A Novel Multi-Dimensional Composition Method Based on Time Series Similarity for Array Pulse Wave Signals Detecting
<p>(<b>a</b>) Schematic diagram of the test locations of Cun, Guan, and Chi; (<b>b</b>) Diagram of different static pressure tests.</p> "> Figure 2
<p>Acquisition devices for array sensor signals and single sensor signals. (<b>a</b>) Photograph of the pulse wave acquisition system (PWAS); (<b>b</b>) schematic diagram of the circuit structure of the sensor; (<b>c</b>) schematic diagram of the micro-electro-mechanical system (MEMS) sensor array; (<b>d</b>) photograph of the single-point pressure vibration generator (SPVG).</p> "> Figure 3
<p>(<b>a</b>) Schematic diagram of the pulse wave signal processing flow; (<b>b</b>) block diagram of the Algorithm I process; (<b>c</b>) schematic diagram of spatial reconstruction of arrayed pulse wave signals; (<b>d</b>) block diagram of the Algorithm II process; (<b>e</b>) block diagram of the Algorithm III process.</p> "> Figure 3 Cont.
<p>(<b>a</b>) Schematic diagram of the pulse wave signal processing flow; (<b>b</b>) block diagram of the Algorithm I process; (<b>c</b>) schematic diagram of spatial reconstruction of arrayed pulse wave signals; (<b>d</b>) block diagram of the Algorithm II process; (<b>e</b>) block diagram of the Algorithm III process.</p> "> Figure 4
<p>Signals and their spectra: (<b>a</b>) time domain diagram of valid pulse wave signal; (<b>b</b>) frequency domain diagram of valid pulse wave signal; (<b>c</b>) time domain diagram of noise signal; (<b>d</b>) frequency domain diagram of noise signal.</p> "> Figure 5
<p>(<b>a</b>) Diagram of SPVG and ZM-300 mutual extrusion; (<b>b</b>) diagram of the test area at three different locations on the PAWS sensor array; (<b>c</b>) pulse waveform graphs collected by twelve sensors in the PAWS sensor array; (<b>d</b>) at location 1, waveforms of the standard input signal and the signal processed by the three algorithms.</p> "> Figure 6
<p>Schematic diagram of sensor contact between SPVG and PAWS at test location A and B.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pulse Wave Acquisition System
2.2. Single-Point Vibration Source Generator
2.3. Spatial Multi-Dimensional Pulse Wave Signal Processing Method
3. Experimental Results
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Conflicts of Interest
References
- Chirakanphaisarn, N.; Thongkanluang, T.; Chiwpreechar, Y. Heart rate measurement and electrical pulse signal analysis for subjects span of 20–80 years. In Proceedings of the 2016 6th International Conference on Digital Information Processing and Communications, Beirut, Lebanon, 21–23 April 2016; pp. 112–120. [Google Scholar]
- Cruickshank, K.; Riste, L.; Anderson, S.G.; Wright, J.S.; Dunn, G.; Gosling, R.G. Aortic Pulse-Wave Velocity and Its Relationship to Mortality in Diabetes and Glucose Intolerance: An Integrated Index of Vascular Function? Circulation 2002, 106, 2085–2090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koizumi, M.; Shimizu, H.; Shimomura, K.; Oh-I, S.; Tomita, Y.; Kudo, T.; Iizuka, K.-I.; Mori, M. Relationship between hyperinsulinemia and pulse wave velocity in moderately hyperglycemic patients. Diabetes Res. Clin. Pr. 2003, 62, 17–21. [Google Scholar] [CrossRef]
- Huang, C.-J.; Lin, H.-J.; Liao, W.-L.; Ceurvels, W.; Su, S.-Y. Diagnosis of traditional Chinese medicine constitution by integrating indices of tongue, acoustic sound, and pulse. Eur. J. Integr. Med. 2019, 27, 114–120. [Google Scholar] [CrossRef]
- Jiang, Z.; Guo, C.; Zang, J.; Lu, G.; Zhang, D. Features fusion of multichannel wrist pulse signal based on KL-MGDCCA and decision level combination. Biomed. Signal Process. Control 2020, 57, 101751. [Google Scholar] [CrossRef]
- De Moura, N.G.R.; Ferreira, A.D.S. Pulse Waveform Analysis of Chinese Pulse Images and Its Association with Disability in Hypertension. J. Acupunct. Meridian Stud. 2016, 9, 93–98. [Google Scholar] [CrossRef]
- Jin, C.; Xia, C.; Zhang, S.; Wang, L.; Wang, Y.; Yan, H. A Wearable Combined Wrist Pulse Measurement System Using Airbags for Pressurization. Sensors 2019, 19, 386. [Google Scholar] [CrossRef] [Green Version]
- Chung, Y.-F.; Hu, C.-S.; Yeh, C.-C.; Luo, C.-H. How to standardize the pulse-taking method of traditional Chinese medicine pulse diagnosis. Comput. Biol. Med. 2013, 43, 342–349. [Google Scholar] [CrossRef]
- Murphy, J.C.; Morrison, K.; McLaughlin, J.; Manoharan, G.; Adgey, A.J. An Innovative Piezoelectric-Based Method for Measuring Pulse Wave Velocity in Patients With Hypertension. J. Clin. Hypertens 2011, 13, 497–505. [Google Scholar] [CrossRef]
- Clemente, F.; Arpaia, P.; Cimmino, P. A piezo-film-based measurement system for global haemodynamic assessment. Physiol. Meas. 2010, 31, 697–714. [Google Scholar] [CrossRef]
- McLaughlin, J.; McNeill, M.; Braun, B.; McCormack, P.D. Piezoelectric sensor determination of arterial pulse wave velocity. Physiol. Meas. 2003, 24, 693–702. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Zuo, W.; Zhang, D. A Compound Pressure Signal Acquisition System for Multichannel Wrist Pulse Signal Analysis. IEEE Trans. Instrum. Meas. 2014, 63, 1556–1565. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, B.; Chen, Y.; Feng, X. Biocompatible and Ultra-Flexible Inorganic Strain Sensors Attached to Skin for Long-Term Vital Signs Monitoring. IEEE Electron Device Lett. 2016, 37, 496–499. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, S.; Zeng, J.; Ren, X.; Chee, A.J.Y.; Yiu, B.Y.S.; Chung, W.C.; Yang, Y.; Yu, A.C.H.; Roberts, R.C.; et al. High Sensitivity, Wearable, Piezoresistive Pressure Sensors Based on Irregular Microhump Structures and Its Applications in Body Motion Sensing. Small 2016, 12, 3827–3836. [Google Scholar] [CrossRef] [PubMed]
- Loukogeorgakis, S.; Dawson, R.; Phillips, N.; Martyn, C.N.; Greenwald, S.E. Validation of a device to measure arterial pulse wave velocity by a photoplethysmographic method. Physiol. Meas. 2002, 23, 581–596. [Google Scholar] [CrossRef]
- Lovinsky, L.S. Urgent Problems of Metrological Assurance of Optical Pulse Oximetry. IEEE Trans. Instrum. Meas. 2006, 55, 869–875. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, D.; Lu, G. A Novel Multichannel Wrist Pulse System with Different Sensor Arrays. IEEE Trans. Instrum. Meas. 2015, 64, 2020–2034. [Google Scholar] [CrossRef]
- Couade, M.; Pernot, M.; Prada, C.; Messas, E.; Emmerich, J.; Bruneval, P.; Criton, A.; Fink, M.; Tanter, M. Quantitative Assessment of Arterial Wall Biomechanical Properties Using Shear Wave Imaging. Ultrasound Med. Biol. 2010, 36, 1662–1676. [Google Scholar] [CrossRef]
- Huang, C.; Ren, T.-L.; Luo, J. Effects of parameters on the accuracy and precision of ultrasound-based local pulse wave velocity measurement: A simulation study. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2014, 61, 2001–2018. [Google Scholar] [CrossRef]
- Xue, Y.; Su, Y.; Zhang, C.; Xu, X.; Gao, Z.; Wu, S.; Zhang, Q.; Wu, X. Full-field wrist pulse signal acquisition and analysis by 3D Digital Image Correlation. Opt. Lasers Eng. 2017, 98, 76–82. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, S.; Zhang, Y.; Geng, X.; Zhang, J.; Zhang, H. A novel flexible pressure sensor array for depth information of radial artery. Sensors Actuators A Phys. 2018, 272, 92–101. [Google Scholar] [CrossRef]
- Luo, C.-H.; Chung, Y.-F.; Hu, C.-S.; Yeh, C.-C.; Si, X.-C.; Feng, D.-H.; Lee, Y.-C.; Huang, S.-I.; Yeh, S.-M.; Liang, C.-H. Possibility of quantifying TCM finger-reading sensations: I. Bi-Sensing Pulse Diagnosis Instrument. Eur. J. Integr. Med. 2012, 4, e255–e262. [Google Scholar] [CrossRef]
- Luo, C.-H.; Su, C.-J.; Huang, T.-Y.; Chung, C.-Y. Non-invasive holistic health measurements using pulse diagnosis: I. Validation by three-dimensional pulse mapping. Eur. J. Integr. Med. 2016, 8, 921–925. [Google Scholar] [CrossRef]
- Hu, C.-S.; Chung, Y.-F.; Yeh, C.-C.; Luo, C.-H. Temporal and Spatial Properties of Arterial Pulsation Measurement Using Pressure Sensor Array. Evid. Based Complement. Altern. Med. 2011, 2012, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Fei, Z. Contemporary Sphygmology in Traditional Chinese Medicine; People’s Medical Publishing House: Beijing, China, 2003; pp. 205–227. [Google Scholar]
- Chou, H.-C.; Lin, K.-J.; Fang, Y.-X.; Liou, J.-F. Development a polymer-based electronic pulse diagnosis instrument for measuring and analyzing pulse wave velocity. Technol. Health Care 2015, 24, S83–S95. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Li, Z.; Zhang, Y.; Zhang, S.; Hou, J.; Zhang, H. A 3D Wrist Pulse Signal Acquisition System for Width Information of Pulse Wave. Sensors 2019, 20, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.-X.; Liu, F. Research on characteristics of pulse delineation in TCM & omnidirectional pulse detecting by electro-pulsograph. In Proceedings of the 2008 IEEE International Symposium on IT in Medicine and Education, Xiamen, China, 12–14 December 2008; pp. 536–538. [Google Scholar]
- Cui, J.; Tu, L.-P.; Zhang, J.-F.; Zhang, S.-L.; Zhang, Z.-F.; Xu, J.-T. Analysis of Pulse Signals Based on Array Pulse Volume. Chin. J. Integr. Med. 2018, 25, 103–107. [Google Scholar] [CrossRef]
- Peng, B.; Luo, C.-H.; Chan, W.Y.; Shieh, M.-D.; Su, C.-J.; Tai, C.-C. Development and Testing of a Prototype for 3D Radial Pulse Image Measurement and Compatible With 1D Pulse Wave Analysis. IEEE Access 2019, 7, 182846–182859. [Google Scholar] [CrossRef]
- Cong-Ying, L. Study on the pressure methods of pulse detecting instrument. In Proceedings of the 2013 IEEE International Conference on Bioinformatics and Biomedicine, Shanghai, China, 18–21 December 2013; pp. 38–42. [Google Scholar]
- Jia, D.; Li, N.; Liu, S.; Li, S. Decision level fusion for pulse signal classification using multiple features. In Proceedings of the 2010 3rd International Conference on Biomedical Engineering and Informatics, Yantai, China, 16–18 October 2010; pp. 843–847. [Google Scholar]
- Keys, R. Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process. 1981, 29, 1153–1160. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Zhang, D.; Lu, G. A Robust Wrist Pulse Acquisition System Based on Multisensor Collaboration and Signal Quality Assessment. IEEE Trans. Instrum. Meas. 2019, 68, 4807–4816. [Google Scholar] [CrossRef]
- Müller, M. Information Retrieval for Music and Motion; Springer: Berlin/Heidelberg, Germany, 2007; pp. 69–84. [Google Scholar] [CrossRef]
- Berndt, D.J.; Clifford, J. Using dynamic time warping to find patterns in time series. In Proceedings of the KDD Workshop, Seattle, WA, USA, 31 July–1 August 1994; pp. 359–370. [Google Scholar]
Algorithm I | Algorithm II | Algorithm III | |
---|---|---|---|
Position 1 | 10.95 | 10.74 | 2.38 |
Position 2 | 12.48 | 11.99 | 2.37 |
Position 3 | 10.81 | 10.81 | 2.34 |
Algorithm I | Algorithm II | Algorithm III | |
---|---|---|---|
Position 1 | −20.68 | −20.17 | −1.28 |
Position 2 | −25.24 | −23.70 | −0.87 |
Position 3 | −20.76 | −20.76 | −0.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, H.; Zhang, Y.; Zhang, J.; Chen, C.; Geng, X.; Zhang, S.; Zhang, H. A Novel Multi-Dimensional Composition Method Based on Time Series Similarity for Array Pulse Wave Signals Detecting. Algorithms 2020, 13, 297. https://doi.org/10.3390/a13110297
Zou H, Zhang Y, Zhang J, Chen C, Geng X, Zhang S, Zhang H. A Novel Multi-Dimensional Composition Method Based on Time Series Similarity for Array Pulse Wave Signals Detecting. Algorithms. 2020; 13(11):297. https://doi.org/10.3390/a13110297
Chicago/Turabian StyleZou, Hongjie, Yitao Zhang, Jun Zhang, Chuanglu Chen, Xingguang Geng, Shaolong Zhang, and Haiying Zhang. 2020. "A Novel Multi-Dimensional Composition Method Based on Time Series Similarity for Array Pulse Wave Signals Detecting" Algorithms 13, no. 11: 297. https://doi.org/10.3390/a13110297