N-3 Fatty Acids in Seafood Influence the Association Between the Composite Dietary Antioxidant Index and Depression: A Community-Based Prospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Ethical Approval
2.3. Assessment of Depression
2.4. Assessment of Food Consumption and Nutrients Intake
2.5. Assessment of Composite Dietary Antioxidant Index
2.6. Data Collection
2.7. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Dietary Intakes
3.3. Associations Between Seafood Consumption and the Risk of Depression
3.4. Correlations Between CDAI and BDI Scores According to N-3 PUFA Status
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Depression and Other Common Mental Disorders: Global Health Estimates; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Bueno-Notivol, J.; Gracia-García, P.; Olaya, B.; Lasheras, I.; López-Antón, R.; Santabárbara, J. Prevalence of depression during the COVID-19 outbreak: A meta-analysis of community-based studies. Int. J. Clin. Health Psychol. 2021, 21, 100196. [Google Scholar] [CrossRef] [PubMed]
- National Center for Mental Health. National Mental Health Survey 2021; Ministry of Health and Welfare, National Center for Mental Health: Sejong, Republic of Korea, 2021.
- Ortega, M.A.; Fraile-Martínez, Ó.; García-Montero, C.; Alvarez-Mon, M.A.; Lahera, G.; Monserrat, J.; Llavero-Valero, M.; Gutiérrez-Rojas, L.; Molina, R.; Rodríguez-Jimenez, R.; et al. Biological Role of Nutrients, Food and Dietary Patterns in the Prevention and Clinical Management of Major Depressive Disorder. Nutrients 2022, 14, 3099. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.; Joo, M.; Hong, H.; Kang, H. The Relationship of Lifestyle Risk Factors and Depression in Korean Adults: A Moderating Effect of Overall Nutritional Adequacy. Nutrients 2021, 13, 2626. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Kim, Y.; Je, Y. Fish consumption and risk of depression: Epidemiological evidence from prospective studies. Asia Pac. Psychiatry 2018, 10, e12335. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Huang, C.; Cui, Y.; Momma, H.; Niu, K.; Nagatomi, R. Dietary seaweed intake and depressive symptoms in Japanese adults: A prospective cohort study. Nutr. J. 2019, 18, 58. [Google Scholar] [CrossRef]
- Shafiei, F.; Salari-Moghaddam, A.; Larijani, B.; Esmaillzadeh, A. Adherence to the Mediterranean diet and risk of depression: A systematic review and updated meta-analysis of observational studies. Nutr. Rev. 2019, 77, 230–239. [Google Scholar] [CrossRef]
- Albanese, E.; Lombardo, F.L.; Dangour, A.D.; Guerra, M.; Acosta, D.; Huang, Y.; Jacob, K.S.; Llibre Rodriguez, J.d.J.; Salas, A.; Schönborn, C.; et al. No association between fish intake and depression in over 15,000 older adults from seven low and middle income countries–the 10/66 study. PLoS ONE 2012, 7, e38879. [Google Scholar] [CrossRef]
- Hoffmire, C.A.; Block, R.C.; Thevenet-Morrison, K.; van Wijngaarden, E. Associations between omega-3 poly-unsaturated fatty acids from fish consumption and severity of depressive symptoms: An analysis of the 2005–2008 National Health and Nutrition Examination Survey. Prostaglandins Leukot. Essent. Fat. Acids 2012, 86, 155–160. [Google Scholar] [CrossRef]
- Meyer, B.J.; Kolanu, N.; Griffiths, D.A.; Grounds, B.; Howe, P.R.; Kreis, I.A. Food groups and fatty acids associated with self-reported depression: An analysis from the Australian National Nutrition and Health Surveys. Nutrition 2013, 29, 1042–1047. [Google Scholar] [CrossRef]
- Grosso, G.; Micek, A.; Marventano, S.; Castellano, S.; Mistretta, A.; Pajak, A.; Galvano, F. Dietary n-3 PUFA, fish consumption and depression: A systematic review and meta-analysis of observational studies. J. Affect. Disord. 2016, 205, 269–281. [Google Scholar] [CrossRef]
- Grosso, G.; Galvano, F.; Marventano, S.; Malaguarnera, M.; Bucolo, C.; Drago, F.; Caraci, F. Omega-3 fatty acids and depression: Scientific evidence and biological mechanisms. Oxid. Med. Cell Longev. 2014, 313570. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Xu, X.; Sun, Y.; Lu, X.; Zhao, L. Association of composite dietary antioxidant index with depression and all-cause mortality in middle-aged and elderly population. Sci. Rep. 2024, 14, 9809. [Google Scholar] [CrossRef] [PubMed]
- Luu, H.N.; Wen, W.; Li, H.; Dai, Q.; Yang, G.; Cai, Q.; Xiang, Y.B.; Gao, Y.T.; Zheng, W.; Shu, X.O. Are dietary antioxidant intake indices correlated to oxidative stress and inflammatory marker levels? Antioxid. Redox Signal. 2015, 22, 951–959. [Google Scholar] [CrossRef] [PubMed]
- Gawron-Skarbek, A.; Guligowska, A.; Prymont-Przymińska, A.; Nowak, D.; Kostka, T. The Anti-Inflammatory and Antioxidant Impact of Dietary Fatty Acids in Cardiovascular Protection in Older Adults May Be Related to Vitamin C Intake. Antioxidants 2023, 12, 267. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Nutrition, immunity and COVID-19. BMJ Nutr. Prev. Health 2020, 3, 74–92. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Han, B.G.; KoGES group. Cohort Profile: The Korean Genome and Epidemiology Study (KoGES) Consortium. Int. J. Epidemiol. 2017, 46, e20. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.T.; Ward, C.H.; Mendelson, M.; Mock, J.; Erbaugh, J. An inventory for measuring depression. Arch. Gen. Psychiatry 1961, 4, 561–571. [Google Scholar] [CrossRef]
- Jo, S.A.; Park, M.H.; Jo, I.; Ryu, S.H.; Han, C. Usefulness of Beck Depression Inventory (BDI) in the Korean elderly population. Int. J. Geriatr. Psychiatry 2007, 22, 218–223. [Google Scholar] [CrossRef]
- Beck, A.T.; Steer, R.A.; Carbin, M.G. Psychometric properties of the Beck Depression Inventory: Twenty-five years of evaluation. Clin. Psychol. Rev. 1988, 8, 77–100. [Google Scholar] [CrossRef]
- Park, S.J.; Kim, M.S.; Lee, H.J. The association between dietary pattern and depression in middle-aged Korean adults. Nutr. Res. Pract. 2019, 13, 316–322. [Google Scholar] [CrossRef]
- Park, Y.; Jung, J.Y.; Kim, Y.S.; Chung, K.S.; Song, J.H.; Kim, S.Y.; Kim, E.Y.; Kang, Y.A.; Park, M.S.; Chang, J.; et al. Relationship between depression and lung function in the general population in Korea: A retrospective cross-sectional study. Int. J. Chron. Obstruct. Pulmon. Dis. 2018, 13, 2207–2213. [Google Scholar] [CrossRef] [PubMed]
- Ahn, Y.; Kwon, E.; Shim, J.E.; Park, M.K.; Joo, Y.; Kimm, K.; Park, C.; Kim, D.H. Validation and reproducibility of food frequency questionnaire for Korean genome epidemiologic study. Eur. J. Clin. Nutr. 2007, 61, 1435–1441. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Kim, Y. Psychosocial stress accompanied by an unhealthy eating behavior is associated with abdominal obesity in Korean adults: A community-based prospective cohort study. Front. Nutr. 2022, 9, 949012. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Agricultural Sciences. Food Composition Table, 10th revision ed.; Rural Development Administration: Wanju, Republic of Korea, 2021.
- Shim, Y.J.; Paik, H.Y. Reanalysis of 2007 Korean national health and nutrition examination survey (2007 KNHANES) results by CAN-Pro 3.0 nutrient database. Korean J. Nutr. 2007, 42, 577–595. [Google Scholar] [CrossRef]
- Wright, M.E.; Mayne, S.T.; Stolzenberg-Solomon, R.Z.; Li, Z.; Pietinen, P.; Taylor, P.R.; Virtamo, J.; Albanes, D. Development of a comprehensive dietary antioxidant index and application to lung cancer risk in a cohort of male smokers. Am. J. Epidemiol. 2004, 160, 68–76. [Google Scholar] [CrossRef]
- Yang, Y.; Je, Y. Fish consumption and depression in Korean adults: The Korea National Health and Nutrition Examination Survey, 2013-2015. Eur. J. Clin. Nutr. 2018, 72, 1142–1149. [Google Scholar] [CrossRef]
- Shin, H.; Jang, W.; Kim, Y. Association between seafood intake and depression in Korean adults: Analysis of data from the 2014–2020 Korea National Health and Nutrition Examination Survey. J. Nutr. 2023, 56, 702–713. [Google Scholar] [CrossRef]
- Elstgeest, L.E.M.; Visser, M.; Penninx, B.W.J.H.; Colpo, M.; Bandinelli, S.; Brouwer, I.A. Bidirectional associations between food groups and depressive symptoms: Longitudinal findings from the Invecchiare in Chianti (InCHIANTI) study. Br. J. Nutr. 2019, 121, 439–450. [Google Scholar] [CrossRef]
- Smith, K.J.; Sanderson, K.; McNaughton, S.A.; Gall, S.L.; Dwyer, T.; Venn, A.J. Longitudinal associations between fish consumption and depression in young adults. Am. J. Epidemiol. 2014, 179, 1228–1235. [Google Scholar] [CrossRef]
- Irala-Estévez, J.D.; Groth, M.; Johansson, L.; Oltersdorf, U.; Prättälä, R.; Martínez-González, M.A. A systematic review of socio-economic differences in food habits in Europe: Consumption of fruit and vegetables. Eur. J. Clin. Nutr. 2000, 54, 706–714. [Google Scholar] [CrossRef]
- Ju, S.Y.; Jee, J.H.; Hee-Young, P. Socioeconomic, nutrient, and health risk factors associated with dietary patterns in adult populations from 2001 Korean National Health and Nutrition Survey. J. Nutr. Health 2005, 38, 219–225. [Google Scholar]
- Jang, W.; Cho, J.H.; Lee, D.; Kim, Y. Trends in Seafood Consumption and Factors Influencing the Consumption of Seafood Among the Old Adults Based on the Korea National Health and Nutrition Examination Survey 2009~2019. J. Korean Soc. Food Sci. Nutr. 2022, 51, 651–659. [Google Scholar] [CrossRef]
- Kesse-Guyot, E.; Touvier, M.; Andreeva, V.A.; Jeandel, C.; Ferry, M.; Hercberg, S.; Galan, P. Cross-sectional but not longitudinal association between n-3 fatty acid intake and depressive symptoms: Results from the SU.VI.MAX 2 study. Am. J. Epidemiol. 2012, 175, 979–987. [Google Scholar] [CrossRef] [PubMed]
- Horikawa, C.; Otsuka, R.; Kato, Y.; Nishita, Y.; Tange, C.; Rogi, T.; Kawashima, H.; Shibata, H.; Ando, F.; Shimokata, H. Longitudinal Association between n-3 Long-Chain Polyunsaturated Fatty Acid Intake and Depressive Symptoms: A Population-Based Cohort Study in Japan. Nutrients 2018, 10, 1655. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, Y.J.; Sawada, N.; Mimura, M.; Shikimoto, R.; Nozaki, S.; Hamazaki, K.; Uchitomi, Y.; Tsugane, S. Dietary fish, n-3 polyunsaturated fatty acid consumption, and depression risk in Japan: A population-based prospective cohort study. Transl. Psychiatry 2017, 7, e1242. [Google Scholar] [CrossRef]
- Yang, X.; Sheng, W.; Sun, G.Y.; Lee, J.C. Effects of fatty acid unsaturation numbers on membrane fluidity and α-secretase-dependent amyloid precursor protein processing. Neurochem. Int. 2011, 58, 321–329. [Google Scholar] [CrossRef]
- Calder, P.C.; Yaqoob, P.; Harvey, D.J.; Watts, A.; Newsholme, E.A. Incorporation of fatty acids by concanavalin A-stimulated lymphocytes and the effect on fatty acid composition and membrane fluidity. Biochem. J. 1994, 300 Pt 2, 509–518. [Google Scholar] [CrossRef]
- Vaidyanathan, V.V.; Rao, K.R.; Sastry, P.S. Regulation of diacylglycerol kinase in rat brain membranes by docosahexaenoic acid. Neurosci. Lett. 1994, 179, 171–174. [Google Scholar] [CrossRef]
- Bowen, R.A.; Clandinin, M.T. Dietary low linolenic acid compared with docosahexaenoic acid alter synaptic plasma membrane phospholipid fatty acid composition and sodium-potassium ATPase kinetics in developing rats. J. Neurochem. 2002, 83, 764–774. [Google Scholar] [CrossRef]
- Latour, A.; Grintal, B.; Champeil-Potokar, G.; Hennebelle, M.; Lavialle, M.; Dutar, P.; Potier, B.; Billard, J.M.; Vancassel, S.; Denis, I. Omega-3 fatty acids deficiency aggravates glutamatergic synapse and astroglial aging in the rat hippocampal CA1. Aging Cell 2013, 12, 76–84. [Google Scholar] [CrossRef]
- Potier, B.; Billard, J.M.; Rivière, S.; Sinet, P.M.; Denis, I.; Champeil-Potokar, G.; Grintal, B.; Jouvenceau, A.; Kollen, M.; Dutar, P. Reduction in glutamate uptake is associated with extrasynaptic NMDA and metabotropic glutamate receptor activation at the hippocampal CA1 synapse of aged rats. Aging Cell 2010, 9, 722–735. [Google Scholar] [CrossRef] [PubMed]
- Réus, G.Z.; Abelaira, H.M.; Tuon, T.; Titus, S.E.; Ignácio, Z.M.; Rodrigues, A.L.; Quevedo, J. Glutamatergic NMDA Receptor as Therapeutic Target for Depression. Adv. Protein Chem. Struct. Biol. 2016, 103, 169–202. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Cao, Z.; Hou, Y.; Yang, H.; Wang, X.; Xu, C. The associations of dietary patterns with depressive and anxiety symptoms: A prospective study. BMC Med. 2023, 21, 307. [Google Scholar] [CrossRef] [PubMed]
- Grases, G.; Colom, M.A.; Sanchis, P.; Grases, F. Possible relation between consumption of different food groups and depression. BMC Psychol. 2019, 7, 14. [Google Scholar] [CrossRef] [PubMed]
- Umegaki, H.; Iimuro, S.; Araki, A.; Sakurai, T.; Iguchi, A.; Yoshimura, Y.; Ohashi, Y.; Ito, H. Association of higher carbohydrate intake with depressive mood in elderly diabetic women. Nutr. Neurosci. 2009, 12, 267–271. [Google Scholar] [CrossRef]
- Oh, J.; Yun, K.; Chae, J.H.; Kim, T.S. Association Between Macronutrients Intake and Depression in the United States and South Korea. Front. Psychiatry 2020, 11, 207. [Google Scholar] [CrossRef]
- Cheng, Z.; Fu, F.; Lian, Y.; Zhan, Z.; Zhang, W. Low-carbohydrate-diet score, dietary macronutrient intake, and depression among adults in the United States. J. Affect. Disord. 2024, 352, 125–132. [Google Scholar] [CrossRef]
- Perry, V.H.; Cunningham, C.; Holmes, C. Systemic infections and inflammation affect chronic neurodegeneration. Nat. Rev. Immunol. 2007, 7, 161–167. [Google Scholar] [CrossRef]
- Dowlati, Y.; Herrmann, N.; Swardfager, W.; Liu, H.; Sham, L.; Reim, E.K.; Lanctôt, K.L. A meta-analysis of cytokines in major depression. Biol. Psychiatry 2010, 67, 446–457. [Google Scholar] [CrossRef]
- Sears, B.; Ricordi, C. Anti-inflammatory nutrition as a pharmacological approach to treat obesity. J. Obes. 2011, 2011, 431985. [Google Scholar] [CrossRef]
- Kovačević, S.; Nestorov, J.; Matić, G.; Elaković, I. Fructose-enriched diet induces inflammation and reduces antioxidative defense in visceral adipose tissue of young female rats. Eur. J. Nutr. 2017, 56, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.F.; Wang, C.Y.; Wang, J.H.; Wang, Q.N.; Li, S.J.; Wang, H.O.; Zhou, F.; Li, J.M. Short-Chain Fatty Acids Ameliorate Depressive-like Behaviors of High Fructose-Fed Mice by Rescuing Hippocampal Neurogenesis Decline and Blood-Brain Barrier Damage. Nutrients 2022, 14, 1882. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ding, J.; Liang, J. Associations of Dietary Vitamin A and Beta-Carotene Intake with Depression. A Meta-Analysis of Observational Studies. Front. Nutr. 2022, 9, 881139. [Google Scholar] [CrossRef] [PubMed]
- Dehghan, P.; Nejati, M.; Vahid, F.; Almasi-Hashiani, A.; Saleh-Ghadimi, S.; Parsi, R.; Jafari-Vayghan, H.; Shivappa, N.; R Hébert, J. The association between dietary inflammatory index, dietary antioxidant index, and mental health in adolescent girls: An analytical study. BMC Public. Health 2022, 22, 1513. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Li, H.; Liang, L.; Jin, T.; Zhang, G.; Bradley, J.L.; Peberdy, M.A.; Ornato, J.P.; Wijesinghe, D.S.; Tang, W. Effects of ω-3 PUFA and ascorbic acid combination on post-resuscitation myocardial function. Biomed. Pharmacother. 2021, 133, 110970. [Google Scholar] [CrossRef]
- Arganini, C.; Saba, A.; Comitato, R.; Virgili, F.; Turrini, A. Gender differences in food choice and dietary intake in modern western societies. Public. Health-Soc. Behav. Health 2012, 4, 83–102. [Google Scholar]
- Giltay, E.J.; Gooren, L.J.; Toorians, A.W.; Katan, M.B.; Zock, P.L. Docosahexaenoic acid concentrations are higher in women than in men because of estrogenic effects. Am. J. Clin. Nutr. 2004, 80, 1167–1174. [Google Scholar] [CrossRef]
Quintile 1 | Quintile 2 | Quintile 3 | Quintile 4 | Quintile 5 | p-Value † | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Men | |||||||||||
No. of participants | 275 | 276 | 276 | 276 | 276 | ||||||
Median (g/d) | 14.8 | 26.1 | 37.3 | 52.2 | 81.4 | ||||||
Range (g/d) | 0.4–20.7 | 20.8–31.3 | 31.3–44.8 | 44.9–62.4 | 62.4–272.9 | ||||||
BDI score | 5.3 ± 0.2 | 5.5 ± 0.2 | 5.9 ± 0.3 | 5.7 ± 0.3 | 4.9 ± 0.2 | 0.035 | |||||
Age (years) | 51.3 ± 0.3 | 50.6 ± 0.3 | 50.6 ± 0.3 | 50.9 ± 0.3 | 50.3 ± 0.3 | 0.272 | |||||
BMI (kg/m2) | 24.1 ± 0.2 | 24.7 ± 0.2 | 24.3 ± 0.2 | 24.8 ± 0.2 | 25.3 ± 0.2 | <0.001 | |||||
Current drinker | 182 (66.2) | 206 (74.6) | 208 (75.4) | 213 (77.2) | 215 (77.9) | 0.012 | |||||
Current smoker | 77 (28.0) | 81 (29.4) | 81 (29.4) | 93 (33.7) | 102 (37.0) | 0.127 | |||||
Physical activity, ≥30 min/d | 136 (49.5) | 164 (59.4) | 149 (54.0) | 156 (56.5) | 171 (62.0) | 0.032 | |||||
Monthly income, ≥2 million KRW | 206 (74.9) | 219 (79.4) | 224 (81.2) | 223 (80.8) | 232 (84.1) | 0.102 | |||||
Education, ≥college | 83 (30.2) | 82 (29.7) | 104 (37.7) | 104 (37.7) | 119 (43.1) | 0.003 | |||||
Marital status, married | 265 (96.4) | 266 (96.4) | 272 (98.6) | 272 (98.6) | 269 (97.5) | 0.257 | |||||
Women | |||||||||||
No. of participants | 237 | 237 | 237 | 237 | 237 | ||||||
Median (g/d) | 12.6 | 21.5 | 32.6 | 44.9 | 72.2 | ||||||
Range (g/d) | 0.3–17.0 | 17.1–26.9 | 26.9–37.7 | 37.8–55.7 | 55.7–224.9 | ||||||
BDI score | 7.1 ± 0.3 | 6.5 ± 0.3 | 6.0 ± 0.3 | 6.3 ± 0.3 | 6.2 ± 0.3 | 0.067 | |||||
Age (years) | 51.3 ± 0.4 | 50.5 ± 0.4 | 50.7 ± 0.4 | 49.9 ± 0.3 | 50.1 ± 0.3 | 0.033 | |||||
BMI (kg/m2) | 24.7 ±0.2 | 23.9 ± 0.2 | 24.5 ± 0.2 | 24.3 ± 0.2 | 24.8 ± 0.2 | 0.008 | |||||
Current drinker | 60 (25.3) | 67 (28.3) | 78 (32.9) | 65 (27.4) | 75 (31.7) | 0.347 | |||||
Current smoker | 4 (1.7) | 3 (1.3) | 2 (0.8) | 5 (2.1) | 5 (2.1) | 0.809 | |||||
Physical activity, ≥30 min/d | 114 (48.1) | 131 (55.3) | 136 (57.4) | 132 (55.7) | 153 (64.6) | 0.010 | |||||
Monthly income, ≥2 million KRW | 142 (59.9) | 153 (64.6) | 169 (71.3) | 183 (77.2) | 174 (73.4) | <0.001 | |||||
Education, ≥college | 23 (9.7) | 38 (16.0) | 42 (17.7) | 27 (11.4) | 51 (21.5) | 0.002 | |||||
Marital status, married | 210 (88.6) | 214 (90.3) | 220 (92.8) | 226 (95.4) | 217 (91.6) | 0.085 | |||||
Menopausal status | 0.296 | ||||||||||
Premenopause | 98 (41.4) | 126 (53.2) | 111 (46.8) | 120 (50.6) | 131 (55.3) | ||||||
Menopause, current HRT use | 11 (4.6) | 11 (4.6) | 13 (5.5) | 12 (5.1) | 11 (4.6) | ||||||
Menopause, past HRT use | 28 (11.8) | 19 (8.0) | 29 (12.2) | 32 (13.5) | 28 (11.8) | ||||||
Menopause, non-HRT use | 89 (37.6) | 75 (31.7) | 77 (32.5) | 66 (27.9) | 62 (26.2) | ||||||
Menopause, unknown HRT use | 11 (4.6) | 6 (2.5) | 7 (3.0) | 7 (3.0) | 5 (2.1) |
Food Consumption (g/1000 kcal) | Quintile 1 | Quintile 2 | Quintile 3 | Quintile 4 | Quintile 5 | p-Trend † | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SE | Mean | SE | Mean | SE | Mean | SE | Mean | SE | ||
Men | |||||||||||
Grains | 438.9 | 3.7 | 411.6 | 3.7 | 410.0 | 4.0 | 383.7 | 3.4 | 359.4 | 4.1 | <0.001 |
Potatoes | 5.6 | 0.4 | 6.0 | 0.4 | 6.8 | 0.5 | 6.6 | 0.5 | 7.0 | 0.5 | 0.019 |
Legumes | 19.7 | 1.5 | 20.8 | 1.5 | 21.2 | 1.5 | 21.1 | 1.2 | 23.7 | 1.4 | 0.052 |
Nuts and seeds | 0.4 | 0.1 | 0.5 | 0.1 | 0.6 | 0.1 | 0.8 | 0.1 | 0.6 | 0.1 | 0.010 |
Fruits | 104.0 | 4.0 | 98.5 | 3.9 | 117.6 | 4.9 | 117.8 | 4.5 | 133.5 | 5.5 | <0.001 |
Vegetables | 30.4 | 1.1 | 33.5 | 1.1 | 36.1 | 1.0 | 41.9 | 1.3 | 45.6 | 1.5 | <0.001 |
Mushrooms | 3.6 | 0.2 | 3.4 | 0.2 | 3.7 | 0.2 | 5.0 | 0.3 | 5.3 | 0.4 | <0.001 |
Meats | 19.8 | 0.8 | 25.0 | 1.0 | 27.6 | 1.0 | 30.9 | 1.1 | 31.9 | 1.2 | <0.001 |
Eggs | 6.0 | 0.4 | 6.6 | 0.4 | 6.6 | 0.4 | 6.8 | 0.5 | 7.5 | 0.5 | 0.019 |
Fish and shellfish | 7.9 | 0.2 | 13.6 | 0.2 | 18.6 | 0.3 | 25.5 | 0.4 | 40.4 | 1.0 | <0.001 |
Seaweeds | 0.5 | 0.0 | 0.6 | 0.0 | 0.6 | 0.0 | 0.7 | 0.0 | 0.8 | 0.1 | <0.001 |
Milk and dairy products | 54.7 | 3.8 | 53.5 | 3.3 | 50.5 | 3.2 | 53.0 | 3.3 | 60.7 | 3.6 | 0.152 |
Oils and sugars | 3.8 | 0.2 | 4.2 | 0.2 | 3.3 | 0.2 | 3.7 | 0.2 | 3.6 | 0.2 | 0.206 |
Women | |||||||||||
Grains | 429.0 | 4.9 | 406.3 | 4.7 | 384.9 | 4.7 | 369.3 | 4.2 | 342.0 | 5.0 | <0.001 |
Potatoes | 9.9 | 0.7 | 10.0 | 0.6 | 10.8 | 0.7 | 10.8 | 0.7 | 11.7 | 0.7 | 0.037 |
Legumes | 18.8 | 1.5 | 20.8 | 1.7 | 25.0 | 1.6 | 22.8 | 1.4 | 24.1 | 1.3 | 0.017 |
Nuts and seeds | 0.7 | 0.2 | 0.7 | 0.1 | 0.6 | 0.1 | 0.9 | 0.1 | 1.0 | 0.1 | 0.010 |
Fruits | 159.6 | 6.7 | 161.4 | 5.9 | 196.3 | 8.0 | 179.9 | 6.3 | 192.1 | 6.9 | <0.001 |
Vegetables | 38.7 | 1.6 | 43.0 | 1.6 | 47.6 | 1.5 | 50.7 | 1.6 | 62.4 | 2.2 | <0.001 |
Mushrooms | 4.2 | 0.3 | 5.0 | 0.3 | 4.7 | 0.4 | 5.8 | 0.3 | 7.1 | 0.4 | <0.001 |
Meats | 14.6 | 0.9 | 17.9 | 0.9 | 18.1 | 0.9 | 19.6 | 0.9 | 22.3 | 1.0 | <0.001 |
Eggs | 6.3 | 0.4 | 6.5 | 0.4 | 7.1 | 0.5 | 7.6 | 0.5 | 7.1 | 0.4 | 0.097 |
Fish and shellfish | 7.6 | 0.2 | 13.4 | 0.3 | 18.7 | 0.3 | 25.3 | 0.5 | 41.1 | 1.2 | <0.001 |
Seaweeds | 0.7 | 0.0 | 0.9 | 0.1 | 0.9 | 0.1 | 1.0 | 0.1 | 1.2 | 0.1 | <0.001 |
Milk and dairy products | 73.5 | 5.0 | 75.1 | 4.6 | 88.2 | 5.4 | 80.0 | 4.3 | 88.7 | 4.5 | 0.022 |
Oils and sugars | 2.5 | 0.2 | 2.2 | 0.2 | 2.1 | 0.2 | 2.2 | 0.2 | 2.0 | 0.2 | 0.048 |
Quintile 1 | Quintile 2 | Quintile 3 | Quintile 4 | Quintile 5 | p-Trend † | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SE | Mean | SE | Mean | SE | Mean | SE | Mean | SE | ||
Men | |||||||||||
Total energy (kcal/d) | 1722 | 22.8 | 1901 | 22.7 | 2041 | 26.2 | 2108 | 27.7 | 2339 | 34.2 | <0.001 |
Protein (g/d) | 29.7 | 0.2 | 31.4 | 0.2 | 32.6 | 0.2 | 34.5 | 0.3 | 37.6 | 0.3 | <0.001 |
Fat (g/d) | 14.2 | 0.3 | 16.0 | 0.3 | 16.5 | 0.3 | 17.6 | 0.3 | 18.7 | 0.3 | <0.001 |
Carbohydrate (g/d) | 185.2 | 0.7 | 179.9 | 0.7 | 177.5 | 0.7 | 173.3 | 0.8 | 168.1 | 0.8 | <0.001 |
Vitamin A (RE/d) | 201.6 | 5.4 | 220.7 | 5.4 | 227.1 | 5.4 | 243.4 | 5.5 | 266.6 | 7.0 | <0.001 |
Vitamin B1 (mg/d) | 0.5 | 0.0 | 0.6 | 0.0 | 0.6 | 0.0 | 0.6 | 0.0 | 0.6 | 0.0 | <0.001 |
Vitamin B2 (mg/d) | 0.5 | 0.0 | 0.5 | 0.0 | 0.5 | 0.0 | 0.5 | 0.0 | 0.6 | 0.0 | <0.001 |
Niacin (mg/d) | 7.3 | 0.1 | 7.8 | 0.1 | 7.9 | 0.1 | 8.6 | 0.1 | 9.2 | 0.1 | <0.001 |
Vitamin C (mg/d) | 49.9 | 1.3 | 51.3 | 1.4 | 52.9 | 1.2 | 57.3 | 1.3 | 61.8 | 1.4 | <0.001 |
Zinc (µg/d) | 3.9 | 0.0 | 4.2 | 0.0 | 4.3 | 0.0 | 4.5 | 0.0 | 4.9 | 0.0 | <0.001 |
Vitamin B6 (mg/d) | 0.8 | 0.0 | 0.8 | 0.0 | 0.8 | 0.0 | 0.9 | 0.0 | 0.9 | 0.0 | <0.001 |
Folate (µg/d) | 105.4 | 1.9 | 108.0 | 2.0 | 108.5 | 1.9 | 117.2 | 2.1 | 123.5 | 2.2 | <0.001 |
Retinol (µg/d) | 27.2 | 1.3 | 30.7 | 1.1 | 31.6 | 1.0 | 35.8 | 1.2 | 44.2 | 1.4 | <0.001 |
Carotene (µg/d) | 1012 | 29.3 | 1100 | 30.9 | 1128 | 30.8 | 1203 | 31.5 | 1283 | 40.3 | <0.001 |
Fiber (g/d) | 3.1 | 0.1 | 3.0 | 0.1 | 3.1 | 0.1 | 3.1 | 0.1 | 3.2 | 0.1 | 0.013 |
Vitamin E (mg/d) | 3.9 | 0.1 | 4.2 | 0.1 | 4.4 | 0.1 | 4.8 | 0.1 | 5.2 | 0.1 | <0.001 |
Women | |||||||||||
Total energy (kcal/d) | 1519 | 25.5 | 1628 | 26.3 | 1735 | 25.7 | 1843 | 28.2 | 2040 | 33.3 | <0.001 |
Protein (g/d) | 29.7 | 0.3 | 31.0 | 0.3 | 32.8 | 0.3 | 34.2 | 0.3 | 37.8 | 0.4 | <0.001 |
Fat (g/d) | 13.0 | 0.3 | 14.1 | 0.3 | 15.0 | 0.3 | 16.1 | 0.3 | 17.7 | 0.3 | <0.001 |
Carbohydrate (g/d) | 188.5 | 0.8 | 184.8 | 0.8 | 181.9 | 0.8 | 178.1 | 0.8 | 171.6 | 0.9 | <0.001 |
Vitamin A (RE/d) | 219.9 | 7.3 | 229.1 | 7.8 | 257.2 | 7.7 | 267.7 | 7.7 | 313.4 | 9.9 | <0.001 |
Vitamin B1 (mg/d) | 0.5 | 0.0 | 0.5 | 0.0 | 0.6 | 0.0 | 0.6 | 0.0 | 0.6 | 0.0 | <0.001 |
Vitamin B2 (mg/d) | 0.5 | 0.0 | 0.5 | 0.0 | 0.5 | 0.0 | 0.6 | 0.0 | 0.6 | 0.0 | <0.001 |
Niacin (mg/d) | 7.1 | 0.1 | 7.4 | 0.1 | 7.7 | 0.1 | 8.1 | 0.1 | 8.9 | 0.1 | <0.001 |
Vitamin C (mg/d) | 63.0 | 1.8 | 63.8 | 1.6 | 73.5 | 2.1 | 73.2 | 2.0 | 81.3 | 2.2 | <0.001 |
Zinc (µg/d) | 4.0 | 0.0 | 4.2 | 0.0 | 4.3 | 0.0 | 4.4 | 0.1 | 4.7 | 0.1 | <0.001 |
Vitamin B6 (mg/d) | 0.8 | 0.0 | 0.9 | 0.0 | 0.9 | 0.0 | 0.9 | 0.0 | 1.0 | 0.0 | <0.001 |
Folate (µg/d) | 116.8 | 2.6 | 116.7 | 2.5 | 126.8 | 2.8 | 130.6 | 2.6 | 143.2 | 2.8 | <0.001 |
Retinol (µg/d) | 29.6 | 1.3 | 33.3 | 1.4 | 37.8 | 1.5 | 40.5 | 1.4 | 44.7 | 1.5 | <0.001 |
Carotene (µg/d) | 1120 | 43.0 | 1145 | 44.1 | 1286 | 44.0 | 1325 | 43.3 | 1569 | 57.9 | <0.001 |
Fiber (g/d) | 3.4 | 0.1 | 3.3 | 0.1 | 3.6 | 0.1 | 3.6 | 0.1 | 3.8 | 0.1 | <0.001 |
Vitamin E (mg/d) | 4.2 | 0.1 | 4.4 | 0.1 | 4.9 | 0.1 | 5.2 | 0.1 | 5.9 | 0.1 | <0.001 |
Model 1 * | Model 2 † | ||||||||
---|---|---|---|---|---|---|---|---|---|
No. of Cases (%) | Person-Years | HR | 95% CI | p-Value | HR | 95% CI | p-Value | ||
Men | |||||||||
Quintile 1 (n = 275) | 32 (11.6) | 1907.2 | 1.00 (Reference) | - | 1.00 (Reference) | - | |||
Quintile 2 (n = 276) | 26 (9.4) | 1833.9 | 0.85 | 0.51–1.43 | 0.543 | 0.85 | 0.50–1.44 | 0.534 | |
Quintile 3 (n = 276) | 37 (13.4) | 1930.9 | 1.15 | 0.72–1.84 | 0.569 | 1.00 | 0.60–1.67 | 0.988 | |
Quintile 4 (n = 276) | 31 (11.2) | 1889.4 | 0.98 | 0.60–1.61 | 0.938 | 0.89 | 0.52–1.54 | 0.675 | |
Quintile 5 (n = 276) | 39 (14.1) | 1895.5 | 1.23 | 0.77–1.97 | 0.380 | 1.28 | 0.73–2.24 | 0.386 | |
Women | |||||||||
Quintile 1 (n = 237) | 54 (22.8) | 1543.7 | 1.00 (Reference) | - | 1.00 (Reference) | - | |||
Quintile 2 (n = 237) | 45 (19.0) | 1601.9 | 0.78 | 0.53–1.16 | 0.220 | 0.83 | 0.55–1.25 | 0.377 | |
Quintile 3 (n = 237) | 51 (21.5) | 1606.6 | 0.89 | 0.60–1.30 | 0.532 | 0.94 | 0.62–1.42 | 0.775 | |
Quintile 4 (n = 237) | 45 (19.0) | 1667.8 | 0.75 | 0.50–1.11 | 0.149 | 0.87 | 0.56–1.34 | 0.517 | |
Quintile 5 (n = 237) | 31 (13.1) | 1669.3 | 0.49 | 0.32–0.77 | 0.001 | 0.58 | 0.35–0.98 | 0.040 |
Men | Women | ||||
---|---|---|---|---|---|
r | p | r | p | ||
n-3 PUFAs (g/d) | |||||
Low (<1.14) * | −0.021 | 0.611 | Low (<1.07) | −0.030 | 0.492 |
High (≥1.14) | −0.051 | 0.217 | High (≥1.07) | −0.146 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moon, J.; Kim, M.; Kim, Y. N-3 Fatty Acids in Seafood Influence the Association Between the Composite Dietary Antioxidant Index and Depression: A Community-Based Prospective Cohort Study. Antioxidants 2024, 13, 1413. https://doi.org/10.3390/antiox13111413
Moon J, Kim M, Kim Y. N-3 Fatty Acids in Seafood Influence the Association Between the Composite Dietary Antioxidant Index and Depression: A Community-Based Prospective Cohort Study. Antioxidants. 2024; 13(11):1413. https://doi.org/10.3390/antiox13111413
Chicago/Turabian StyleMoon, Junhwi, Minji Kim, and Yangha Kim. 2024. "N-3 Fatty Acids in Seafood Influence the Association Between the Composite Dietary Antioxidant Index and Depression: A Community-Based Prospective Cohort Study" Antioxidants 13, no. 11: 1413. https://doi.org/10.3390/antiox13111413
APA StyleMoon, J., Kim, M., & Kim, Y. (2024). N-3 Fatty Acids in Seafood Influence the Association Between the Composite Dietary Antioxidant Index and Depression: A Community-Based Prospective Cohort Study. Antioxidants, 13(11), 1413. https://doi.org/10.3390/antiox13111413