Simulation Tool for Tuning and Performance Analysis of Robust, Tracking, Disturbance Rejection and Aggressiveness Controller
<p>General closed loop diagram with a robust, tracking, disturbance rejection and aggressiveness (RTD-A) controller.</p> "> Figure 2
<p>Flowchart for the simulation tool design.</p> "> Figure 3
<p>Graphical user interface (GUI) for the model order reduction tool.</p> "> Figure 4
<p>For the RTD-A controller tuning tool.</p> "> Figure 5
<p>GUI for analyzing the effect of the RTD-A parameter.</p> "> Figure 6
<p>GUI for the RTD-A controller parameter optimization tool.</p> "> Figure 7
<p>Two tank liquid-level system [<a href="#B4-algorithms-12-00144" class="html-bibr">4</a>].</p> "> Figure 8
<p>Open-loop step response with reduced models.</p> "> Figure 9
<p>Level control system with the RTD-A controller.</p> "> Figure 10
<p>Example 1: Servo response with the RTD-A controller using two tuning methods.</p> "> Figure 11
<p>Example 1: Servo response with the RTD-A controller using optimization algorithms.</p> "> Figure 12
<p>Example 1: Servo response with the RTD-A controller with disturbance and uncertainties.</p> "> Figure 13
<p>Example 1: Servo response with the RTD-A controller with uncertainty using optimization algorithms.</p> "> Figure 14
<p>Example 1: Regulatory response with the RTD-A controller using tuning rules and proportional integral derivative (PID).</p> "> Figure 15
<p>Example 1: Regulatory response with the RTD-A controller using optimization algorithms.</p> "> Figure 16
<p>Response to Tool–III for changing the <span class="html-italic">θ<sub>R</sub></span> parameter.</p> "> Figure 17
<p>Response to Tool III for changing the <span class="html-italic">θ<sub>T</sub></span> parameter.</p> "> Figure 18
<p>Response to Tool III for changing the <span class="html-italic">θ<sub>A</sub></span> parameter.</p> "> Figure 19
<p>Example 1: <span class="html-italic">z</span>-plane plot for the roots of the characteristic equation.</p> "> Figure 20
<p>Pressure control station [<a href="#B38-algorithms-12-00144" class="html-bibr">38</a>].</p> "> Figure 21
<p>Pressure control station with the RTD-A controller.</p> "> Figure 22
<p>Example 2: <span class="html-italic">z</span>-plane plot for the roots of the characteristic equation.</p> "> Figure 23
<p>Comparison of the servo response for the pressure control station with two tuning rules and PID.</p> "> Figure 24
<p>Comparison of the servo response for the pressure control station with optimization algorithms.</p> "> Figure 25
<p>Example 2: Regulatory response for the pressure control station with tuning rules and PID.</p> "> Figure 26
<p>Example 2: Regulatory response for the pressure control station with optimization algorithms.</p> ">
Abstract
:1. Introduction
2. RTD-A Control Scheme
- Predicting the process output;
- Updating the model prediction;
- Computing the control action.
- a = e−Δt/τ, Δt is the sampling time;
- b = K(1 − e−Δt/τ) and m = round(α/Δt).
- .
2.1. Stability Analysis
2.1.1. State Variable Form
2.1.2. Polynomial Form
3. Tool Design
3.1. Tool for Model Order Reduction (Tool-I)
- Skogestad method;
- Two point method;
- Fraction incomplete method.
3.2. Tool for Tuning RTD-A Parameter (Tool-II)
- The Mukati–Ogunnaike method;
- The Kariwala method.
3.3. Tool for Analyzing the Effect of the RTD-A Parameter (Tool-III)
- Servo response (performance of the controller without disturbances);
- Regulatory response (performance of the controller considering only disturbances).
3.3.1. Effect of Robustness Parameter
3.3.2. Effect of the Setpoint Tracking Parameter
3.3.3. Effect of the Disturbance Rejection Parameter
3.3.4. Effect of the Aggressiveness Parameter
3.4. Tool for Optimizing the RTD-A Controller Parameter (Tool-IV)
- Galactic swarm optimization;
- Particle swarm optimization;
- Genetic algorithm;
- Firefly algorithm;
- Grey wolf algorithm.
3.4.1. Galactic Swarm Optimization
3.4.2. Particle Swarm Optimization
3.4.3. Genetic Algorithm
3.4.4. Firefly Algorithm
3.4.5. Grey Wolf Algorithm (GWA)
4. Tool Description
5. Evaluation
5.1. Example 1: Interacting a Two Tank Liquid Level System
5.1.1. Example 1: Closed Loop Stability Analysis
5.2. Example 2: Pressure Control System
5.2.1. Example 2: Closed Loop Stability Analysis
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ruz, M.L.; Garrido, J.; Vazquez, F.; Morilla, F. Interactive Tuning Tool of Proportional-Integral Controllers for First Order Plus Time Delay Processes. Symmetry 2018, 10, 569. [Google Scholar] [CrossRef]
- Lequin, O.; Gevers, M.; Mossberg, M.; Bosmans, E.; Triest, L. Iterative feedback tuning of PID parameters: Comparison with classical tuning rules. Control Eng. Pract. 2003, 11, 1023–1033. [Google Scholar] [CrossRef]
- Dai, A.; Zhou, X.; Liu, X. Design and Simulation of a Genetically Optimized Fuzzy Immune PID Controller fora Novel Grain Dryer. IEEE Access 2017, 5, 14981–14990. [Google Scholar] [CrossRef]
- Bagyaveereswaran, V.; Suryawanshi, S.; Arulmozhivarman, P. RTD-A controller toolbox for MATLAB. In Proceedings of the 2017 Innovations in Power and Advanced Computing Technologies (i-PACT), Vellore, Tamilnadu, India, 21–22 April 2017. [Google Scholar]
- Ender, D.B. Process Control Performance: Not as Good as You Think. Control Eng. 1993, 40, 180–190. Available online: https://www.academia.edu/1340822/Process_control_performance_Not_as_good_as_you_think (accessed on 20 May 2019).
- Chen, Q.; Tan, Y.; Li, J.; Mareels, I. Decentralized PID Control Design for Magnetic Levitation Systems Using Extremum Seeking. IEEE Access 2018, 6, 3059–3067. [Google Scholar] [CrossRef]
- Desborough, L.; Miller, R. Increasing customer value of industrial control performance monitoring -Honeywell experience. In AIChE Symposium Series 326; American Institute of Chemical Engineers: New York, NY, USA, 2002; pp. 172–192. [Google Scholar]
- Kristiansson, B.; Lennartson, B. Robust and optimal tuning of PI and PID controllers. IEEE Proc. Control Theory Appl. 2002, 149, 17–25. [Google Scholar] [CrossRef]
- Hugo, A. Limitations of Model Predictive Controllers. Hydrocarb. Process. 2000, 79, 83–88. [Google Scholar]
- Kaya, I. IMC based automatic tuning method for PID controllers in a Smith predictor configuration. Comput. Chem. Eng. 2004, 28, 281–290. [Google Scholar] [CrossRef]
- Mukati, K.; Ogunnaike, B. Stability analysis and tuning strategies for a novel next generation regulatory controller. In Proceedings of the 2004 American Control Conference, Boston, MA, USA, 30 June–2 July 2004; Volume 5, pp. 4034–4039. [Google Scholar]
- Ogunnaike, B.A.; Mukati, K. An alternative structure for next generation regulatory controllers: Part I: Basic theory for design, development and implementation. J. Process Control 2006, 16, 499–509. [Google Scholar] [CrossRef]
- Mukati, K.; Rasch, M.; Ogunnaike, B.A. An alternative structure for next generation regulatory controllers. Part II: Stability analysis, tuning rules and experimental validation. J. Process. Control. 2009, 19, 272–287. [Google Scholar] [CrossRef]
- Sendjaja, A.Y.; Ng, Z.F.; How, S.S.; Kariwala, V. Analysis and Tuning of RTD-A Controllers. Ind. Eng. Chem. Res. 2011, 50, 3415–3425. [Google Scholar] [CrossRef]
- Aleksei, T.; Eduard, P.; Juri, B. A flexible MATLAB tool for optimal fractional-order PID controller design subject to specifications. In Proceedings of the 31st Chinese Control Conference, Hefei, China, 25–27 July 2012; pp. 4698–4703. [Google Scholar]
- Currie, J. jMPC Toolbox v3. 11 Users Guide. In Industrial Information & Control Centre; AUT University: Auckland, New Zealand, 2011. [Google Scholar]
- Bagyaveereswaran, V.; Mathur, T.D.; Gupta, S.; Arulmozhivarman, P. Performance comparison of next generation controller and MPC in real time for a SISO process with low cost DAQ unit. Alex. Eng. J. 2016, 55, 2515–2524. [Google Scholar] [CrossRef] [Green Version]
- Morales, D.C.; Jimenez-Hornero, J.E.; Vazquez, F.; Morilla, F. Educational Tool for Optimal Controller Tuning Using Evolutionary Strategies. IEEE Trans. Educ. 2012, 55, 48–57. [Google Scholar] [CrossRef]
- Bang, H.; Lee, Y.S. Implementation of a Ball and Plate Control System Using Sliding Mode Control. IEEE Access 2018, 6, 32401–32408. [Google Scholar] [CrossRef]
- Holland, O.T.; Marchand, P. Graphics and GUIs with MATLAB; Chapman and Hall/CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Templos-Santos, J.L.; Aguilar-Mejia, O.; Peralta-Sanchez, E.; Sosa-Cortez, R. Parameter Tuning of PI Control for Speed Regulation of a PMSM Using Bio-Inspired Algorithms. Algorithms 2019, 12, 54. [Google Scholar] [CrossRef]
- Fan, Y.; Shao, J.; Sun, G. Optimized PID Controller Based on Beetle Antennae Search Algorithm for Electro-Hydraulic Position Servo Control System. Sensors 2019, 19, 2727. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Tan, C.; Xu, J.; Wang, Z.; Jin, J.; Man, Y. Pressure Control for a Hydraulic Cylinder Based on a Self-Tuning PID Controller Optimized by a Hybrid Optimization Algorithm. Algorithms 2017, 10, 19. [Google Scholar] [CrossRef]
- Bilal, H. Abed-alguni, Island-based cuckoo search with highly disruptive polynomial mutation. Int. J. Artif. Intell. 2019, 17, 57–82. [Google Scholar]
- Soares, A.; Râbelo, R.; Delbem, A. Optimization based on phylogram analysis. Expert Syst. Appl. 2017, 78, 32–50. [Google Scholar] [CrossRef]
- Shams, M.; Rashedi, E.; Dashti, S.M.; Hakimi, A. Ideal gas optimization algorithm. Int. J. Artif. Intell. 2017, 15, 116–130. [Google Scholar]
- Precup, R.E.; David, R.C. Nature-Inspired Optimization Algorithms for Fuzzy Controlled Servo Systems, 1st ed.; Elsevier: Oxford, UK, 2019. [Google Scholar]
- Skogestad, S. Simple analytic rules for model reduction and PID controller tuning. J. Process. Control. 2003, 13, 291–309. [Google Scholar] [CrossRef] [Green Version]
- Leite, M.S.; Araújo, P.J. Relay Methods and Process Reaction Curves: Practical Applications; In Tech Open: Rijeka, Croatia, 2012; pp. 248–258. [Google Scholar]
- Jose, A. Romagnoli, and Ahmet Palazoglu. In Introduction to Process Control; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Srinivasan, K.; Anbarasan, K. Fuzzy scheduled RTD-A controller design. ISA Trans. 2013, 52, 252–267. [Google Scholar] [CrossRef] [PubMed]
- Muthiah-Nakarajan, V.; Noel, M.M. Galactic Swarm Optimization: A new global optimization metaheuristic inspired by galactic motion. Appl. Soft Comput. 2016, 38, 771–787. [Google Scholar] [CrossRef]
- Poli, R.; Kennedy, J.; Blackwell, T. Particle swarm optimization. Swarm Intell. 2007, 1, 33–57. [Google Scholar] [CrossRef]
- Visioli, A. Optimal tuning of PID controllers for integral and unstable processes. IEEE Proc. Control Theory Appl. 2001, 148, 180–184. [Google Scholar] [CrossRef]
- Yang, X.S. Firefly algorithms for multimodal optimization. In Proceedings of the International Symposium on Stochastic Algorithms, Sapporo, Japan, 26–28 October 2009; pp. 169–178. [Google Scholar]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimize. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Ogata, K. Control System Dynamics, 4th ed.; Pearson Education Inc.: Upper Saddle River, NJ, USA, 2004; pp. 155–156. [Google Scholar]
- Bayaveereswaran, V.; Wilfred, K.J.N.; Sreeraj, S.; Vijay, B. System Identification from step input using Integral equation. Int. J. Appl. Eng. Res. 2013, 8, 2165–2169. [Google Scholar]
Composite Parameter | ||||
---|---|---|---|---|
0.5 | 0.8 | |||
0.9 | 0.8 | 0.1 | ||
0.8 | 0.995 |
Methods | Skogestad | Two Point | Fraction Incomplete |
---|---|---|---|
Reduced Model G(s) | |||
ISE | 0.066 | 0.0518 | 0.0444 |
Parameter | Ogunnaike | Kariwala |
---|---|---|
θR | 0.5 | 0.95 |
θT | 0.9180 | 0.9207 |
θD | 0.5 | 0.0405 |
θA | 0.1971 | 1 |
Specifications | PID | Ogunnaike | Kariwala | GSO | GA | PSO | Fire-Fly | GWA |
---|---|---|---|---|---|---|---|---|
IAE | 9.52 | 9.079 | 7.61 | 6.89 | 6.88 | 7.427 | 6.85 | 6.932 |
Rise Time (s) | 5.87 | 1.641 | 3.578 | 0.22 | 0.1408 | 0.1626 | 0.1407 | 0.14 |
Settling Time (s) | 38.05 | 21.1 | 13.78 | 20.49 | 20.36 | 22.81 | 20.12 | 20.24 |
Overshoot (%) | 20.78 | 33.57 | 12.98 | 29.67 | 31.94 | 56.92 | 29.17 | 35.81 |
Steady State Error (ess) | 2.46 × 10−5 | 0.02 | 0 | 0 | 0 | 0 | 0 | 0 |
Parameter | GSO | GA | PSO | Firefly | GWA |
---|---|---|---|---|---|
Maximum Iteration | 125 | 30 | 30 | 50 | 70 |
Swarm Size | 100 | 50 | 70 | 60 | 50 |
Algorithm | Parameter |
---|---|
PSO | Inertia coefficient = 1 Damping coefficient = 0.99 Acceleration coefficients c1 = 1.5, c2 = 2 |
Firefly | α = 0.2, β = 2, γ = 1 |
GSO | Acceleration coefficients c1 = c2 = c3 = c4 = 2.05 |
Algorithm | ||||
---|---|---|---|---|
GSO | 0.9597 | 0.4782 | 0.8880 | 0.0356 |
GA | 0.9581 | 0.00103 | 0.67 | 0.0211 |
PSO | 0.8931 | 0.2532 | 0.5945 | 0.03 |
Firefly | 0.9663 | 0.0001 | 0.519 | 0.033 |
GWA | 0.9470 | 0.0015 | 0.914 | 0.0016 |
Tuning Method | Ogunnaike | Kariwala | GSO | GA | PSO | FF | GWA |
---|---|---|---|---|---|---|---|
Closed Loop Roots | 0.8300 | 0.0793 | 0.5170 | 0.4389 | 0.5962 | 0.6730 | 0.6754 |
0.3348 | 0.0500 | 0.4072 | 0.5590 | 0.5705 | 0.7277 | 0.7287 | |
0.0704 | 0.0407 | 0.0330 | 0.0327 | 0.0909 | 0.0432 | 0.0531 | |
0.0377 | 0.0364 | 0.0458 | 0.0056 | 0.0371 | 0.0307 | 0.0353 | |
0.0365 | 0.0365 | 0.0365 | 0.0054 | 0.0365 | 0.0365 | 0.0365 |
Tuning Method | Ogunnaike | Kariwala | GSO | GA | PSO | FF | GWA |
---|---|---|---|---|---|---|---|
θR | 0.5 | 0.95 | 0.9597 | 0.9581 | 0.8931 | 0.9663 | 0.947 |
2.7507 × 104 | 2.75 × 103 | 2.217 × 103 | 2.305 × 103 | 5.881 × 103 | 1.854 × 103 | 2.9158 × 103 | |
P(z) when z = 1 | 40.5457 | 4.0546 | 3.2680 | 3.3977 | 8.6687 | 2.7328 | 4.2978 |
P(z) when z = −1 | 1.1878 × 107 | 1.54 × 106 | 1.318 × 106 | 1.3548 × 106 | 2.8480 × 106 | 1.1665 × 106 | 1.6098 × 106 |
Algorithm | ||||
---|---|---|---|---|
Ogunnaike | 0.5 | 0.9876 | 0.5 | 0.003 |
Kariwala | 0.66 | 0.98 | 0.866 | 0.006 |
Algorithm | ||||
---|---|---|---|---|
GSO | 0.5121 | 0.0036 | 0.176 | 0.0352 |
GA | 0.4620 | 0.00101 | 0.2450 | 0.0255 |
PSO | 0.4097 | 0.8845 | 0.8346 | 0.0196 |
Firefly | 0.7398 | 0.7424 | 0.3032 | 0.0044 |
GWA | 0.4356 | 0.0083 | 0.3270 | 0.0163 |
Tuning Method | Ogunnaike | Kariwala | GSO | GA | PSO | FF | GWA |
---|---|---|---|---|---|---|---|
Closed Loop Roots | 0.6032 | 0.7360 | 0.2247 | 0.3681 | 0.1985 | 0.5930 | 0.4940 |
0.3840 | 0.2621 | 0.6452 | 0.7198 | 0.4132 | 0.2589 | 0.7538 | |
0.0108 | 0.0164 | 0.2302 | 0.2725 | 0.0837 | 0.1515 | 0.2980 | |
0.0056 | 0.0056 | 0.0056 | 0.0056 | 0.0056 | 0.0056 | 0.0056 | |
0.0054 | 0.0054 | 0.0054 | 0.0054 | 0.0054 | 0.0054 | 0.0054 |
Tuning Method | Ogunnaike | Kariwala | GSO | GA | PSO | FF | GWA |
---|---|---|---|---|---|---|---|
θR | 0.5 | 0.66 | 0.5121 | 0.462 | 0.4097 | 0.7398 | 0.4356 |
1.1878 × 107 | 8.0769 × 106 | 1.159 × 107 | 1.278 × 107 | 1.4023 × 107 | 6.1812 × 106 | 1.34 × 107 | |
P(z) when z = 1 | 277.8394 | 188.9308 | 271.1157 | 298.9552 | 328.0172 | 144.5876 | 313.6251 |
P(z) when z = −1 | −2.092 × 1010 | −1.418 × 1010 | −2.04 × 1010 | −2.25 × 1010 | −2.472 × 1010 | −1.082 × 1010 | −2.36 × 1010 |
Specifications | PID | Ogunnaike | Kariwala | GSO | GA | PSO | Firefly | GWA |
---|---|---|---|---|---|---|---|---|
IAE | 570.6 | 452.1788 | 327.21 | 291.1297 | 291.0047 | 291.6691 | 291.2998 | 291.0940 |
Rise Time (s) | 15.47 | 17.53 | 10.4164 | 8.4854 | 8.4855 | 8.4845 | 8.4855 | 8.4854 |
Settling Time (s) | 57.78 | 32.09 | 47.77 | 11.0437 | 11.0425 | 11.0412 | 11.0424 | 11.0424 |
Overshoot (%) | 7.9623 | 0 | 0 | 0 | 0.3746 | 0.7189 | 1.0824 | 0.5502 |
Steady State Error (ess) | 0.0756 | 0.0016 | 0.0015 | 0.0182 | 0.0175 | 0.0220 | 0.0178 | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bagyaveereswaran, V.; Umashankar, S.; Arulmozhivarman, P. Simulation Tool for Tuning and Performance Analysis of Robust, Tracking, Disturbance Rejection and Aggressiveness Controller. Algorithms 2019, 12, 144. https://doi.org/10.3390/a12070144
Bagyaveereswaran V, Umashankar S, Arulmozhivarman P. Simulation Tool for Tuning and Performance Analysis of Robust, Tracking, Disturbance Rejection and Aggressiveness Controller. Algorithms. 2019; 12(7):144. https://doi.org/10.3390/a12070144
Chicago/Turabian StyleBagyaveereswaran, Veeramani, Subramaniam Umashankar, and Pachiyappan Arulmozhivarman. 2019. "Simulation Tool for Tuning and Performance Analysis of Robust, Tracking, Disturbance Rejection and Aggressiveness Controller" Algorithms 12, no. 7: 144. https://doi.org/10.3390/a12070144
APA StyleBagyaveereswaran, V., Umashankar, S., & Arulmozhivarman, P. (2019). Simulation Tool for Tuning and Performance Analysis of Robust, Tracking, Disturbance Rejection and Aggressiveness Controller. Algorithms, 12(7), 144. https://doi.org/10.3390/a12070144