Expanding the Applicability of a Third Order Newton-Type Method Free of Bilinear Operators
Abstract
:1. Introduction
2. Semilocal Convergence Using Centered Hypotheses
- A bound forFrom
- A bound forFirst, note thatBesides, we haveThus, we getFinallyOn the other hand, the relationBy definition thenMoreoverTherefore,Then, using and , we obtainThus, .
- that is,
- From the estimate
- SinceMoreover, if is another solution of in , we haveTherefore, the operator is invertible. In particular, we have .
3. A Variant Using Only Divided Differences
4. Numerical Example
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Amat, S.; Busquier, S.; Gutiérrez, J.M. Geometric constructions of iterative functions to solve nonlinear equations. J. Comput. Appl. Math. 2003, 157, 197–205. [Google Scholar] [CrossRef]
- Amat, S.; Busquier, S. Third-order iterative methods under Kantorovich conditions. J. Math. Anal. Appl. 2007, 336, 243–261. [Google Scholar] [CrossRef]
- Ezquerro, J.A.; Hernández, M.A. Halley’s method for operators with unbounded second derivative. Appl. Numer. Math. 2007, 57, 354–360. [Google Scholar] [CrossRef]
- Kou, J.; Li, Y.; Wang, X. A modification of Newton’s method with third-order convergence. Appl. Math. Comput. 2007, 181, 1106–1111. [Google Scholar] [CrossRef]
- Amat, S.; Bermúdez, C.; Busquier, S.; Plaza, S. On a third-order Newton-type method free of bilinear operators. Numer. Linear Algebra Appl. 2010, 17, 639–653. [Google Scholar] [CrossRef]
- Amat, S.; Bermúdez, C.; Busquier, S.; Plaza, S. On two families of high order Newton type methods Original Research Article. Appl. Math. Lett. 2012, 25, 2209–2217. [Google Scholar] [CrossRef]
- Hernández, M.A.; Romero, N. On a characterization of some Newton-like methods of R-order at least three. J. Comput. Appl. Math. 2005, 183, 53–66. [Google Scholar] [CrossRef]
- Hernández, M.A.; Romero, N. General study of iterative processes of R-order at least three under weak convergence conditions. J. Optim. Theor. Appl. 2007, 133, 163–177. [Google Scholar] [CrossRef]
- Amat, S.; Busquier, S.; Gutiérrez, J.M. On the local convergence of secant-type methods. Int. J. Comput. Math. 2004, 81, 1153–1161. [Google Scholar] [CrossRef]
- Argyros, I.K. Improved error bounds for Newton-like iterations under Chen-Yamamoto assumptions. Appl. Math. Lett. 1992, 10, 97–100. [Google Scholar] [CrossRef]
- Argyros, I.K. A Newton-Kantorovich theorem for equations involving m-Fréchet differentiable operators and applications in radiative transfer. J. Comput. Appl. Math. 2001, 131, 149–159. [Google Scholar] [CrossRef]
- Argyros, I.K.; Szidarovszky, F. Theory and Applications of Iterative Methods; CRC-Press Inc.: Boca Raton, FL, USA, 1993. [Google Scholar]
- Brown, P.N. A local convergence theory for combined inexact-Newton finite-difference projection methods. SIAM J. Numer. Anal. 1987, 24, 402–434. [Google Scholar] [CrossRef]
- Gutiérrez, J.M. A new semi-local convergence theorem for Newton’s method. J. Comput. Appl. Math. 1997, 79, 131–145. [Google Scholar] [CrossRef]
- Kantorovich, L.V.; Akilov, G.P. Functional Analysis; Pergamon Press: Oxford, UK, 1982. [Google Scholar]
- Magreñán, Á.A. Estudio de la Dinámica del método de Newton Amortiguado. Ph.D. Thesis, The Universidad de La Rioja, La Rioja, Spain, 2013. [Google Scholar]
- Rheinboldt, W.C. An Adaptice Continuation Process for Solving Systems of Nonlinear Equations; Polish Academy of Sciences, Banach Center Publications: Greifswald, Germany, 1977; Volume 3, pp. 129–142. [Google Scholar]
- Ypma, T.J. Local convergence of inexact Newton’s method. SIAM J. Numer. Anal. 1984, 21, 583–590. [Google Scholar] [CrossRef]
- Amat, S.; Busquier, S. A modified secant method for semismooth equations. Appl. Math. Lett. 2003, 16, 877–881. [Google Scholar] [CrossRef]
- Amat, S.; Busquier, S. Convergence and numerical analysis of a family of two-step Steffensen’s methods. Comput. Math. Appl. 2005, 49, 13–22. [Google Scholar] [CrossRef]
- Hernández, M.A.; Rubio, M.J. A uniparametric family of iterative processes for solving nondifferentiable equations. J. Math. Anal. Appl. 2002, 275, 821–834. [Google Scholar] [CrossRef]
- Hernández, M.A.; Rubio, M.J. Semilocal convergence of the secant method under mild convergence conditions of differentiability. Comput. Math. Appl. 2002, 44, 277–285. [Google Scholar] [CrossRef]
- Argyros, I.K.; Hilout, S. Extending the Newton-Kantorovich hypothesis for solving equations. J. Comput. Appl. Math. 2010, 234, 2993–3006. [Google Scholar] [CrossRef]
- Kou, J. Some new sixth-order methods for solving non-linear equations. Appl. Math. Comput. 2007, 189, 647–651. [Google Scholar] [CrossRef]
- Kou, J.; Li, Y. A family of modified super-Halley methods with fourth-order convergence. Appl. Math. Comput. 2007, 189, 366–370. [Google Scholar]
- Kou, J.; Wang, X. Some variants of Chebyshev-Halley methods for solving nonlinear equations. Appl. Math. Comput. 2007, 189, 1839–1843. [Google Scholar] [CrossRef]
- Chun, C. Construction of third-order modifications of Newton’s method. Appl. Math. Comput. 2007, 189, 662–668. [Google Scholar] [CrossRef]
- Argyros, I.K.; Hilout, S. Weaker conditions for the convergence of Newton’s method. J. Complexity 2012, 28, 364–387. [Google Scholar] [CrossRef]
- Amat, S.; Busquier, S.; Candela, V.F. A class of quasi-Newton Generalized Steffensen’s methods on Banach spaces. J. Comput. Appl. Math. 2002, 149, 397–406. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amat, S.; Busquier, S.; Bermúdez, C.; Magreñán, Á.A. Expanding the Applicability of a Third Order Newton-Type Method Free of Bilinear Operators. Algorithms 2015, 8, 669-679. https://doi.org/10.3390/a8030669
Amat S, Busquier S, Bermúdez C, Magreñán ÁA. Expanding the Applicability of a Third Order Newton-Type Method Free of Bilinear Operators. Algorithms. 2015; 8(3):669-679. https://doi.org/10.3390/a8030669
Chicago/Turabian StyleAmat, Sergio, Sonia Busquier, Concepción Bermúdez, and Ángel Alberto Magreñán. 2015. "Expanding the Applicability of a Third Order Newton-Type Method Free of Bilinear Operators" Algorithms 8, no. 3: 669-679. https://doi.org/10.3390/a8030669
APA StyleAmat, S., Busquier, S., Bermúdez, C., & Magreñán, Á. A. (2015). Expanding the Applicability of a Third Order Newton-Type Method Free of Bilinear Operators. Algorithms, 8(3), 669-679. https://doi.org/10.3390/a8030669