Functional Characterization of the Ciliate Stylonychia lemnae Serotonin N-Acetyltransferase, a Pivotal Enzyme in Melatonin Biosynthesis and Its Overexpression Leads to Peroxidizing Herbicide Tolerance in Rice
<p>(<b>A</b>) Phylogenetic tree of <span class="html-italic">Stylonichia lemnae SNAT</span> and archaeal ortholog genes. The scale bar represents 0.4 substitutions per site. <span class="html-italic">S. lemnae SNAT</span> is written in bold for emphasis. (<b>B</b>) Amino acid sequence identity and similarity between <span class="html-italic">S. lemnae</span> SNAT and human Naa50 (SNAT). The conserved acetyl-coenzyme-A-binding sites are underlined. Dashes denote gaps. GenBank accession numbers are archaea SNAT (NC_002689), <span class="html-italic">E. coli</span> RimI (WP_137442509), human Naa50 (BAB14397), rice SNAT3 (AK241100), and <span class="html-italic">S. lemnae</span> SNAT (CDW73552).</p> "> Figure 2
<p>(<b>A</b>) Nucleotide alignment between native (red; CDW73552) and synthetic (blue) <span class="html-italic">S. lemnae SNAT</span>. Identity is denoted by stars. Black letters, amino acids. (<b>B</b>) Modification of <span class="html-italic">S. lemnae SNAT</span> codons. The nucleotide sequence of synthetic <span class="html-italic">S. lemnae SNAT</span> was manually codon optimized with reference to the rice <span class="html-italic">SNAT2</span> codon.</p> "> Figure 3
<p><span class="html-italic">Escherichia coli</span> expression, affinity purification of SlSNAT recombinant protein, and its enzymatic characteristics. (<b>A</b>) Expression of SlSNAT as a thioredoxin (Trx) fusion protein using a pET32b vector and expression of SlSNAT as an N-terminal His × 6-tagged SlSNAT protein using a pET300 vector. (<b>B</b>) Serotonin <span class="html-italic">N</span>-acetyltransferase enzyme activity (SNAT) as a function of various substrates. The expression of recombinant SlSNAT protein is marked by arrows.</p> "> Figure 4
<p>SNAT enzyme kinetic analysis. Serotonin <span class="html-italic">N</span>-acetyltransferase enzyme activity as a function of (<b>A</b>) various temperature, (<b>B</b>) various pH, (<b>C</b>) <span class="html-italic">K</span><sub>m</sub> and <span class="html-italic">V</span><sub>max</sub> values for serotonin substrate, (<b>D</b>) <span class="html-italic">K</span><sub>m</sub> and <span class="html-italic">V</span><sub>max</sub> values for 5-methoxytryptamine (5-MT) substrate. Values are means ± SD (n = 3). nd, not detectable.</p> "> Figure 5
<p>Generation of <span class="html-italic">SlSNAT</span> overexpression transgenic rice and the melatonin content of rice seedlings. (<b>A</b>) RT-PCR analyses of transgenic and wild-type 7-day-old rice seedlings. (<b>B</b>) Melatonin contents of 7-day-old rice seedlings. (<b>C</b>) Photograph of seed length. (<b>D</b>) Photograph of lamina angle in 3-week-old rice seedling. (<b>E</b>) Measurement of lamina angle. WT, wild type; <span class="html-italic">UBQ5</span>, rice ubiquitin 5 gene. GenBank accession number of <span class="html-italic">UBQ5</span> is AK061988. Different letters indicate significant differences among lines (Tukey’s HSD; <span class="html-italic">p</span> < 0.05).</p> "> Figure 6
<p>Enhanced senescence tolerance in <span class="html-italic">SlSNAT</span>-overexpressing transgenic rice plants. (<b>A)</b> Photograph of senescence-treated 5-week-old rice leaves. (<b>B</b>) Chlorophyll contents in senescence-treated rice leaves. (<b>C</b>) Malondialdehyde (MDA) contents. (<b>D</b>) Gene expression profiles of senescence marker genes by RT-PCR. (<b>E</b>) Gene expression profiles of senescence marker genes by quantitative RT-PCR. Fourth and fifth leaves from 5-week-old rice plants grown in soil pots were detached and this was followed by senescence treatment for 12 days. WT, wild type; <span class="html-italic">UBQ5</span>, rice ubiquitin 5 gene. GenBank accession numbers are <span class="html-italic">Osl2</span> (AF251073), <span class="html-italic">Osl20</span> (AF251067), <span class="html-italic">Osl185</span> (AF251075), and <span class="html-italic">UBQ5</span> (AK061988). Different letters indicate significant differences among the lines (Tukey’s HSD; <span class="html-italic">p</span> < 0.05).</p> "> Figure 7
<p>Enhanced tolerance of SlSNAT-overexpressing transgenic rice plants against peroxidizing herbicide butafenacil. (<b>A</b>) Photograph of rice seedlings after butafenacil treatment. (<b>B</b>) Effect of butafenacil treatment on cellular leakage. (<b>C</b>) MDA production from butafenacil-treated rice seedlings. (<b>D</b>) H<sub>2</sub>O<sub>2</sub> content from butafenacil-treated rice seedlings. Seven-day-old rice seedlings were challenged with 0.1 µM butafenacil for 48 h. WT, wild type; FW, fresh weight. Different letters indicate significant differences among the lines (Tukey’s HSD; <span class="html-italic">p</span> < 0.05).</p> "> Figure 8
<p>Sequence comparison and phylogenetic tree of SNAT in the Ciliophora and dinoflagellates. (<b>A</b>) Consensus amino acid sequences among three SNAT proteins including the human Naa50, the ciliate <span class="html-italic">Stylonichia lemnae</span> SNAT, and the dinoflagellate <span class="html-italic">Polarella glacialis</span> SNAT. Bold red letters indicate consensus amino acids. Dashes denote gaps for maximizing alignment of conserved residues. A coenzyme-A-binding pocket is underlined. (<b>B</b>) Phylogenetic tree analysis of SNAT proteins from the ciliates and dinoflagellates. GenBank accession numbers of various <span class="html-italic">SNAT</span> genes are as follows: human <span class="html-italic">Naa50</span> (BAB14397), <span class="html-italic">Cladocopium goreaui</span> (CAI3999280); <span class="html-italic">Effrenium voratum</span> (CAJ1361560); <span class="html-italic">Polarella glacialis</span> (CAK0876941); <span class="html-italic">Stylonichia lemna</span> (CCKQ01002460); <span class="html-italic">Paramecium sonneborni</span> (CAD8056267); <span class="html-italic">Pseudocohnilembus persalius</span> (KRX00195); <span class="html-italic">Tetrahymena thermophila</span> SB210 (XP_001025216); <span class="html-italic">Ichthyophthirius multifiliis</span> (XP-004035125). The scale bar represents 0.3 substitutions per site.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Codon-Optimized Chemical Synthesis of S. lemnae SNAT Gene
2.2. Escherichia coli Expression, Production, and Recombinant S. lemnae SNAT Protein Purification
2.3. Homology and Phylogenetic Analysis
2.4. Enzymatic Assays for SNAT
2.5. Generation of Transgenic Rice Plants Overexpressing the Synthetic SlSNAT Gene
2.6. Melatonin Measurement from the SlSNAT Overexpression (SlSNAT-OE) Transgenic Rice Plants
2.7. Senescence Treatment in the SlSNAT-OE Transgenic Rice Plants
2.8. Total RNA Isolation and Reverse Transcription–Polymerase Chain Reaction (RT-PCR)
2.9. Tolerance against Peroxidizing Herbicide Butafenacil
2.10. Statistical Analysis
3. Results
3.1. Selection and Chemical Synthesis of Stylonychia lemnae SNAT Gene
3.2. Purification of Recombinant SlSNAT and Enzyme Kinetic Analysis
3.3. Transgenic Rice Plants Overexpressing SlSNAT
3.4. Elevated Melatonin Levels Confer Senescence Tolerance
3.5. Melatonin Confers Tolerance against the Peroxidizing Herbicide Butafenacil
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hardeland, R. Melatonin in the evolution of plants and other phototrophs. Melatonin Res. 2019, 2, 10–36. [Google Scholar] [CrossRef]
- Lerner, A.B.; Case, J.D.; Takahashi, Y. Isolation of melatonin, a pineal factor that lightness melanocytes. J. Am. Chem. Soc. 1958, 80, 2587. [Google Scholar] [CrossRef]
- Lerner, A.B.; Case, J.D.; Heinzelmann, R.V. Structure of melatonin. J. Am. Chem. Soc. 1959, 81, 6084–6085. [Google Scholar] [CrossRef]
- Reiter, R.J.; Tan, D.X.; Galano, A. Melatonin: Exceeding expectations. Physiology 2014, 56, 325–333. [Google Scholar] [CrossRef]
- Suzen, S.; Atayik, M.C.; Sirinzade, H.; Entezari, B.; Gurer-Orhan, H.; Cakatay, U. Melatonin and redox homeostasis. Melatonin Res. 2022, 5, 304–324. [Google Scholar] [CrossRef]
- Kuwabara, W.M.T.; Gomes, P.R.L.; Andrade-Silva, J.; Soares, J.M., Jr.; Amaral, F.G.; Cipolla-Neto, J. Melatonin and its ubiquitous effects on cell function and survival: A review. Melatonin Res. 2022, 5, 192–208. [Google Scholar] [CrossRef]
- Lee, H.Y.; Hwang, O.J.; Back, K. Phytomelatonin as a signaling molecule for protein quality control via chaperone, autophagy, and ubiquitin–proteasome systems in plants. J. Exp. Bot. 2022, 73, 5863–5873. [Google Scholar] [CrossRef]
- Al-Ansari, N.; Samuel, S.M.; Büsselberg, D. Unveiling the protective role of melatonin in osteosarcoma: Current knowledge and limitations. Biomolecules 2024, 14, 145. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.M.; Zhang, Y. Melatonin: A well-documented antioxidant with conditional pro-oxidant actions. J. Pineal Res. 2014, 57, 131–146. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Yu, Y.; Shen, Y.; Liu, Q.; Zhao, Z.; Sharma, R.; Reiter, R.J. Melatonin synthesis and function: Evolutionary history in animals and plants. Front. Endocrinol. 2019, 10, 249. [Google Scholar] [CrossRef]
- Back, K. Melatonin metabolism, signaling and possible roles in plants. Plant J. 2021, 105, 376–391. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Xie, Y.; Zhang, Z.; Chen, L. Melatonin: A multifunctional factor in plants. Int. J. Mol. Sci. 2018, 19, 1528. [Google Scholar] [CrossRef]
- Liu, G.; Hu, Q.; Zhang, X.; Jiang, J.; Zhang, Y.; Zhang, Z. Melatonin biosynthesis and signal transduction in plants in response to environmental conditions. J. Exp. Bot. 2022, 73, 5818–5827. [Google Scholar] [CrossRef] [PubMed]
- Klein, D.C. Arylakylamine N-acetyltransferase: “The timezyme”. J. Biol. Chem. 2007, 282, 4233–4237. [Google Scholar] [CrossRef] [PubMed]
- Erland, L.A.E. Views and perspectives on the indoleamines serotonin and melatonin in plants: Past, present and future. Plant Signal. Behav. 2024, 19, e2366545. [Google Scholar] [CrossRef]
- Lee, H.Y.; Hwang, O.J.; Back, K. Functional characterization of tobacco (Nicotiana benthamiana) serotonin N-acetyltransferases (NbSNAT1 and NbSNAT2). Melatonin Res. 2021, 4, 507–521. [Google Scholar]
- Slominski, A.; Tobin, D.J.; Zmijewski, M.A.; Wortsman, J.; Paus, R. Melatonin in the skin: Synthesis, metabolism and functions. Trends Endocrinol. Metab. 2007, 19, 17–24. [Google Scholar] [CrossRef]
- Lee, K.; Back, K. Human Naa50 harbors serotonin N-acetyltransferase activity and its overexpression enhances melatonin biosynthesis resulting in osmotic stress tolerance in rice. Antioxidants 2023, 12, 319. [Google Scholar] [CrossRef]
- Voisin, P.; Namboodiri, M.A.; Klein, D.C. Arylamine N-acetyltransferase and arylalkylamine N-acetyltransferase in the mammalian pineal gland. J. Biol. Chem. 1984, 259, 10913–10918. [Google Scholar] [CrossRef]
- Lee, K.; Choi, G.H.; Back, K. Functional characterization of serotonin N-acetyltransferase in archaeon Thermoplasma volcanium. Antioxidants 2022, 11, 596. [Google Scholar] [CrossRef]
- Lee, K.; Back, K. Escherichia coli RimI encodes serotonin N-acetyltransferase activity and its overexpression leads to enhanced growth and melatonin biosynthesis. Biomolecules 2023, 13, 908. [Google Scholar] [CrossRef] [PubMed]
- Dereeper, A.; Audic, S.; Claverie, J.M.; Blanc, G. BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC Evol. Biol. 2010, 10, 8. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Bian, L.; Jiao, Z.; Keke, Y.; Wan, Y.; Zhang, G.; Guo, D. Molecular cloning and characterization of a grapevine (Vitis vinifera L.) serotonin N-acetyltransferase (VvSNAT2) gene involved in plant defense. BMC Genom. 2019, 20, 880. [Google Scholar] [CrossRef] [PubMed]
- Himmelbach, A.; Zierold, U.; Hensel, G.; Riechen, J.; Douchkov, D.; Schweizer, P.; Kumlehn, J. A set of modular binary vectors for transformation of cereals. Plant Physiol. 2007, 145, 1192–1200. [Google Scholar] [CrossRef]
- Lee, H.J.; Duke, M.V.; Birk, J.H.; Yamamoto, M.; Duke, S.O. Biochemical and physiological effects of benzheterocycles and related compounds. J. Agric. Food Chem. 1995, 43, 2722–2727. [Google Scholar] [CrossRef]
- Porra, R.J.; Thompson, W.A.; Kriedmann, P.E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochem. Biophys. Acta 1989, 975, 384–394. [Google Scholar] [CrossRef]
- Lee, K.; Back, K. Overexpression of rice serotonin N-acetyltransferase 1 in transgenic rice plants confers resistance to cadmium and senescence and increases grain yield. J. Pineal Res. 2017, 62, e12392. [Google Scholar] [CrossRef]
- Lee, H.Y.; Back, K. Melatonin-regulated chaperone binding protein plays a key role in cadmium stress tolerance in rice, revealed by the functional characterization of a novel serotonin N-acetyltransferase 3 (SNAT3) in rice. Int. J. Mol. Sci. 2024, 25, 5952. [Google Scholar] [CrossRef]
- Lydon, J.; Duke, S.O. Porphyrin synthesis is required for photobleaching activity of the ρ-nitrosubstituted diphenyl ether herbicides. Pestic. Biochem. Physiol. 1988, 31, 74–83. [Google Scholar] [CrossRef]
- Ganguly, S.; Mummaneni, P.; Steinbach, P.J.; Klein, D.C.; Coon, S.L. Characterization of the Saccharomyces cerevisiae homolog of the melatonin rhythm enzyme arylalkylamine N-acetyltransferase (EC 2.3.1.87). J. Biol. Chem. 2001, 276, 47239–47247. [Google Scholar] [CrossRef]
- Hwang, O.J.; Back, K. Melatonin deficiency confers tolerance to multiple abiotic stresses in rice via decreased brassinosteroid levels. Int. J. Mol. Sci. 2019, 20, 5173. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Luo, J.; Tian, X.; Zhao, Y.; Li, Y.; Wu, X. Progress in understanding oxidative stress, aging, and aging-related diseases. Antioxidants 2024, 13, 394. [Google Scholar] [CrossRef] [PubMed]
- Jajic, I.; Sarna, T.; Strzalka, K. Senescence, stress, and reactive oxygen species. Plants 2015, 4, 393–411. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.H.; Wang, C.H.; Huang, L.T.; Chen, S.C.G. Leaf senescence in rice plants: Cloning and characterization of senescence up-regulated genes. J. Exp. Bot. 2001, 52, 1117–1121. [Google Scholar] [CrossRef]
- Scalla, R.; Matringe, M. Inhibitors of protoporphyrinogen oxidase as herbicides: Diphenyl ethers and related photobleaching molecules. Rev. Weed Sci. 1994, 6, 103–132. [Google Scholar]
- Park, S.; Lee, D.E.; Jang, H.; Byeon, Y.; Kim, Y.S.; Back, K. Melatonin-rich transgenic rice plants exhibit resistance to herbicide-induced oxidative stress. J. Pineal Res. 2013, 54, 258–263. [Google Scholar] [CrossRef]
- Arnao, M.B.; Hernández-Ruiz, J. Melatonin: A new plant hormone and/or a plant master regulator? Trends Plant Sci. 2019, 24, 38–48. [Google Scholar] [CrossRef]
- Mannino, G.; Pernici, C.; Serio, G.; Gentile, C.; Bertea, C.M. Melatonin and phytomelatonin: Chemistry, biosynthesis, metabolism, distribution and bioactivity in plants and animals-an overview. Int. J. Mol. Sci. 2021, 22, 9996. [Google Scholar] [CrossRef]
- Poeggeler, B.; Balzer, I.; Fisher, J.; Behrmann, G.; Hardeland, R. A role of melatonin in dinoflagellates? Acta Endocrinol. 1989, 120 (Suppl. S1), S97. [Google Scholar] [CrossRef]
- Hardeland, R. Melatonin and 5-methoxytryptamine in non-metazoans. Reprod. Nutr. Dev. 1999, 39, 399–408. [Google Scholar] [CrossRef]
- Roopin, M.; Yacobi, Y.Z.; Levy, O. Occurrence, diel patterns, and the influence of melatonin on the photosynthetic performance of cultured Symbiodinium. J. Pineal Res. 2013, 55, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Pöeggeler, B. Pineal hormone melatonin oscillates also in the dinoflagellate Gonyaulax polyedra. Naturwissenschaften 1991, 78, 268–269. [Google Scholar] [CrossRef]
- Fuhrberg, B.; Hardeland, R.; Poeggeler, B.; Behrmann, G. Dramatic rises of melatonin and 5-methoxytryptamine in Gonyaulax exposed to decreased temperature. Biol. Rhythm Res. 1997, 28, 144–150. [Google Scholar] [CrossRef]
- Burkhardt, S.; Hardeland, R. Circadian rhythmicity of tryptophan hydroxylase in the marine dinoflagellate Gonyaulax polyedra stein and the role of tryptophan hydroxylation in bioluminescence. Comp. Biochem. Physiol. 1996, 115B, 411–416. [Google Scholar] [CrossRef]
- Antolin, I.; Obst, B.; Burkhardt, S.; Hardeland, R. antioxidative protection in a high-melatonin organism: The dinoflagellate Gonyaulax poledra is rescued from lethal oxidative stress by strongly elevated, but physiologically possible concentrations of melatonin. J. Pineal Res. 1997, 23, 182–190. [Google Scholar] [CrossRef]
- Okazaki, M.; Higuchi, K.; Hahawa, Y.; Shiraiwa, Y.; Ezura, H. Cloning and characterization of a Chlamydomonas reinhardtii cDNA arylalkylamine N-acetyltransferase and its use in the genetic engineering of melatonin content in the Micro-Tom tomato. J. Pineal Res. 2009, 46, 373–382. [Google Scholar] [CrossRef]
- Tan, D.X.; Reiter, R.J. An evolutionary view of melatonin synthesis and metabolism related to its biological functions in plant. J. Exp. Bot. 2020, 71, 4677–4689. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.; Back, K. Functional Characterization of the Ciliate Stylonychia lemnae Serotonin N-Acetyltransferase, a Pivotal Enzyme in Melatonin Biosynthesis and Its Overexpression Leads to Peroxidizing Herbicide Tolerance in Rice. Antioxidants 2024, 13, 1177. https://doi.org/10.3390/antiox13101177
Lee K, Back K. Functional Characterization of the Ciliate Stylonychia lemnae Serotonin N-Acetyltransferase, a Pivotal Enzyme in Melatonin Biosynthesis and Its Overexpression Leads to Peroxidizing Herbicide Tolerance in Rice. Antioxidants. 2024; 13(10):1177. https://doi.org/10.3390/antiox13101177
Chicago/Turabian StyleLee, Kyungjin, and Kyoungwhan Back. 2024. "Functional Characterization of the Ciliate Stylonychia lemnae Serotonin N-Acetyltransferase, a Pivotal Enzyme in Melatonin Biosynthesis and Its Overexpression Leads to Peroxidizing Herbicide Tolerance in Rice" Antioxidants 13, no. 10: 1177. https://doi.org/10.3390/antiox13101177