Weather Condition Clustering for Improvement of Photovoltaic Power Plant Generation Forecasting Accuracy
"> Figure 1
<p>Flow chart of the proposed algorithm.</p> "> Figure 2
<p>Data preprocessing stages.</p> "> Figure 3
<p>Data for clustering after transformation into two-dimensional space using the PCA.</p> "> Figure 4
<p>Clustering results.</p> "> Figure 5
<p>Forecasting results (training on initial data). (<b>a</b>)—Linear Regression; (<b>b</b>)—Decision Tree; (<b>c</b>)—Random Forest. Blue line is the actual data, red line is the forecasting results.</p> "> Figure 6
<p>Forecasting results (training on data from the first cluster). (<b>a</b>)—Linear Regression; (<b>b</b>)—Decision Tree; (<b>c</b>)—Random Forest. Blue line is the actual data, red line is the forecasting results.</p> "> Figure 7
<p>Forecasting results (training on data from the second cluster). (<b>a</b>)—Linear Regression; (<b>b</b>)—Decision Tree; (<b>c</b>)—Random Forest. Blue line is the actual data, red line is the forecasting results.</p> "> Figure 8
<p>Forecasting results (training on data from the third cluster). (<b>a</b>)—Linear Regression; (<b>b</b>)—Decision Tree; (<b>c</b>)—Random Forest. Blue line is the actual data, red line is the forecasting results.</p> "> Figure 9
<p>Forecasting results using a general and composite model (low generation level). Blue line is the actual data, red line is the forecasting results.</p> "> Figure 10
<p>Forecasting results using a general and composite model (high generation level). Blue line is the actual data, red line is the forecasting results.</p> ">
Abstract
:1. Introduction
- Relevant weather features which determine the working state of PV modules were used as initial data for the clustering algorithm;
- Three metrics (silhouette, WSS, and BSS) for data spreading in clusters were used;
- The clustering model was applied to hourly observations to define similar groups of data in terms of the working state of PV modules instead of labeling whole days as rainy or sunny;
2. Materials and Methods
- Data collection from different sources;
- Sorting and merging collected data;
- Removing night observations, outliers, and highly correlated features.
- Silhouette coefficient (silhouette);
- Between-cluster sum of squares (BSS);
- Within-cluster sum of squares (WSS).
- drop_empty_strings ()—deletes data samples if there is one or more empty or non-numerical values;
- delete_outliers ()—deletes data samples if outliers are detected using boxplot and quartile distribution in any of the data features;
- min_max_norm ()—rescales feature values to the range between 0 and 1;
- regr_data.P, W1.parameters, etc.—selects particular features (column in the database) to store on received values.
Algorithm 1. Pseudo Code for Data Preprocessing | |
Input: P, W1, W2, W3 Output: regr_data, cluster_data Auxiliary variables: counter, sum, Initialization: counter = 0, sum = 0 Begin Data Preprocessing Algorithm | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | for (p = 1,…, n) do sum = sum + P[p] count = count + 1 if count == 2 do regr_data.P = sum/count count, sum = 0 end if end for for data in regr_data, W1, W2, W3 do data = drop_empty_strings(data) data = delete_outliers(data) end for for h in regr_data.hour do if h in W1.hour do x1 = W1.parameters else x1 = 0 end if if h in W2.hour do x2 = W2.parameters else x2 = 0 end if if h in W3.hour do x3 = W3.parameters else x3 = 0 end if regr_data.parameters = (x1 + x2 + x3)/3 end for cluster_data = [regr_data.Temperature, regr_data.Humidity, regr_data.Wind_speed] for x in cluster_data.parameters do x = x.min_max_norm(x) end for return regr_data, cluster_data |
End Data Preprocessing Algorithm |
- The general model was trained on data from all the three clusters;
- Three models for different clusters were trained on the data of these clusters, respectively;
- The forecasting results of the general model were compared to the forecasting results of the composite model (obtained using three models trained on the data of the selected cluster).
3. Results and Discussion
- Temperature, actual, °C;
- Humidity, actual, %;
- Wind speed, actual, m/s.
- First cluster—2120 data lines;
- Second cluster—1977 data lines;
- Third cluster—1588 data lines.
- General model: (‘criterion’: ‘poisson’, ‘max_features’: 4, ‘n_estimators’: 115);
- Model for the first cluster: (‘criterion’: ‘poisson’, ‘max_features’: 4, ‘n_estimators’: 87);
- Model for the second cluster: (‘criterion’: ‘poisson’, ‘max_features’: 4, ‘n_estimators’: 73);
- Model for the third cluster: (‘criterion’: ‘poisson’, ‘max_features’: 4, ‘n_estimators’: 132).
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Halicioglu, F.; Ketenci, N. Output, renewable and non-renewable energy production, and international trade: Evidence from EU-15 countries. Energy 2018, 159, 995–1002. [Google Scholar] [CrossRef]
- Breyer, C.; Khalili, S.; Bogdanov, D.; Ram, M.; Oyewo, A.S.; Aghahosseini, A.; Gulagi, A.; Solomon, A.A.; Keiner, D.; Lopez, G.; et al. On the History and Future of 100% Renewable Energy Systems Research. IEEE Access 2022, 10, 78176–78218. [Google Scholar] [CrossRef]
- Irena Coalition for Action. Available online: https://coalition.irena.org/?_gl=1*faxigk*_ga*OTc2OTU0OTMwLjE3MTQ0NjU3ODY.*_ga_7W6ZEF19K4*MTcxNDQ2NTc4Ni4xLjEuMTcxNDQ2NTg5MC40My4wLjA (accessed on 16 August 2024).
- Leong, W.Y.; Leong, Y.Z.; Leong, W.S. Smart Manufacturing Technology for Environmental, Social, and Governance (ESG) Sustainability. In Proceedings of the 5th Eurasia Conference on IOT, Communication and Engineering (ECICE), Yunlin, Taiwan, 27–29 October 2023. [Google Scholar] [CrossRef]
- Biasin, M.; Foglie, A.D.; Giacomini, E. Addressing climate challenges through ESG-real estate investment strategies: An asset allocation perspective. Financ. Res. Lett. 2024, 63, 105381. [Google Scholar] [CrossRef]
- Ayadi, F.; Colak, I.; Garip, I.; Bulbul, H.I. Targets of Countries in Renewable Energy. In Proceedings of the 2020 9th International Conference on Renewable Energy Research and Application (ICRERA), Glasgow, UK, 27–30 September 2020. [Google Scholar] [CrossRef]
- International Energy Agency. Energy Policies of IEA Countries: Denmark 2011 Review. Available online: https://iea.blob.core.windows.net/assets/3df26d26-9271-490b-ae10-1e9a14350412/EnergyPoliciesofIEACountriesDenmark2011.pdf (accessed on 6 August 2024).
- Climate Vulnerable Forum. Geneva, Rotterdam, Accra. Available online: https://thecvf.org/about/ (accessed on 6 August 2024).
- Renewable Energy Policy Network for the 21st Century. Renewables 2020 Global Status Report. Available online: https://build-up.ec.europa.eu/sites/default/files/content/gsr_2020_full_report_en.pdf (accessed on 30 April 2024).
- IPCC. Intergovernmental Panel on Climate Change. Global Warming of 1.5 °C. Available online: https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf (accessed on 6 August 2024).
- International Renewable Energy Agency. Towards 100% Renewable Energy: Status, Trends and Lessons Learned. Available online: https://coalition.irena.org/-/media/Files/IRENA/Coalition-for-Action/IRENA_Coalition_100percentRE_2019.pdf (accessed on 6 August 2024).
- International Renewable Energy Agency. Towards 100% Renewable Energy: Utilities in Transition. Available online: https://www.irena.org/Publications/2020/Jan/Towards-100-percent-renewable-energy-Utilities-in-transition (accessed on 6 August 2024).
- International Renewable Energy Agency. Antigua & Barbuda Renewable Energy Roadmap. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2021/March/IRENA_Antigua_Barbuda_RE_Roadmap_2021.pdf (accessed on 6 August 2024).
- International Energy Agency. Net Zero by 2050: A Roadmap for the Global Energy Sector. Available online: https://www.iea.org/reports/net-zero-by-2050 (accessed on 6 August 2024).
- International Energy Agency. Conditions and Requirements for the Technical Feasibility of a Power System with a High Share of Renewables in France towards 2050. Available online: https://www.iea.org/reports/conditions-and-requirements-for-the-technical-feasibility-of-a-power-system-with-a-high-share-of-renewables-in-france-towards-2050 (accessed on 6 August 2024).
- European Commission. A Clean Planet for All—A European Strategic Long-Term Vision for a Prosperous, Modern, Competitive and Climate Neutral Economy. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52018DC0773 (accessed on 6 August 2024).
- Energy Outlook, BP PLC. Available online: https://www.bp.com/en/global/corporate/energy-economics/energy-outlook.html (accessed on 6 August 2024).
- International Renewable Energy Agency. Renewable Capacity Statistics. Available online: https://www.irena.org/Publications/2024/Mar/Renewable-capacity-statistics-2024 (accessed on 6 August 2024).
- Haegel, N.M.; Kurtz, S.R. Global progress toward renewable electricity: Tracking the role of solar. IEEE J. Photovolt. 2021, 11, 1335–1342. [Google Scholar] [CrossRef]
- The Energy Institute. Statistical Review of World Energy. Available online: https://www.energyinst.org/statistical-review (accessed on 6 August 2024).
- Chatterjee, A.; Keyhani, A.; Kapoor, D. Identification of photovoltaic source models. IEEE Trans. Energy Convers. 2011, 26, 883–889. [Google Scholar] [CrossRef]
- Celik, A.N.; Acikgoz, N. Modelling and experimental verification of the operating current of mono-crystalline photovoltaic modules using four- and five-parameter models. Appl. Energy 2007, 84, 1–15. [Google Scholar] [CrossRef]
- Li, X.; Wu, R.; Gao, Y.; Zheng, Z.A. Power Prediction System for Photo-Voltaic Power Plants. In Proceedings of the 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China, 20–22 October 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Prema, V.; Rao, K.U. Development of statistical time series models for solar power prediction. Renew. Energy 2015, 83, 100–109. [Google Scholar] [CrossRef]
- Talari, S.; Shafie-Khah, M.; Osório, G.J.; Aghaei, J.; Catalão, J.P. Stochastic modelling of renewable energy sources from operators’ point of-view: A survey. Renew. Sustain. Energy Rev. 2018, 81, 1953–1965. [Google Scholar] [CrossRef]
- Dai, H.; Zhang, N.; Su, W. A Literature Review of Stochastic Programming and Unit Commitment. J. Power Energy Eng. 2015, 3, 206–214. [Google Scholar] [CrossRef]
- Aien, M.; Rashidinejad, M.; Firuz-Abad, M.F. Probabilistic power flow of correlated hybrid wind-PV power systems. IET Renew. Power Gener. 2014, 8, 649–658. [Google Scholar] [CrossRef]
- Zachary, S.; Dent, C.J. Probability theory of capacity value of additional generation. J. Risk Reliab. 2012, 226, 33–43. [Google Scholar] [CrossRef]
- Ioannou, A.; Angus, A.; Brennan, F. Risk-based methods for sustainable energy system planning: A review. Renew. Sustain. Energy Rev. 2017, 74, 602–615. [Google Scholar] [CrossRef]
- Monteiro, C.; Santos, T.; Fernandez-Jimenez, L.A.; Ramirez-Rosado, I.J.; Terreros-Olarte, M.S. Short-term power forecasting model for photovoltaic plants based on historical similarity. Energies 2013, 6, 2624–2643. [Google Scholar] [CrossRef]
- Zeng, J.; Qiao, W. Short-term solar power prediction using a support vector machine. Renew. Energy 2013, 52, 118–127. [Google Scholar] [CrossRef]
- Persson, C.; Bacher, P.; Shiga, T.; Madsen, H. Multi-site solar power forecasting using gradient boosted regression trees. Sol. Energy 2017, 150, 423–436. [Google Scholar] [CrossRef]
- Matrenin, P.V.; Gamaley, V.V.; Khalyasmaa, A.I.; Stepanova, A.I. Solar Irradiance Forecasting with Natural Language Processing of Cloud Observations and Interpretation of Results with Modified Shapley Additive Explanations. Algorithms 2024, 17, 150. [Google Scholar] [CrossRef]
- Raza, M.Q.; Nadarajah, M.; Ekanayake, C. On recent advances in PV output power forecast. Sol. Energy 2016, 136, 125–144. [Google Scholar] [CrossRef]
- Nespoli, A.; Ogliari, E.; Leva, S.; Pavan, A.M.; Mellit, A.; Lughi, V.; Dolara, A. Day-ahead photovoltaic forecasting: A comparison of the most effective techniques. Energies 2019, 12, 1621. [Google Scholar] [CrossRef]
- Sobri, S.; Koohi-Kamali, S.; Rahim, N.A. Solar photovoltaic generation forecasting methods: A review. Energy Convers. Manag. 2018, 156, 459–497. [Google Scholar] [CrossRef]
- Raza, M.Q.; Khosravi, A. A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings. Renew. Sustain. Energy Rev. 2015, 50, 1352–1372. [Google Scholar] [CrossRef]
- Rodrigo, A.M.; Bello, A.; Reneses, J. Electricity price forecasting in the short term hybridising fundamental and econometric modelling. Electr. Power Syst. Res. 2019, 167, 240–251. [Google Scholar] [CrossRef]
- Ren, Y.; Suganthan, P.N.; Srikanth, N. Ensemble methods for wind and solar power forecasting—A state-of-the-art review. Renew. Sustain. Energy Rev. 2015, 50, 82–91. [Google Scholar] [CrossRef]
- Liu, Y. A novel photovoltaic power output forecasting method based on weather type clustering and wavelet support vector machines regression. In Proceedings of the 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), Changsha, China, 13–15 August 2016; pp. 29–34. [Google Scholar] [CrossRef]
- Khalyasmaa, A.; Eroshenko, S.A.; Chakravarthy, T.P.; Gasi, V.G.; Bollu, S.K.Y.; Caire, R.; Atluri, S.K.R.; Karrolla, S. Prediction of Solar Power Generation Based on Random Forest Regressor Model. In Proceedings of the 2019 International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON), Novosibirsk, Russia, 21–27 October 2019; pp. 780–785. [Google Scholar] [CrossRef]
- Bramm, A.M.; Eroshenko, S.A.; Khalyasmaa, A.I.; Matrenin, P.V. Grey Wolf Optimizer for RES Capacity Factor Maximization at the Placement Planning Stage. Mathematics 2023, 11, 2545. [Google Scholar] [CrossRef]
- Jittratorn, N.; Chang, G.W.; Li, G.Y. A Hybrid Method for Hour-ahead PV Output Forecast with Historical Data Clustering. In Proceedings of the IET International Conference on Engineering Technologies and Applications (IET-ICETA), Changhua, Taiwan, 14–16 October 2022; pp. 1–2. [Google Scholar] [CrossRef]
- He, Z.; Li, H.; Lu, T. Research on Photovoltaic Power Forecasting Based on SOM Weather Clustering. In Proceedings of the IEEE International Conference on Control, Electronics and Computer Technology (ICCECT), Jilin, China, 28–30 April 2023; pp. 368–373. [Google Scholar] [CrossRef]
- Jiakang, S.; Yonggang, P.; Yanghong, X. Day-Ahead Wind Power Forecasting Based on Single Point Clustering. In Proceedings of the 37th Chinese Control Conference (CCC), Wuhan, China, 25–27 July 2018; pp. 2479–2484. [Google Scholar] [CrossRef]
- Matrenin, P.V.; Khalyasmaa, A.I.; Gamaley, V.V.; Eroshenko, S.A.; Papkova, N.A.; Sekatski, D.A.; Potachits, Y.V. Improving of the Generation Accuracy Forecasting of Photovoltaic Plants Based on k-Means and k-Nearest Neighbors Algorithms. ENERGETIKA. Proc. CIS High. Educ. Inst. Power Eng. Assoc. 2023, 66, 305–321. (In Russian) [Google Scholar] [CrossRef]
- Clustering—Scikit-Learn 1.5.1 Documentation. Available online: https://scikit-learn.org/stable/modules/clustering.html (accessed on 6 August 2024).
- Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef]
- Li, Q.; Yue, S.; Wang, Y.; Ding, M.; Li, J. A New Cluster Validity Index Based on the Adjustment of within-Cluster Distance. IEEE Access 2020, 8, 202872–202885. [Google Scholar] [CrossRef]
- Yandex Weather Forecasts. Available online: https://yandex.com/dev/weather/ (accessed on 6 August 2024).
- Local Weather Forecast, News and Conditions|Weather Underground. Available online: https://www.wunderground.com (accessed on 6 August 2024).
- NASA POWER|Prediction of Worldwide Energy Resources. Available online: https://power.larc.nasa.gov/ (accessed on 6 August 2024).
- How HOMER Calculates the Radiation Incident on the PV Array. Available online: https://homerenergy.com/products/pro/docs/3.15/how_homer_calculates_the_radiation_incident_on_the_pv_array.html (accessed on 6 August 2024).
- PCA—Scikit-Learn 1.5.2 Documentation. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html (accessed on 6 August 2024).
Parameter | Source | Parameter | Source |
---|---|---|---|
Date | Yandex, NasaPower, WeatherUnderground | Cloudiness | Yandex, NasaPower, WeatherUnderground |
Time | Yandex, NasaPower, WeatherUnderground | Temperature | Yandex, NasaPower, WeatherUnderground |
Day number of the year | Location of the station | Humidity | Yandex, NasaPower, WeatherUnderground |
Solar declination angle | Calculation | Wind speed | Yandex, NasaPower, WeatherUnderground |
Local time | Yandex, NasaPower, WeatherUnderground | Generation, fact | Commercial electricity metering data |
Date | Day | Solar Angle | Time | Cloud., p.u. | Temp., °C | Humid., | Wind Speed, m/s | Generation, kWh |
---|---|---|---|---|---|---|---|---|
26 September 2017 15:00 | 269 | −2.21 | 15 | 0 | 18.0 | 30.0 | 6.944 | 10206 |
26 September 2017 16:00 | 269 | −2.21 | 16 | 0 | 18.0 | 30.0 | 6.944 | 8143.8 |
26 September 2017 17:00 | 269 | −2.21 | 17 | 0 | 18.0 | 30.0 | 6.944 | 5238.24 |
26 September 2017 18:00 | 269 | −2.21 | 18 | 0 | 17.5 | 31.0 | 6.528 | 1984.08 |
26 September 2017 19:00 | 269 | −2.61 | 19 | 0 | 16.7 | 32.5 | 5.556 | 141.96 |
27 September 2017 07:00 | 270 | −2.61 | 7 | 0 | 7.7 | 63.0 | 4.722 | 35.28 |
27 September 2017 08:00 | 270 | −2.61 | 8 | 0 | 7.0 | 66.0 | 4.167 | 1440.6 |
26 September 2017 09:00 | 270 | −2.61 | 9 | 0 | 7.2 | 65.0 | 5.000 | 4627.56 |
27 September 2017 10:00 | 270 | −2.61 | 10 | 0 | 8.5 | 60.0 | 5.000 | 7786.8 |
27 September 2017 11:00 | 270 | −2.61 | 11 | 0 | 10.5 | 52.2 | 5.278 | 9938.04 |
Temperature, Fact, °C | Humidity, Fact, % | Wind Speed, Fact, m/s |
---|---|---|
18.0 | 30.0 | 6.944 |
18.0 | 30.0 | 6.944 |
18.0 | 30.0 | 6.944 |
17.5 | 31.0 | 6.527 |
16.75 | 32.5 | 5.555 |
7.75 | 63.0 | 4.722 |
7.0 | 66.0 | 4.166 |
7.25 | 65.0 | 5.0 |
8.5 | 60.0 | 5.0 |
10.5 | 52.25 | 5.277 |
WSS | BSS | SILHOUETTE | |
---|---|---|---|
Two clusters | |||
KM | 18.98391 | 51.73605 | 0.594664 |
AG | 19.20556 | 51.45037 | 0.561417 |
SP | 19.14204 | 51.58659 | 0.583539 |
GM | 19.46392 | 52.19415 | 0.58729 |
Three clusters | |||
KM | 15.23908 | 43.95228 | 0.475616 |
AG | 18.88447 | 38.80243 | 0.328751 |
SP | 15.27047 | 48.03171 | 0.376685 |
GM | 15.20677 | 45.76189 | 0.46373 |
Four clusters | |||
KM | 15.96251 | 37.9217 | 0.37866 |
AG | 16.93177 | 38.9466 | 0.281695 |
SP | 16.99529 | 43.89783 | 0.141275 |
GM | 16.514938 | 39.45284 | 0.35762 |
Five clusters | |||
KM | 15.51169 | 38.93565 | 0.182779 |
AG | 16.49797 | 35.55767 | 0.257393 |
SP | 15.07748 | 44.11309 | 0.07991 |
GM | 14.68248 | 39.96776 | 0.26404 |
Initial Data | First Cluster | Second Cluster | Third Cluster | |
---|---|---|---|---|
X_train | 1600 | 1696 | 1581 | 1270 |
y_train | 1600 | 1696 | 1581 | 1270 |
X_test | 380 | 424 | 396 | 318 |
y_test | 380 | 424 | 396 | 318 |
Model/Metric | R2, p.u. | MSE, kWh2 | MAE, kWh | nMAE, kWh | ME, kWh |
---|---|---|---|---|---|
Linear Regression | 0.144 | 3.72 × 106 | 1300.56 | 97.484 | 8283.6 |
Decision Tree Regression | 0.277 | 3.14 × 106 | 928.67 | 4.383 | 11,935.56 |
Random Forest Regression | 0.652 | 1.51 × 106 | 722.27 | 6.144 | 6844.88 |
Model/Metric | R2, p.u. | MSE, kWh2 | MAE, kWh | nMAE, kWh | ME, kWh |
---|---|---|---|---|---|
Linear Regression | 0.411 | 1.06 × 106 | 2641.72 | 54.73 | 10,508.132 |
Decision Tree Regression | 0.901 | 1.79 × 106 | 748.19 | 0.24 | 6788.88 |
Random Forest Regression | 0.931 | 1.26 × 106 | 637.94 | 0.501 | 5544.294 |
Model/Metric | R2, p.u. | MSE, kWh2 | MAE, kWh | nMAE, kWh | ME, kWh |
---|---|---|---|---|---|
Linear Regression | 0.411 | 1.06 × 106 | 2641.72 | 54.73 | 10,508.132 |
Decision Tree Regression | 0.901 | 1.79 × 106 | 748.19 | 0.24 | 6788.88 |
Random Forest Regression | 0.931 | 1.26 × 106 | 637.94 | 0.501 | 5544.294 |
Model/Metric | R2, p.u. | MSE, kWh2 | MAE, kWh | nMAE, kWh | ME, kWh |
---|---|---|---|---|---|
Linear Regression | 0.315 | 9.72 × 106 | 2624.806 | 59.792 | 9731.67 |
Decision Tree Regression | 0.654 | 4.91 × 106 | 1434.97 | 0.738 | 10,083.36 |
Random Forest Regression | 0.828 | 2.43 × 106 | 1053.302 | 1.946 | 6357.94 |
Model\Metric | R2, p.u. | RMSE, kWh | MAE, kWh | nMAE, kWh | ME, kWh |
---|---|---|---|---|---|
General model | 0.892 | 1340.77 | 829.424 | 7.69 | 6766.846 |
Composite model | 0.899 | 1297.26 | 800.566 | 4.1 | 7073.089 |
Changing metrics | 0.007 | 338.79 | 28.26 | 3.59 | −306.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haljasmaa, K.I.; Bramm, A.M.; Matrenin, P.V.; Eroshenko, S.A. Weather Condition Clustering for Improvement of Photovoltaic Power Plant Generation Forecasting Accuracy. Algorithms 2024, 17, 419. https://doi.org/10.3390/a17090419
Haljasmaa KI, Bramm AM, Matrenin PV, Eroshenko SA. Weather Condition Clustering for Improvement of Photovoltaic Power Plant Generation Forecasting Accuracy. Algorithms. 2024; 17(9):419. https://doi.org/10.3390/a17090419
Chicago/Turabian StyleHaljasmaa, Kristina I., Andrey M. Bramm, Pavel V. Matrenin, and Stanislav A. Eroshenko. 2024. "Weather Condition Clustering for Improvement of Photovoltaic Power Plant Generation Forecasting Accuracy" Algorithms 17, no. 9: 419. https://doi.org/10.3390/a17090419