Deng, T.; Zhang, Z. Improving the Foaming Behavior of PBAT by Graft Modification: Mechanisms, Characteristics, and Degradation. J. Polym. Environ. 2023, 32, 2564–2575. [Google Scholar] [CrossRef]
- Pokhrel, S.; Sigdel, A.; Lach, R.; Slouf, M.; Sirc, J.; Katiyar, V.; Bhattarai, D.R.; Adhikari, R. Starch-based biodegradable film with poly(butylene adipate-co-terephthalate): Preparation, morphology, thermal and biodegradation properties. J. Macromol. Sci. Part A 2021, 58, 610–621. [Google Scholar] [CrossRef]
- Chen, W.; Qi, C.; Li, Y.; Tao, H. The degradation investigation of biodegradable PLA/PBAT blend: Thermal stability, mechanical properties and PALS analysis. Radiat. Phys. Chem. 2020, 180, 109239. [Google Scholar] [CrossRef]
- Liu, X.; Yu, L.; Liu, H.; Chen, L.; Li, L. In situ thermal decomposition of starch with constant moisture in a sealed system. Polym. Degrad. Stab. 2007, 93, 260–262. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Hayes, D.G.; Wadsworth, L.C.; Sintim, H.Y.; Flury, M.; English, M.; Schaeffer, S.; Saxton, A.M. Effect of diverse weathering conditions on the physicochemical properties of biodegradable plastic mulches. Polym. Test. 2017, 62, 454–467. [Google Scholar] [CrossRef]
- Maciel, C.C.; De Barros, A.; Mazali, I.O.; Ferreira, M. Flexible biodegradable electrochemical sensor of PBAT and CNDs composite for the detection of emerging pollutants. J. Electroanal. Chem. 2023, 940, 117491. [Google Scholar] [CrossRef]
- Bao, Z.; Chen, Z.; Lu, S.; Wang, G.; Qi, Z.; Cai, Z. Effects of hydroxyl group content on adsorption and desorption of anthracene and anthrol by polyvinyl chloride microplastics. Sci. Total Environ. 2021, 790, 148077. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; He, X.; Wang, P.; Xu, B.; Li, K.; Lu, B.; Jin, W.; Tang, S. Effects of polystyrene nanoplastics on extracellular polymeric substance composition of activated sludge: The role of surface functional groups. Environ. Pollut. 2021, 279, 116904. [Google Scholar] [CrossRef]
- Rossi, G.; Barnoud, J.; Monticelli, L. Polystyrene Nanoparticles Perturb Lipid Membranes. J. Phys. Chem. Lett. 2013, 5, 241–246. [Google Scholar] [CrossRef]
- Yang, X.; An, C.; Feng, Q.; Boufadel, M.; Ji, W. Aggregation of microplastics and clay particles in the nearshore environment: Characteristics, influencing factors, and implications. Water Res. 2022, 224, 119077. [Google Scholar] [CrossRef]
- Tang, S.; Lin, L.; Wang, X.; Yu, A.; Sun, X. Interfacial interactions between collected nylon microplastics and three divalent metal ions (Cu(II), Ni(II), Zn(II)) in aqueous solutions. J. Hazard. Mater. 2020, 403, 123548. [Google Scholar] [CrossRef]
- Qin, Y.; Tu, Y.; Chen, C.; Wang, F.; Yang, Y.; Hu, Y. Biofilms on microplastic surfaces and their effect on pollutant adsorption in the aquatic environment. J. Mater. Cycles Waste Manag. 2024, 26, 3303–3323. [Google Scholar] [CrossRef]
- Jian, J.; Xiangbin, Z.; Xianbo, H. An overview on synthesis, properties and applications of poly(butylene-adipate-co-terephthalate)–PBAT. Adv. Ind. Eng. Polym. Res. 2020, 3, 19–26. [Google Scholar] [CrossRef]
- Liu, J.; Wang, P.; Wang, Y.; Zhang, Y.; Xu, T.; Zhang, Y.; Xi, J.; Hou, L.; Li, L.; Zhang, Z.; et al. Negative effects of poly(butylene adipate-co-terephthalate) microplastics on Arabidopsis and its root-associated microbiome. J. Hazard. Mater. 2022, 437, 129294. [Google Scholar] [CrossRef]
- Ning, Q.; Wang, D.; An, J.; Ding, Q.; Huang, Z.; Zou, Y.; Wu, F.; You, J. Combined effects of nanosized polystyrene and erythromycin on bacterial growth and resistance mutations in Escherichia coli. J. Hazard. Mater. 2021, 422, 126858. [Google Scholar] [CrossRef]
- Li, X.; Zheng, G.; Li, Z.; Fu, P. Formulation, performance and environmental/agricultural benefit analysis of biomass-based biodegradable mulch films: A review. Eur. Polym. J. 2023, 203, 112663. [Google Scholar] [CrossRef]
- Kijchavengkul, T.; Auras, R.; Rubino, M.; Selke, S.; Ngouajio, M.; Fernandez, R.T. Biodegradation and hydrolysis rate of aliphatic aromatic polyester. Polym. Degrad. Stab. 2010, 95, 2641–2647. [Google Scholar] [CrossRef]
- Karlsson, E.; Mapelli, V.; Olsson, L. Adipic acid tolerance screening for potential adipic acid production hosts. Microb. Cell Factories 2017, 16, 20. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, N.; Ahmadzadeh, M.; Mariotte, P.; Jouzani, G.S. Behavior and interactions of the plant growth-promoting bacteria Azospirillum oryzae NBT506 and Bacillus velezensis UTB96 in a co-culture system. World J. Microbiol. Biotechnol. 2022, 38, 101. [Google Scholar] [CrossRef]
- Singh, R.; Pandey, K.D.; Singh, M.; Singh, S.K.; Hashem, A.; Al-Arjani, A.F.; Abd_Allah, E.F.; Singh, P.K.; Kumar, A. Isolation and Characterization of Endophytes Bacterial Strains of Momordica charantia L. and Their Possible Approach in Stress Management. Microorganisms 2022, 10, 290. [Google Scholar] [CrossRef]
- Wu, P.; Li, Z.; Gao, J.; Zhao, Y.; Wang, H.; Qin, H.; Gu, Q.; Wei, R.; Liu, W.; Han, X. Characterization of a PBAT Degradation Carboxylesterase from Thermobacillus composti KWC4. Catalysts 2023, 13, 340. [Google Scholar] [CrossRef]
- Dash, D.M.; Osborne, W.J. Rapid biodegradation and biofilm-mediated bioremoval of organophosphorus pesticides using an indigenous Kosakonia oryzae strain-VITPSCQ3 in a Vertical-flow Packed Bed Biofilm Bioreactor. Ecotoxicol. Environ. Saf. 2020, 192, 110290. [Google Scholar] [CrossRef]
- Choudhury, S.P.; Panda, S.; Haq, I.; Kalamdhad, A.S. Microbial pretreatment using Kosakonia oryziphila IH3 to enhance biogas production and hydrocarbon depletion from petroleum refinery sludge. Renew. Energy 2022, 194, 1192–1203. [Google Scholar] [CrossRef]
- Leelaphiwat, P.; Pechprankan, C.; Siripho, P.; Bumbudsanpharoke, N.; Harnkarnsujarit, N. Effects of nisin and EDTA on morphology and properties of thermoplastic starch and PBAT biodegradable films for meat packaging. Food Chem. 2021, 369, 130956. [Google Scholar] [CrossRef]
- Jia, H.; Zhang, M.; Weng, Y.; Li, C. Degradation of polylactic acid/polybutylene adipate-co-terephthalate by coculture of Pseudomonas mendocina and Actinomucor elegans. J. Hazard. Mater. 2020, 403, 123679. [Google Scholar] [CrossRef]
- Jia, H.; Zhang, M.; Weng, Y.; Zhao, Y.; Li, C.; Kanwal, A. Degradation of poly(butylene adipate-co-terephthalate) by Stenotrophomonas sp. YCJ1 isolated from farmland soil. J. Environ. Sci. 2020, 103, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Zhao, K.; Zhao, J.; Lin, C.; Zhang, H.; Chen, L.; Chen, J.; Fang, Y. Degradation of poly(butylene adipate-co-terephthalate) films by Thermobifida fusca FXJ-1 isolated from compost. J. Hazard. Mater. 2022, 441, 129958. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Wang, P.; Zhang, L.; Li, C.; Lu, J.; Ren, L. Enhancing biodegradation efficiency of PLA/PBAT-ST20 bioplastic using thermophilic bacteria co-culture system: New insight from structural characterization, enzyme activity, and metabolic pathways. J. Hazard. Mater. 2024, 477, 135426. [Google Scholar] [CrossRef] [PubMed]
- Cruz, C.; Cardoso, P.; Santos, J.; Matos, D.; Sá, C.; Figueira, E. Application of Plant Growth-Promoting Bacteria from Cape Verde to Increase Maize Tolerance to Salinity. Antioxidants 2023, 12, 488. [Google Scholar] [CrossRef]
- Mateos-Cárdenas, A.; Van Pelt, F.N.; O’Halloran, J.; Jansen, M.A. Adsorption, uptake and toxicity of micro- and nanoplastics: Effects on terrestrial plants and aquatic macrophytes. Environ. Pollut. 2021, 284, 117183. [Google Scholar] [CrossRef]
- Yu, Z.; Xu, X.; Guo, L.; Jin, R.; Lu, Y. Uptake and transport of micro/nanoplastics in terrestrial plants: Detection, mechanisms, and influencing factors. Sci. Total Environ. 2023, 907, 168155. [Google Scholar] [CrossRef]
- Han, Y.; Teng, Y.; Wang, X.; Wen, D.; Gao, P.; Yan, D.; Yang, N. Biodegradable PBAT microplastics adversely affect pakchoi (Brassica chinensis L.) growth and the rhizosphere ecology: Focusing on rhizosphere microbial community composition, element metabolic potential, and root exudates. Sci. Total Environ. 2023, 912, 169048. [Google Scholar] [CrossRef]
- Chakraborty, N.; Mitra, R.; Dasgupta, D.; Ganguly, R.; Acharya, K.; Minkina, T.; Popova, V.; Churyukina, E.; Keswani, C. Unraveling lipid peroxidation-mediated regulation of redox homeostasis for sustaining plant health. Plant Physiol. Biochem. 2023, 206, 108272. [Google Scholar] [CrossRef]
- Sadžak, A.; Mravljak, J.; Maltar-Strmečki, N.; Arsov, Z.; Baranović, G.; Erceg, I.; Kriechbaum, M.; Strasser, V.; Přibyl, J.; Šegota, S. The Structural Integrity of the Model Lipid Membrane during Induced Lipid Peroxidation: The Role of Flavonols in the Inhibition of Lipid Peroxidation. Antioxidants 2020, 9, 430. [Google Scholar] [CrossRef]
- Sun, M.; Peng, F.; Xiao, Y.; Yu, W.; Zhang, Y.; Gao, H. Exogenous phosphatidylcholine treatment alleviates drought stress and maintains the integrity of root cell membranes in peach. Sci. Hortic. 2019, 259, 108821. [Google Scholar] [CrossRef]
- Roy, T.; Dey, T.K.; Jamal, M. Microplastic/nanoplastic toxicity in plants: An imminent concern. Environ. Monit. Assess. 2022, 195, 27. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Xu, X.; Guo, L.; Yuzuak, S.; Lu, Y. Physiological and biochemical effects of polystyrene micro/nano plastics on Arabidopsis thaliana. J. Hazard. Mater. 2024, 469, 133861. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Gao, X. Impact of microplastics from polyethylene and biodegradable mulch films on rice (Oryza sativa L.). Sci. Total Environ. 2022, 828, 154579. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.; Kim, T.; Choi, B.; Kim, Y.; Kim, E. Invasive Lactuca serriola seeds contain endophytic bacteria that contribute to drought tolerance. Sci. Rep. 2021, 11, 13307. [Google Scholar] [CrossRef] [PubMed]
- Pathan, S.I.; Arfaioli, P.; Bardelli, T.; Ceccherini, M.T.; Nannipieri, P.; Pietramellara, G. Soil Pollution from Micro- and Nanoplastic Debris: A Hidden and Unknown Biohazard. Sustainability 2020, 12, 7255. [Google Scholar] [CrossRef]
- Sun, H.; Shi, Y.; Zhao, P.; Long, G.; Li, C.; Wang, J.; Qiu, D.; Lu, C.; Ding, Y.; Liu, L.; et al. Effects of polyethylene and biodegradable microplastics on photosynthesis, antioxidant defense systems, and arsenic accumulation in maize (Zea mays L.) seedlings grown in arsenic-contaminated soils. Sci. Total Environ. 2023, 868, 161557. [Google Scholar] [CrossRef]
- Wang, W.; Xie, Y.; Li, H.; Dong, H.; Li, B.; Guo, Y.; Wang, Y.; Guo, X.; Yin, T.; Liu, X.; et al. Responses of lettuce (Lactuca sativa L.) growth and soil properties to conventional non-biodegradable and new biodegradable microplastics. Environ. Pollut. 2023, 341, 122897. [Google Scholar] [CrossRef]
- Rozman, U.; Kalčíková, G. The Response of Duckweed Lemna minor to Microplastics and Its Potential Use as a Bioindicator of Microplastic Pollution. Plants 2022, 11, 2953. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carneiro, B.; Marques, P.; Lopes, T.; Figueira, E. Biodegradable Microplastics from Agricultural Mulch Films: Implications for Plant Growth-Promoting Bacteria and Plant’s Oxidative Stress. Antioxidants 2025, 14, 230. https://doi.org/10.3390/antiox14020230
Carneiro B, Marques P, Lopes T, Figueira E. Biodegradable Microplastics from Agricultural Mulch Films: Implications for Plant Growth-Promoting Bacteria and Plant’s Oxidative Stress. Antioxidants. 2025; 14(2):230. https://doi.org/10.3390/antiox14020230
Chicago/Turabian StyleCarneiro, Bruno, Paula Marques, Tiago Lopes, and Etelvina Figueira. 2025. "Biodegradable Microplastics from Agricultural Mulch Films: Implications for Plant Growth-Promoting Bacteria and Plant’s Oxidative Stress" Antioxidants 14, no. 2: 230. https://doi.org/10.3390/antiox14020230
APA StyleCarneiro, B., Marques, P., Lopes, T., & Figueira, E. (2025). Biodegradable Microplastics from Agricultural Mulch Films: Implications for Plant Growth-Promoting Bacteria and Plant’s Oxidative Stress. Antioxidants, 14(2), 230. https://doi.org/10.3390/antiox14020230