Mapping Higher-Order Network Flows in Memory and Multilayer Networks with Infomap
<p>Going beyond standard network representations makes it possible to take advantage of richer interaction data. (<b>a</b>) Standard methods shoehorn interaction data about a complex system into an often unweighted and undirected network, which limits what regularities can be detected; (<b>b</b>) Modeling and mapping higher-order network flows can break this detectability limit; (<b>c</b>) System flows from two data sources between objects. The black arrow shows how flows can come to the center object; (<b>d</b>) The system represented as an undirected network with nodes for the objects. The links show where flows coming in to the center node are constrained to go next; (<b>e</b>) The system represented as a memory network with physical nodes for the objects and state nodes for constraining flows along their links. The links show where flows coming in to the center node are constrained to go next depending on where they come from; (<b>f</b>) The system represented as a multilayer network with physical nodes for the objects and state nodes in layers corresponding to different data sources. The links show where the flows coming in to the center node are constrained to go next depending on which layer they are in.</p> "> Figure 2
<p>Modeling higher-order network flows with sparse memory networks. (<b>a</b>) Multistep pathway data from two sources illustrated on a network with five physical nodes; (<b>b</b>) The pathway data modeled with a second-order Markov model on a memory network, where state nodes capture where flows come from; (<b>c</b>) The memory network represented as a multilayer network where layers, one for each physical node, capture where flows come from; (<b>d</b>) The pathway data modeled on a two-layer network, one layer for each data source; (<b>e</b>) Both memory and multilayer networks mapped on a sparse memory network with no redundant state nodes. The black link highlights the same step in all representations. See also the dynamic storyboard available on <a href="http://www.mapequation.org/apps/sparse-memory-network" target="_blank">www.mapequation.org/apps/sparse-memory-network</a>.</p> "> Figure 3
<p>Network flows at different modular levels. Large circles represent physical nodes, small circles represent state nodes, and dashed areas represent modules. (<b>a</b>) Finest modular level with physical nodes for first-order network flows; (<b>b</b>) Finest modular level with physical nodes and state nodes for higher-order network flows; (<b>c</b>) Intermediate level; (<b>d</b>) Coarsest modular level.</p> "> Figure 4
<p>Mapping higher-order network flows. (<b>a</b>) A clustered multilayer network with relax rate <span class="html-italic">r</span>; (<b>b</b>) The same network flows in a clustered second-order memory network; (<b>c</b>) The same network flows in a clustered sparse memory network; (<b>d</b>) Sample of corresponding higher-order flow pathways; (<b>e</b>) Code length as a function of the transition rate for all representations as well as extended networks with virtual physical nodes.</p> ">
Abstract
:1. Introduction
2. Modeling Network Flows
2.1. First-Order Network Flows
2.2. Higher-Order Network Flows
2.3. Sparse Memory Networks
2.4. Representing Memory and Multilayer Networks with Sparse Memory Network
3. Mapping Network Flows
3.1. The Map Equation for First-Order Network Flows
3.2. The Map Equation for Higher-Order Network Flows
4. Infomap
Algorithm 1 Multilevel clustering |
|
Algorithm 2 Two-level clustering |
|
4.1. Two-Level Clustering
4.2. Repeated Node Aggregation
Algorithm 3 Repeated node aggregation |
|
Algorithm 4 Optimize network |
|
4.3. Fine-Tuning
Algorithm 5 Fine-tuning |
|
4.4. Coarse-Tuning
4.5. Multilevel Clustering
Algorithm 6 Coarse-tuning |
|
Algorithm 7 Repeated supermodule clustering |
|
Algorithm 8 Repeated submodule clustering |
|
4.6. Download Infomap
4.7. Mapping Multistep and Multi-Source Data with Infomap
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A. Running Infomap
Appendix A.1. Infomap Syntax
./Infomap [options] network_data dest
Appendix A.2. Clustering a Multilayer Network
./Infomap --input-format multilayer --multilayer-relax-rate 0.4 fig3a.net .
# fig3a.net - Multilayer network # Lines starting with # are ignored *Vertices 5 #physicalId name 1 "i" 2 "j" 3 "k" 4 "l" 5 "m" *Intra #layerId physicalId physicalId weight 1 1 4 1 1 4 1 1 1 1 5 1 1 5 1 1 1 4 5 1 1 5 4 1 2 1 2 1 2 2 1 1 2 1 3 1 2 3 1 1 2 2 3 1 2 3 2 1
*Inter #layerId physicalId layerId weight 1 1 2 1 2 1 1 1
Appendix A.3. Clustering a Memory Network
./Infomap --input-format memory fig3b.net .
# fig3b .net - Memory network # Lines starting with # are ignored *Vertices 5 #physicalId name 1 "i" 2 "j" 3 "k" 4 "l" 5 "m" *3grams #from through to weight 2 1 2 0.8 2 1 3 0.8 2 1 4 0.2 2 1 5 0.2 3 1 2 0.8 3 1 3 0.8 3 1 4 0.2 3 1 5 0.2 1 2 1 1 1 2 3 1 3 2 1 1 3 2 3 1 2 3 1 1 2 3 2 1 1 3 1 1 1 3 2 1 4 1 4 0.8 4 1 5 0.8 4 1 2 0.2 4 1 3 0.2 5 1 4 0.8 5 1 5 0.8 5 1 2 0.2 5 1 3 0.2 1 4 1 1 1 4 5 1 5 4 1 1 5 4 5 1 1 5 1 1 1 5 4 1 4 5 1 1 4 5 4 1
Appendix A.4. Clustering a Sparse Memory Network
./Infomap --input-format sparse fig3c.net.
# fig3c.net - Sparse memory network # Lines starting with # are ignored *Vertices 5 #physicalId name 1 "i" 2 "j" 3 "k" 4 "l" 5 "m" *States #stateId physicalId name 1 1 "alpha~_i" 2 2 "beta~_j" 3 3 "gamma~_k" 4 1 "delta~_i" 5 4 "epsilon~_l" 6 5 "zeta~_m" *Links #sourceStateId targetStateId weight 1 2 0.8 1 3 0.8 1 5 0.2 1 6 0.2 2 1 1 2 3 1 3 1 1 3 2 1 4 5 0.8 4 6 0.8 4 2 0.2 4 3 0.2 5 4 1 5 6 1 6 4 1 6 5 1
./Infomap --input-format sparse fig3b_sparse.net .
# fig3b_sparse.net - state network # Lines starting with # are ignored *Vertices 5 #physicalId name 1 "i" 2 "j" 3 "k" 4 "l" 5 "m" *States #stateId physicalId name 1 1 "alpha_i" 2 1 "beta_i" 3 2 "gamma_j" 4 2 "delta_j" 5 3 "epsilon_k" 6 3 "zeta_k" 7 1 "eta_i" 8 1 "theta_i" 9 4 "iota_l" 10 4 "kappa_l" 11 5 "lambda_m" 12 5 "mu_m" *Links #sourceStateId targetStateId weight 1 3 0.8 1 6 0.8 1 9 0.2 1 12 0.2 2 3 0.8 2 6 0.8 2 9 0.2 2 12 0.2 3 1 1 3 5 1 4 1 1 4 5 1 5 2 1 5 4 1 6 2 1 6 4 1 7 9 0.8 7 12 0.8 7 3 0.2 7 6 0.2 8 9 0.8 8 12 0.8 8 3 0.2 8 6 0.2 9 7 1 9 11 1 10 7 1 10 11 1 11 8 1 11 10 1 12 8 1 12 10 1
Appendix A.5. Clustering Output
# A tree output from running Infomap on the example networks in Figure 3 # path flow name physicalId: 1:1 0.166667 "i" 1 1:2 0.166667 "j" 2 1:3 0.166667 "k" 3 2:1 0.166667 "i" 1 2:2 0.166667 "l" 4 2:3 0.166667 "m" 5
References and Notes
- Brin, S.; Page, L. The anatomy of a large-scale hypertextual Web search engine. Comput. Netw. ISDN 1998, 30, 107–117. [Google Scholar] [CrossRef]
- Newman, M.E. A measure of betweenness centrality based on random walks. Soc. Netw. 2005, 27, 39–54. [Google Scholar] [CrossRef]
- Lordan, O.; Florido, J.; Sallan, J.M.; Fernandez, V.; Simo, P.; Gonzalez-Prieto, D. Study of the robustness of the European air routes network. In LISS 2014; Springer: Berlin, Germany, 2015; pp. 195–200. [Google Scholar]
- Rosvall, M.; Esquivel, A.V.; Lancichinetti, A.; West, J.D.; Lambiotte, R. Memory in network flows and its effects on spreading dynamics and community detection. Nat. Commun. 2014, 5, 4630. [Google Scholar] [CrossRef] [PubMed]
- Belik, V.; Geisel, T.; Brockmann, D. Natural human mobility patterns and spatial spread of infectious diseases. Phys. Rev. X 2011, 1. [Google Scholar] [CrossRef]
- Pfitzner, R.; Scholtes, I.; Garas, A.; Tessone, C.J.; Schweitzer, F. Betweenness preference: Quantifying correlations in the topological dynamics of temporal networks. Phys. Rev. Lett. 2013, 110. [Google Scholar] [CrossRef]
- Poletto, C.; Tizzoni, M.; Colizza, V. Human mobility and time spent at destination: Impact on spatial epidemic spreading. J. Theor. Biol. 2013, 338, 41–58. [Google Scholar] [CrossRef] [PubMed]
- Mucha, P.J.; Richardson, T.; Macon, K.; Porter, M.A.; Onnela, J.P. Community structure in time-dependent, multiscale, and multiplex networks. Science 2010, 328, 876–878. [Google Scholar] [CrossRef] [PubMed]
- Kivelä, M.; Arenas, A.R.; Barthelemy, M.; Gleeson, J.P.; Moreno, Y.; Porter, M.A. Multilayer Networks. J. Comput. Netw. 2014, 2, 203–271. [Google Scholar]
- Boccaletti, S.; Bianconi, G.; Criado, R.; Del Genio, C.; Gómez-Gardeñes, J.; Romance, M.; Sendiña-Nadal, I.; Wang, Z.; Zanin, M. The structure and dynamics of multilayer networks. Phys. Rep. 2014, 544, 1–122. [Google Scholar] [CrossRef]
- De Domenico, M.; Lancichinetti, A.; Arenas, A.; Rosvall, M. Identifying modular flows on multilayer networks reveals highly overlapping organization in interconnected systems. Phys. Rev. X 2015, 5. [Google Scholar] [CrossRef]
- Ahn, Y.; Bagrow, J.; Lehmann, S. Link communities reveal multiscale complexity in networks. Nature 2010, 466, 761–764. [Google Scholar] [CrossRef] [PubMed]
- Peixoto, T.P.; Rosvall, M. Modeling sequences and temporal networks with dynamic community structures. arXiv, 2017; arXiv:1509.04740. [Google Scholar]
- Xu, J.; Wickramarathne, T.L.; Chawla, N.V. Representing higher-order dependencies in networks. Sci. Adv. 2016, 2, e1600028. [Google Scholar] [CrossRef] [PubMed]
- Scholtes, I. When is a network a network? Multi-order graphical model selection in pathways and temporal networks. arXiv, arXiv:1702.05499.2017. [Google Scholar]
- De Domenico, M.; Solé-Ribalta, A.; Cozzo, E.; Kivelä, M.; Moreno, Y.; Porter, M.A.; Gómez, S.; Arenas, A. Mathematical formulation of multilayer networks. Phys. Rev. X 2013, 3. [Google Scholar] [CrossRef]
- Wehmuth, K.; Fleury, É.; Ziviani, A. MultiAspect Graphs: Algebraic representation and algorithms. Algorithms 2017, 10, 1. [Google Scholar] [CrossRef]
- Persson, C.; Bohlin, L.; Edler, D.; Rosvall, M. Maps of sparse Markov chains efficiently reveal community structure in network flows with memory. arXiv, 2016; arXiv:1606.08328. [Google Scholar]
- Barabási, A.; Albert, R. Emergence of scaling in random networks. Science 1999, 286, 509–512. [Google Scholar] [PubMed]
- Barrat, A.; Barthelemy, M.; Pastor-Satorras, R.; Vespignani, A. The architecture of complex weighted networks. Proc. Natl. Acad. Sci. USA 2004, 101, 3747–3752. [Google Scholar] [CrossRef] [PubMed]
- Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D.U. Complex networks: Structure and dynamics. Phys. Rep. 2006, 424, 175–308. [Google Scholar] [CrossRef]
- Lambiotte, R.; Rosvall, M. Ranking and clustering of nodes in networks with smart teleportation. Phys. Rev. E 2012, 85. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Qu, Z.; Blumm, N.; Barabási, A. Limits of predictability in human mobility. Science 2010, 327, 1018–1021. [Google Scholar] [CrossRef] [PubMed]
- Meiss, M.R.; Menczer, F.; Fortunato, S.; Flammini, A.; Vespignani, A. Ranking web sites with real user traffic. In Proceedings of the International Conference on Web Search and Web Data Mining, Palo Alto, CA, USA, 11–12 February 2008; pp. 65–76. [Google Scholar]
- Chierichetti, F.; Kumar, R.; Raghavan, P.; Sarlós, T. Are web users really Markovian? In Proceedings of the 21st International Conference on World Wide Web, Lyon, France, 16–20 April 2012; pp. 609–618. [Google Scholar]
- Singer, P.; Helic, D.; Taraghi, B.; Strohmaier, M. Memory and Structure in Human Navigation Patterns. arXiv, 2014; arXiv:1402.0790. [Google Scholar]
- Takaguchi, T.; Nakamura, M.; Sato, N.; Yano, K.; Masuda, N. Predictability of conversation partners. Phys. Rev. X 2011, 1. [Google Scholar] [CrossRef]
- Holme, P.; Saramäki, J. Temporal networks. Phys. Rep. 2012, 519, 97–125. [Google Scholar] [CrossRef]
- Rosvall, M.; Bergstrom, C. Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. USA 2008, 105, 1118–1123. [Google Scholar] [CrossRef] [PubMed]
- Shannon, C. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Rosvall, M.; Bergstrom, C. Multilevel compression of random walks on networks reveals hierarchical organization in large integrated systems. PLoS ONE 2011, 6, e18209. [Google Scholar] [CrossRef] [PubMed]
- Kawamoto, T.; Rosvall, M. Estimating the resolution limit of the map equation in community detection. Phys. Rev. E 2015, 91. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.H.; Howe, B. GossipMap: A distributed community detection algorithm for billion-edge directed graphs. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, Austin, TX, USA, 15–20 November 2015; p. 27. [Google Scholar]
- Blondel, V.D.; Guillaume, J.L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, 2008. [Google Scholar] [CrossRef]
- We Have Compiled the Network from the Airline Origin and Destination Survey (DB1B), which Is a 10% Aample of Airline Tickets from Reporting Carriers Made Public by the Research and Innovative Technology Administration (RITA). Data from 2011. Available online: transtats.bts.gov (accessed on 1 September 2017).
Quarters | m | l | H | D | P | A | Time | |||
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 438 | 438 | 9681 | 5.1 | 2.0 | 1.0 | 1.0 | 0.016 s | |
1 | 2 | 438 | 861 | 34,384 | 5.1 | 2.0 | 1.2 | 1.0 | 0.063 s | |
1 | 4 | 438 | 1683 | 121,749 | 5.0 | 2.0 | 4.0 | 1.0 | 0.14 s | |
2 | 1 | 438 | 9681 | 181,326 | 3.8 | 2.4 | 13 | 3.7 | 1.7 s | |
2 | 2 | 438 | 17,203 | 614,472 | 3.8 | 3.0 | 15 | 3.8 | 10 s | |
2 | 4 | 438 | 30,489 | 2,014,650 | 3.7 | 3.0 | 13 | 3.3 | 27 s | |
3 | 1 | 432 | 180,900 | 465,456 | 1.1 | 4.0 | 25 | 5.7 | 8.2 min | |
3 | 2 | 432 | 307,904 | 1,406,605 | 0.95 | 3.0 | 32 | 5.0 | 22 min | |
3 | 4 | 432 | 507,054 | 4,112,089 | 0.91 | 3.0 | 19 | 3.8 | 52 min |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Edler, D.; Bohlin, L.; Rosvall, M. Mapping Higher-Order Network Flows in Memory and Multilayer Networks with Infomap. Algorithms 2017, 10, 112. https://doi.org/10.3390/a10040112
Edler D, Bohlin L, Rosvall M. Mapping Higher-Order Network Flows in Memory and Multilayer Networks with Infomap. Algorithms. 2017; 10(4):112. https://doi.org/10.3390/a10040112
Chicago/Turabian StyleEdler, Daniel, Ludvig Bohlin, and Martin Rosvall. 2017. "Mapping Higher-Order Network Flows in Memory and Multilayer Networks with Infomap" Algorithms 10, no. 4: 112. https://doi.org/10.3390/a10040112
APA StyleEdler, D., Bohlin, L., & Rosvall, M. (2017). Mapping Higher-Order Network Flows in Memory and Multilayer Networks with Infomap. Algorithms, 10(4), 112. https://doi.org/10.3390/a10040112