Hydrogen Gas Inhalation Alleviates Airway Inflammation and Oxidative Stress on Ovalbumin-Induced Asthmatic BALB/c Mouse Model
<p>Animal experimental procedures.</p> "> Figure 2
<p>Effects of H<sub>2</sub> gas inhalation on body and lung weight characteristics. (<b>A</b>) Mice body weight, (<b>B</b>) lung weight, (<b>C</b>) appearance of lung organs, (<b>D</b>) lung tissue histological analysis with H&E staining, highlighting morphological features. Data are expressed as mean ± SD (<span class="html-italic">n</span> = 5). Statistical significance is indicated as * <span class="html-italic">p</span> < 0.05.</p> "> Figure 3
<p>Inhalation of H<sub>2</sub> gas regulates the inflammatory cell levels in the blood of allergic mouse models. (<b>A</b>) Total WBCs, (<b>B</b>) eosinophils, (<b>C</b>) neutrophils, (<b>D</b>) lymphocytes, and (<b>E</b>) neutrophil-to-lymphocyte ratio. Data are expressed as mean ± SD (<span class="html-italic">n</span> = 5). Statistical significance is indicated as * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01; *** <span class="html-italic">p</span> < 0.001.</p> "> Figure 4
<p>Inhalation of H<sub>2</sub> gas modulates the expression of serum cytokine levels in an OVA-induced airway inflammatory mouse model. (<b>A</b>) IL-4, (<b>B</b>) IL-5, (<b>C</b>) IL-13, (<b>D</b>) IFN-γ, (<b>E</b>) TNF-α, (<b>F</b>) GM-CSF, and (<b>G</b>) IL-10. Data are expressed as mean ± SD (<span class="html-italic">n</span> = 5). Statistical significance is indicated as ** <span class="html-italic">p</span> < 0.01; *** <span class="html-italic">p</span> < 0.001.</p> "> Figure 5
<p>Inhalation of H<sub>2</sub> gas effects on redox markers in an airway inflammatory mouse model. Serum levels of (<b>A</b>) ROS, (<b>B</b>) NO, (<b>C</b>) GPx, and (<b>D</b>) CAT levels. Data are expressed as mean ± SD (<span class="html-italic">n</span> = 5). Statistical significance is indicated as * <span class="html-italic">p</span> < 0.05; *** <span class="html-italic">p</span> < 0.001.</p> "> Figure 6
<p>Inhalation of H<sub>2</sub> gas reduced the total IgE level in the serum of the OVA-induced airway inflammatory mouse model. Data are expressed as mean ± SD (<span class="html-italic">n</span> = 5). Statistical significance is indicated as <span class="html-italic">* p</span> < 0.05.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Sensitization and Challenge of Airway Inflammation with OVA
2.3. Hydrogen Gas Administration
2.4. White Blood Cell (WBC) and Its Differential Counts
2.5. Lung Histology
2.6. Detection of Inflammation Cytokines in Serum
2.7. Total ROS and NO Level Measurement in the Serum
2.8. GPx and CAT Enzyme Activity Level Estimation
2.9. Total IgE Level in Serum
2.10. Statistical Analysis
3. Results
3.1. Effects of H2 on Body and Lung Weight in the Airway Inflammatory Mouse Model
3.2. Effects of H2 on the Inhibition of Inflammatory Cell Infiltration in the Airway Inflammatory Mouse Model
3.3. Effects of H2 Inhalation on the Level of Inflammatory Cytokines in the Airway Inflammatory Mouse Model
3.4. Effects of H2 in Preventing Oxidative Damage in the Airway Inflammatory Mouse Model
3.5. Effects of H2 Inhalation on the Total IgE Levels in the Airway Inflammatory Mouse Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of Abbreviations
•OH | Hydroxyl radicals |
ANOVA | One-way analysis of variance |
CAT | Catalase |
DCFH-DA | 2-4-dichlorodihydrofluorescein diacetate |
EDTA | Ethylenediaminetetraacetic acid |
GM-CSF | Granulocyte-macrophage colony-stimulating factor |
GPx | Glutathione peroxidase |
H&E | Hematoxylin and eosin |
H₂ | Hydrogen |
H₂O₂ | Hydrogen peroxide |
HDM | House dust mite |
IFN-γ | Interferon gamma |
IgE | Immunoglobulin E |
IL | Interleukin |
LPS | Lipopolysaccharide |
NADPH | Nicotinamide adenine dinucleotide phosphate |
NLR | Neutrophil-to-lymphocyte ratio |
NO | Nitric oxide |
O₂⁻ | Superoxide anion |
OD | Optical density |
ONOO− | Peroxynitrite |
OS | Oxidative stress |
OVA | Ovalbumin |
ROS | Reactive oxygen species |
SD | Standard deviation |
TNF-α | Tumor necrosis factor α |
WBC | White blood cell |
References
- Racanelli, A.C.; Kikkers, S.A.; Choi, A.M.K.; Cloonan, S.M. Autophagy and inflammation in chronic respiratory disease. Autophagy 2018, 14, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Vos, T.; Lim, S.S.; Abbafati, C.; Abbas, K.M.; Abbasi, M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelalim, A. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the global burden of disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef] [PubMed]
- Cazzola, M.; Page, C.P.; Matera, M.G.; Rogliani, P.; Hanania, N.A. Revisiting asthma pharmacotherapy: Where do we stand and where do we want to go? Eur. Respir. J. 2023, 62, 2300700. [Google Scholar] [CrossRef]
- Barnes, P.J. Anti-inflammatory actions of glucocorticoids: Molecular mechanisms. Clin. Sci. 1998, 94, 557–572. [Google Scholar] [CrossRef]
- Miller, R.L.; Grayson, M.H.; Strothman, K. Advances in asthma: New understandings of asthma’s natural history, risk factors, underlying mechanisms, and clinical management. J. Allergy Clin. Immunol. 2021, 148, 1430–1441. [Google Scholar] [CrossRef] [PubMed]
- Jassal, M.S. Special considerations—Asthma in children. Int. Forum Allergy Rhinol. 2015, 5, S61–S67. [Google Scholar] [CrossRef]
- Vasconcelos, L.H.C.; Ferreira, S.R.D.; Silva, M.D.C.C.; Ferreira, P.B.; de Souza, I.L.L.; Cavalcante, F.A.; da Silva, B.A. Uncovering the role of oxidative imbalance in the development and progression of bronchial asthma. Oxid. Med. Cell. Longev. 2021, 2021, 6692110. [Google Scholar] [CrossRef] [PubMed]
- Aegerter, H.; Lambrecht, B.N. The pathology of asthma: What is obstructing our view? Annu. Rev. Pathol. 2023, 18, 387–409. [Google Scholar] [CrossRef]
- Maruthamuthu, V.; Henry, L.J.K.; Ramar, M.K.; Kandasamy, R. Myxopyrum Serratulum ameliorates airway inflammation in LPS-stimulated RAW 264.7 macrophages and OVA-induced murine model of allergic asthma. J. Ethnopharmacol. 2020, 255, 112369. [Google Scholar] [CrossRef]
- Riedl, M.A.; Nel, A.E. Importance of oxidative stress in the pathogenesis and treatment of asthma. Curr. Opin. Allergy Clin. Immunol. 2008, 8, 49–56. [Google Scholar] [CrossRef]
- Larsen, G.L.; Holt, P.G. The concept of airway inflammation. Am. J. Respir. Crit. Care Med. 2000, 162, S2–S6. [Google Scholar] [CrossRef] [PubMed]
- Sanders, S.P.; Zweier, J.L.; Harrison, S.J.; Trush, M.A.; Rembish, S.J.; Liu, M.C. Spontaneous oxygen radical production at sites of antigen challenge in allergic subjects. Am. J. Respir. Crit. Care Med. 1995, 151, 1725–1733. [Google Scholar] [CrossRef]
- Adcock, I.M.; Ford, P.A.; Bhavsar, P.; Ahmad, T.; Chung, K.F. Steroid resistance in asthma: Mechanisms and treatment options. Curr. Allergy Asthma Rep. 2008, 8, 171–178. [Google Scholar] [CrossRef]
- Benson, R.C.; Hardy, K.A.; Morris, C.R. Arginase and arginine dysregulation in asthma. J. Allergy 2011, 2011, 736319. [Google Scholar] [CrossRef] [PubMed]
- Redington, A.E. Modulation of nitric oxide pathways: Therapeutic potential in asthma and chronic obstructive pulmonary disease. Eur. J. Pharmacol. 2006, 533, 263–276. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J. Reactive oxygen species and airway inflammation. Free Radic. Biol. Med. 1990, 9, 235–243. [Google Scholar] [CrossRef]
- Akel Bilgic, H.; Kilic, B.; Kockaya, B.D.; Sarac, B.E.; Kilic Suloglu, A.; Kalayci, O.; Karaaslan, C. Oxidative stress stimulation leads to cell-specific oxidant and antioxidant responses in airway resident and inflammatory cells. Life Sci. 2023, 315, 121358. [Google Scholar] [CrossRef] [PubMed]
- Matucci, A.; Vultaggio, A.; Maggi, E.; Kasujee, I. Is IgE or eosinophils the key player in allergic asthma pathogenesis? Are we asking the right question? Respir. Res. 2018, 19, 113. [Google Scholar] [CrossRef]
- Saleem, A.; Mubeen, A.; Akhtar, M.F.; Zeb, A.; Braunii, P. Polystichum braunii Ameliorates airway inflammation by attenuation of inflammatory and oxidative stress biomarkers, and pulmonary edema by elevation of aquaporins in ovalbumin-induced allergic asthmatic mice. Inflammopharmacology 2022, 30, 639–653. [Google Scholar] [CrossRef]
- Ohsawa, I.; Ishikawa, M.; Takahashi, K.; Watanabe, M.; Nishimaki, K.; Yamagata, K.; Katsura, K.I.; Katayama, Y.; Asoh, S.; Ohta, S. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med. 2007, 13, 688–694. [Google Scholar] [CrossRef]
- He, W.; Rahman, M.H.; Mo, C.; Vongdouangchanh, A.; Kim, C.-S.; Lee, K.-J. The Role of the Smallest Molecule Hydrogen Overcoming Ageing-Related Disease. In Molecular Hydrogen in Health and Disease; Slezak, J., Kura, B., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 231–242. ISBN 978-3-031-47375-3. [Google Scholar] [CrossRef]
- Huang, C.-S.; Kawamura, T.; Toyoda, Y.; Nakao, A. Recent advances in hydrogen research as a therapeutic medical gas. Free Radic. Res. 2010, 44, 971–982. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, G.; Buddhavarapu, V.; Grewal, H.; Sharma, P.; Verma, R.K.; Munjal, R.; Devadoss, R.; Kashyap, R. Hydrogen water: Extra healthy or a hoax?—A systematic review. Int. J. Mol. Sci. 2024, 25, 973. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-S.; Kawamura, T.; Lee, S.; Tochigi, N.; Shigemura, N.; Buchholz, B.M.; Kloke, J.D.; Billiar, T.R.; Toyoda, Y.; Nakao, A. Hydrogen inhalation ameliorates ventilator-induced lung injury. Crit. Care 2010, 14, R234. [Google Scholar] [CrossRef] [PubMed]
- Barancik, M.; Kura, B.; LeBaron, T.W.; Bolli, R.; Buday, J.; Slezak, J. Molecular and cellular mechanisms associated with effects of molecular hydrogen in cardiovascular and central nervous systems. Antioxidants 2020, 9, 1281. [Google Scholar] [CrossRef]
- Wu, Y.; Yuan, M.; Song, J.; Chen, X.; Yang, H. Hydrogen gas from inflammation treatment to cancer therapy. ACS Nano 2019, 13, 8505–8511. [Google Scholar] [CrossRef]
- Zhang, N.; Deng, C.; Zhang, X.; Zhang, J.; Bai, C. Inhalation of hydrogen gas attenuates airway inflammation and oxidative stress in allergic asthmatic mice. Asthma Res. Pract. 2018, 4, 3. [Google Scholar] [CrossRef]
- Jeong, E.-S.; Bajgai, J.; You, I.-S.; Rahman, M.H.; Fadriquela, A.; Sharma, S.; Kwon, H.-U.; Lee, S.-Y.; Kim, C.-S.; Lee, K.-J. Therapeutic effects of hydrogen gas inhalation on trimethyltin-induced neurotoxicity and cognitive impairment in the C57BL/6 mice model. Int. J. Mol. Sci. 2021, 22, 13313. [Google Scholar] [CrossRef]
- Lambrecht, B.N.; Hammad, H. The immunology of asthma. Nat. Immunol. 2015, 16, 45–56. [Google Scholar] [CrossRef]
- Rahman, M.H.; Bajgai, J.; Sharma, S.; Jeong, E.-S.; Goh, S.H.; Jang, Y.-G.; Kim, C.-S.; Lee, K.-J. Effects of hydrogen gas inhalation on community-dwelling adults of various ages: A single-arm, open-label, prospective clinical trial. Antioxidants 2023, 12, 1241. [Google Scholar] [CrossRef]
- Zhang, X.-Y.; Simpson, J.L.; Powell, H.; Yang, I.A.; Upham, J.W.; Reynolds, P.N.; Hodge, S.; James, A.L.; Jenkins, C.; Peters, M.J.; et al. Full blood count parameters for the detection of asthma inflammatory phenotypes. Clin. Exp. Allergy 2014, 44, 1137–1145. [Google Scholar] [CrossRef]
- Hammad, H.; Lambrecht, B.N. The basic immunology of asthma. Cell 2021, 184, 1469–1485. [Google Scholar] [CrossRef] [PubMed]
- Perkins, T.N.; Donnell, M.L.; Oury, T.D. The axis of the receptor for advanced glycation endproducts in asthma and allergic airway aisease. Allergy 2021, 76, 1350–1366. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, C.M.; Hessel, E.M. Functions of T cells in asthma: More than just TH2 cells. Nat. Rev. Immunol. 2010, 10, 838–848. [Google Scholar] [CrossRef]
- Garlisi, C.G.; Falcone, A.; Hey, J.A.; Paster, T.M.; Fernandez, X.; Rizzo, C.A.; Minnicozzi, M.; Jones, H.; Billah, M.M.; Egan, R.W.; et al. Airway eosinophils, T cells, TH2-type cytokine mRNA, and hyperreactivity in response to aerosol challenge of allergic mice with previously established pulmonary inflammation. Am. J. Respir. Cell Mol. Biol. 1997, 17, 642–651. [Google Scholar] [CrossRef]
- Al-Shaikhly, T.; Murphy, R.C.; Parker, A.; Lai, Y.; Altman, M.C.; Larmore, M.; Altemeier, W.A.; Frevert, C.W.; Debley, J.S.; Piliponsky, A.M.; et al. Location of eosinophils in the airway wall is critical for specific features of airway hyperresponsiveness and T2 inflammation in asthma. Eur. Respir. J. 2022, 60, 2101865. [Google Scholar] [CrossRef]
- McKeever, T.; Saha, S.; Fogarty, A.W. The association between systemic inflammatory cellular levels and lung function: A population-based study. PLoS ONE 2011, 6, e21593. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Wang, C.; Li, H.; Meng, H.; Jie, J.; Fu, M.; Bai, Y.; Li, G.; Wei, W.; Feng, Y.; et al. Circulating white blood cells and lung function impairment: The observational studies and mendelian randomization analysis. Ann. Med. 2021, 53, 1119. [Google Scholar] [CrossRef]
- Asseri, A.A. Distinguishing childhood asthma exacerbations from stable asthma: The utility of inflammatory white blood cell biomarkers. Diagnostics 2024, 14, 1663. [Google Scholar] [CrossRef]
- Ke, J.; Qiu, F.; Fan, W.; Wei, S. Associations of Complete Blood Cell Count-Derived Inflammatory Biomarkers with Asthma and Mortality in Adults: A Population-Based Study. Front. Immunol. 2023, 14. [Google Scholar] [CrossRef]
- Wechsler, M.E.; Munitz, A.; Ackerman, S.J.; Drake, M.G.; Jackson, D.J.; Wardlaw, A.J.; Dougan, S.K.; Berdnikovs, S.; Schleich, F.; Matucci, A.; et al. Eosinophils in health and disease: A state-of-the-art review. Mayo Clin. Proc. 2021, 96, 2694–2707. [Google Scholar] [CrossRef]
- Dunican, E.M.; Elicker, B.M.; Gierada, D.S.; Nagle, S.K.; Schiebler, M.L.; Newell, J.D.; Raymond, W.W.; Lachowicz-Scroggins, M.E.; Di Maio, S.D.; Hoffman, E.A.; et al. Mucus plugs in patients with asthma linked to eosinophilia and airflow obstruction. J. Clin. Invest. 2018, 128, 997–1009. [Google Scholar] [CrossRef] [PubMed]
- Cusack, R.P.; Whetstone, C.E.; Xie, Y.; Ranjbar, M.; Gauvreau, G.M. Regulation of eosinophilia in asthma—New therapeutic approaches for asthma treatment. Cells 2021, 10, 817. [Google Scholar] [CrossRef] [PubMed]
- Rupani, H.; Busse, W.W.; Howarth, P.H.; Bardin, P.G.; Adcock, I.M.; Konno, S.; Jackson, D.J. Therapeutic relevance of eosinophilic inflammation and airway viral interactions in severe asthma. Allergy 2024, 79, 2589–2604. [Google Scholar] [CrossRef]
- Jin, L.; Tan, S.; Fan, K.; Wang, Y.; Yu, S. Research progress of hydrogen on chronic nasal inflammation. J. Inflam. Res. 2023, 16, 2149–2157. [Google Scholar] [CrossRef]
- Schwartz, J.; Weiss, S.T. Prediction of respiratory symptoms by peripheral blood neutrophils and eosinophils in the First National Nutrition Examination Survey (NHANES I). Chest 1993, 104, 1210–1215. [Google Scholar] [CrossRef] [PubMed]
- Lewis, S.A.; Pavord, I.D.; Stringer, J.R.; Knox, A.J.; Weiss, S.T.; Britton, J.R. The relation between peripheral blood leukocyte counts and respiratory symptoms, atopy, lung Function, and airway responsiveness in adults. Chest 2001, 119, 105–114. [Google Scholar] [CrossRef]
- Xiao, M.; Zhu, T.; Wang, T. Hydrogen-rich saline reduces airway remodeling via inactivation of NF-κB in a murine model of asthma. Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 1033–1043. [Google Scholar] [PubMed]
- Xie, K.; Yu, Y.; Huang, Y.; Zheng, L.; Li, J.; Chen, H.; Han, H.; Hou, L.; Gong, G.; Wang, G. Molecular hydrogen ameliorates lipopolysaccharide-induced acute lung injury in mice through reducing inflammation and apoptosis. Shock 2012, 37, 548. [Google Scholar] [CrossRef]
- Sinyor, B.; Concepcion Perez, L. Pathophysiology of Asthma. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Buonacera, A.; Stancanelli, B.; Colaci, M.; Malatino, L. Neutrophil to lymphocyte ratio: An emerging marker of the relationships between the immune system and diseases. Int. J. Mol. Sci. 2022, 23, 3636. [Google Scholar] [CrossRef] [PubMed]
- Pan, R.; Ren, Y.; Li, Q.; Zhu, X.; Zhang, J.; Cui, Y.; Yin, H. Neutrophil-lymphocyte ratios in blood to distinguish children with asthma exacerbation from healthy subjects. Int. J. Immunopathol. Pharmacol. 2023, 37, 3946320221149849. [Google Scholar] [CrossRef] [PubMed]
- Wood, L.G.; Baines, K.J.; Fu, J.; Scott, H.A.; Gibson, P.G. The neutrophilic inflammatory phenotype is associated with systemic inflammation in asthma. Chest 2012, 142, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Nacaroglu, H.T.; İsgüder, R.; Bent, S.; Erdem Bahceci, S.; Ceylan, G.; Korkmaz, H.A.; Karaman, S.; Unsal Karkıner, C.S.; Can, D. Can neutrophil/lymphocyte ratio be a novel biomarker of inflammation in children with asthma? Eur. J. Inflamm. 2016, 14, 109–112. [Google Scholar] [CrossRef]
- Erdogan, T. Role of systemic immune-inflammation index in asthma and NSAID-exacerbated respiratory disease. Clin. Respir. J. 2021, 15, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Mestas, J.; Hughes, C.C.W. Of Mice and Not Men: Differences between mouse and human immunology. J. Immunol. 2004, 172, 2731–2738. [Google Scholar] [CrossRef]
- Rahman, I.; Adcock, I.M. Oxidative stress and redox regulation of lung inflammation in COPD. Eur. Respir. J. 2006, 28, 219–242. [Google Scholar] [CrossRef]
- Tracey, D.; Klareskog, L.; Sasso, E.H.; Salfeld, J.G.; Tak, P.P. Tumor necrosis factor antagonist mechanisms of action: A comprehensive review. Pharmacol. Ther. 2008, 117, 244–279. [Google Scholar] [CrossRef]
- Melgaard, M.E.; Jensen, S.K.; Eliasen, A.; Pedersen, C.T.; Thorsen, J.; Mikkelsen, M.; Vahman, N.; Schoos, A.-M.M.; Gern, J.; Brix, S.; et al. Asthma development is associated with low mucosal IL-10 during viral infections in early life. Allergy 2024, 1–12. [Google Scholar] [CrossRef]
- Mormile, M.; Mormile, I.; Fuschillo, S.; Rossi, F.W.; Lamagna, L.; Ambrosino, P.; de Paulis, A.; Maniscalco, M. Eosinophilic airway diseases: From pathophysiological mechanisms to clinical practice. Int. J. Mol. Sci. 2023, 24, 7254. [Google Scholar] [CrossRef]
- Travers, J.; Rothenberg, M.E. Eosinophils in mucosal immune responses. Mucosal Immunol. 2015, 8, 464–475. [Google Scholar] [CrossRef]
- Shankar, A.; McAlees, J.W.; Lewkowich, I.P. Modulation of IL-4/IL-13 cytokine signaling in the context of allergic disease. J. Allergy Clin. Immunol. 2022, 150, 266–276. [Google Scholar] [CrossRef]
- Massey, O.; Suphioglu, C. Recent advances in the inhibition of the IL-4 cytokine pathway for the treatment of allergen-induced asthma. Int. J. Mol. Sci. 2021, 22, 13655. [Google Scholar] [CrossRef] [PubMed]
- Pope, S.M.; Brandt, E.B.; Mishra, A.; Hogan, S.P.; Zimmermann, N.; Matthaei, K.I.; Foster, P.S.; Rothenberg, M.E. IL-13 induces eosinophil recruitment into the lung by an IL-5– and eotaxin-dependent mechanism. J. Allergy Clin. Immunol. 2001, 108, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Nobs, S.P.; Kayhan, M.; Kopf, M. GM-CSF intrinsically controls eosinophil accumulation in the setting of allergic airway inflammation. J. Allergy Clin. Immunol. 2019, 143, 1513–1524.e2. [Google Scholar] [CrossRef] [PubMed]
- Eger, K.A.; Bel, E.H. The emergence of new biologics for severe asthma. Curr. Opin. Pharmacol. 2019, 46, 108–115. [Google Scholar] [CrossRef]
- Platts-Mills, T.A. The role of immunoglobulin E in allergy and asthma. Am. J. Respir. Crit. Care Med. 2001, 164, S1–S5. [Google Scholar] [CrossRef]
- Boldogh, I.; Bacsi, A.; Choudhury, B.K.; Dharajiya, N.; Alam, R.; Hazra, T.K.; Mitra, S.; Goldblum, R.M.; Sur, S. ROS Generated by pollen NADPH oxidase provide a signal that augments antigen-induced allergic airway inflammation. J. Clin. Invest. 2005, 115, 2169–2179. [Google Scholar] [CrossRef]
- Sadeghi-Hashjin, G.; Folkerts, G.; Henricks, P.A.; Verheyen, A.K.; van der Linde, H.J.; van Ark, I.; Coene, A.; Nijkamp, F.P. Peroxynitrite induces airway hyperresponsiveness in guinea pigs in vitro and in vivo. Am. J. Respir. Crit. Care Med. 1996, 153, 1697–1701. [Google Scholar] [CrossRef]
- Rahman, I.; MacNee, W. Oxidative stress and regulation of glutathione in lung inflammation. Eur. Respir. J. 2000, 16, 534–554. [Google Scholar] [CrossRef]
- Nishida, S.; Teramoto, K.; Kimoto-Kinoshita, S.; Tohda, Y.; Nakajima, S.; Tomura, T.T.; Irimajiri, K. Change of Cu,Zn-superoxide dismutase activity of guinea pig lung in experimental asthma. Free Radic. Res. 2002, 36, 601–606. [Google Scholar] [CrossRef]
- Michaeloudes, C.; Abubakar-Waziri, H.; Lakhdar, R.; Raby, K.; Dixey, P.; Adcock, I.M.; Mumby, S.; Bhavsar, P.K.; Chung, K.F. Molecular mechanisms of oxidative stress in asthma. Mol. Asp. Med. 2022, 85, 101026. [Google Scholar] [CrossRef]
- Niu, Y.; Nie, Q.; Dong, L.; Zhang, J.; Liu, S.F.; Song, W.; Wang, X.; Wu, G.; Song, D. Hydrogen attenuates allergic inflammation by reversing energy metabolic pathway switch. Sci. Rep. 2020, 10, 1962. [Google Scholar] [CrossRef] [PubMed]
- Sharma, J.N.; Al-Omran, A.; Parvathy, S.S. Role of nitric oxide in inflammatory diseases. Inflammopharmacology 2007, 15, 252–259. [Google Scholar] [CrossRef] [PubMed]
- De Gouw, H.W.F.M.; Hendriks, J.; Woltman, A.M.; Twiss, I.M.; Sterk, P.J. Exhaled nitric oxide (NO) is reduced shortly after bronchoconstriction to direct and indirect stimuli in asthma. Am. J. Respir. Crit. Care Med. 1998, 158, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Dweik, R.A.; Comhair, S.A.A.; Gaston, B.; Thunnissen, F.B.J.M.; Farver, C.; Thomassen, M.J.; Kavuru, M.; Hammel, J.; Abu-Soud, H.M.; Erzurum, S.C. NO chemical events in the human airway during the immediate and late antigen-induced asthmatic response. Proc. Natl. Acad. Sci. USA 2001, 98, 2622–2627. [Google Scholar] [CrossRef]
- Barnes, P.J. Nitric oxide and airway disease. Ann. Med. 1995, 27, 389–393. [Google Scholar] [CrossRef]
- Barnabas, M.; Awakan, O.J.; Rotimi, D.E.; Akanji, M.A.; Adeyemi, O.S. Exploring redox imbalance and inflammation for asthma therapy. Mol. Biol. Rep. 2023, 50, 7851–7865. [Google Scholar] [CrossRef]
- Dittrich, A.M.; Meyer, H.A.; Krokowski, M.; Quarcoo, D.; Ahrens, B.; Kube, S.M.; Witzenrath, M.; Esworthy, R.S.; Chu, F.F.; Hamelmann, E. Glutathione Peroxidase-2 protects from allergen-induced airway inflammation in mice. Eur. Respir. J. 2010, 35, 1148–1154. [Google Scholar] [CrossRef]
- Albano, G.D.; Gagliardo, R.P.; Montalbano, A.M.; Profita, M. Overview of the mechanisms of oxidative stress: Impact in inflammation of the airway diseases. Antioxidants 2022, 11, 2237. [Google Scholar] [CrossRef]
- Liang, Z.; Wu, L.; Deng, X.; Liang, Q.; Xu, Y.; Deng, R.; Lv, L.; Ji, M.; Hao, Z.; He, J. The antioxidant rosmarinic acid ameliorates oxidative lung damage in experimental allergic asthma via modulation of NADPH oxidases and antioxidant enzymes. Inflammation 2020, 43, 1902–1912. [Google Scholar] [CrossRef]
- You, I.-S.; Sharma, S.; Fadriquela, A.; Bajgai, J.; Thi, T.T.; Rahman, M.H.; Sung, J.; Kwon, H.-U.; Lee, S.-Y.; Kim, C.-S.; et al. Antioxidant properties of hydrogen gas attenuates oxidative stress in airway epithelial cells. Molecules 2021, 26, 6375. [Google Scholar] [CrossRef]
- Cheng, D.; Long, J.; Zhao, L.; Liu, J. Hydrogen: A Rising Star in gas medicine as a mitochondria-targeting nutrient via activating Keap1-Nrf2 antioxidant system. Antioxidants 2023, 12, 2062. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zhang, J.; Chen, Y.; Qiu, Y.; Luo, Z.; Zhao, S.; Du, L.; Tian, D. Hydrogen protects lung from hypoxia/re-oxygenation injury by reducing hydroxyl radical production and inhibiting inflammatory responses. Sci. Rep. 2018, 8, 8004. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Dong, K.; Guan, J.; He, J. Hydrogen attenuates radiation-induced intestinal damage by reducing oxidative stress and inflammatory response. Int. Immunopharmacol. 2020, 84, 106517. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.H.; Bajgai, J.; Fadriquela, A.; Sharma, S.; Trinh Thi, T.; Akter, R.; Goh, S.H.; Kim, C.-S.; Lee, K.-J. Redox effects of molecular hydrogen and its therapeutic efficacy in the treatment of neurodegenerative diseases. Processes 2021, 9, 308. [Google Scholar] [CrossRef]
- Nishimaki, K.; Asada, T.; Ohsawa, I.; Nakajima, E.; Ikejima, C.; Yokota, T.; Kamimura, N.; Ohta, S. Effects of molecular hydrogen assessed by an animal model and a randomized clinical study on mild cognitive impairment. Curr. Alzheimer Res. 2018, 15, 482–492. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, W.; Rahman, M.H.; Bajgai, J.; Abdul-Nasir, S.; Mo, C.; Ma, H.; Goh, S.H.; Bomi, K.; Jung, H.; Kim, C.-S.; et al. Hydrogen Gas Inhalation Alleviates Airway Inflammation and Oxidative Stress on Ovalbumin-Induced Asthmatic BALB/c Mouse Model. Antioxidants 2024, 13, 1328. https://doi.org/10.3390/antiox13111328
He W, Rahman MH, Bajgai J, Abdul-Nasir S, Mo C, Ma H, Goh SH, Bomi K, Jung H, Kim C-S, et al. Hydrogen Gas Inhalation Alleviates Airway Inflammation and Oxidative Stress on Ovalbumin-Induced Asthmatic BALB/c Mouse Model. Antioxidants. 2024; 13(11):1328. https://doi.org/10.3390/antiox13111328
Chicago/Turabian StyleHe, Wenjing, Md. Habibur Rahman, Johny Bajgai, Sofian Abdul-Nasir, Chaodeng Mo, Hui Ma, Seong Hoon Goh, Kim Bomi, Hyeran Jung, Cheol-Su Kim, and et al. 2024. "Hydrogen Gas Inhalation Alleviates Airway Inflammation and Oxidative Stress on Ovalbumin-Induced Asthmatic BALB/c Mouse Model" Antioxidants 13, no. 11: 1328. https://doi.org/10.3390/antiox13111328