Extrinsic Bayesian Optimization on Manifolds
<p>A simple illustration of equivariant embeddings.</p> "> Figure 2
<p>The iteration steps of the eBO method on the sphere <math display="inline"><semantics> <msup> <mi>S</mi> <mn>2</mn> </msup> </semantics></math>. The data points <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> </mrow> </semantics></math> are plotted as those black points on the same latitude of the sphere. The true extrinsic mean is the south pole <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mo>−</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math>. We start with those random blue points on the sphere. The outputs of iterations in our Algorithm 1 are marked as red points on the sphere, converging to the ground truth.</p> "> Figure 3
<p>We compare the eBO method with the gradient descent (GD) method on the sphere by calculating the log error, the L2 distance from the true extrinsic mean. Although the eBO method converges slower than the GD method in the first four steps, by adding those stepping points into the eGP, it achieves better numerical precision with more steps.</p> "> Figure 4
<p>We compare the eBO method with the Nelder–Mead method on the matrix approximation problem on the Grassmannian. Since the optimal solution is the whole subspace, we calculated the value of function <span class="html-italic">f</span> instead of the error. The minimum of f is around <math display="inline"><semantics> <mrow> <mn>0.5578</mn> </mrow> </semantics></math> and is plotted as the blue line in the figure. It cannot achieve zero loss due to the low dimension constraint. The Nelder–Mead method achieves the minimal subspace around 25 steps and becomes stable after 40 steps. On the other hand, the eBO method converges to the minimum after 10 steps, much faster than the Nelder–Mead method, showing the quick convergence to the optimal solution.</p> "> Figure 5
<p>Estimated diffusion tensors <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>g</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math> at first arc length from the healthy group and the HIV+ group are shown as <math display="inline"><semantics> <mrow> <mn>3</mn> <mo>∗</mo> <mn>3</mn> </mrow> </semantics></math> matrix. The horizontal and vertical axis denotes the rows and columns of the matrix. Entry values inside the matrix are represented in different colors. Based on the color bar, differences between healthy and HIV+ groups could be observed, especially on the diagonal elements.</p> ">
Abstract
:1. Introduction
2. Bayesian Optimization (BO) on Manifolds
3. Extrinsic Bayesian Optimization (eBO) on Manifolds
Algorithm 1 Extrinsic Bayesian optimization on manifolds. |
Algorithm 2 Gradient algorithms for optimization along the submanifold . |
4. Examples and Applications
4.1. Estimation of Fréchet Means
4.2. Invariant Subspace Approximation on Grassmann Manifolds
Algorithm 3 Matrix approximation on the Grassmann manifold. |
4.3. Positive Definite Matrices
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alexander, A.; Lee, J.; Lazar, M.; Field, A. Diffusion Tensor Imaging of the Brain. Neurotherapeutics 2007, 4, 316–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kendall, D. The diffusion of shape. Adv. Appl. Probab. 1977, 9, 428–430. [Google Scholar] [CrossRef]
- Nishimori, Y.; Akaho, S.; Plumbley, M. Natural Conjugate Gradient on Complex Flag Manifolds for Complex Independent Subspace Analysis. In Proceedings of the ICANN 2008: 18th International Conference, Prague, Czech Republic, 3–6 September 2008; Part I. pp. 165–174. [Google Scholar]
- St. Thomas, B.; Lin, L.; Lim, L.; Mukherjee, S. Learning subspaces of different dimension. arXiv 2014, arXiv:1404.6841. [Google Scholar]
- Downs, T.; Liebman, J.; Mackay, W. Statistical methods for vectorcardiogram orientations. Vectorcardiography 1971, 2, 216–222. [Google Scholar]
- Bhattacharya, A.; Bhattacharya, R. Nonparametric Inference on Manifolds: With Applications to Shape Spaces; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Bhattacharya, R.; Lin, L. Omnibus CLTs for Fréchet means and nonparametric inference on non-Euclidean spaces. Proc. Am. Math. Soc. 2017, 145, 413–428. [Google Scholar] [CrossRef]
- Fréchet, M. Les éléments aléatoires de nature quelconque dans un espace distancié. Annales De L’Institut Henri Poincaré 1948, 10, 215–310. [Google Scholar]
- Absil, P.; Mahony, R.; Sepulchre, R.; Van Dooren, P. A Grassmann–Rayleigh quotient iteration for computing invariant subspaces. SIAM Rev. 2002, 44, 57–73. [Google Scholar] [CrossRef] [Green Version]
- Absil, P.; Mahony, R.; Sepulchre, R. Riemannian geometry of Grassmann manifolds with a view on algorithmic computation. Acta Appl. Math. 2004, 80, 199–220. [Google Scholar] [CrossRef]
- Absil, P.; Mahony, R.; Sepulchre, R. Optimization algorithms on matrix manifolds. In Optimization Algorithms On Matrix Manifolds; Princeton University Press: Princeton, NJ, USA, 2009. [Google Scholar]
- Boumal, N.; Absil, P. A discrete regression method on manifolds and its application to data on SO (n). IFAC Proc. Vol. 2011, 44, 2284–2289. [Google Scholar] [CrossRef]
- Boumal, N.; Absil, P. Low-rank matrix completion via preconditioned optimization on the Grassmann manifold. Linear Algebra Appl. 2015, 475, 200–239. [Google Scholar] [CrossRef]
- Cambier, L.; Absil, P. Robust low-rank matrix completion by Riemannian optimization. SIAM J. Sci. Comput. 2016, 38, S440–S460. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, C.; Absil, O.; Absil, P.; Van Droogenbroeck, M.; Mawet, D.; Surdej, J. Low-rank plus sparse decomposition for exoplanet detection in direct-imaging ADI sequences-The LLSG algorithm. Astron. Astrophys. 2016, 589, A54. [Google Scholar] [CrossRef] [Green Version]
- Journée, M.; Bach, F.; Absil, P.; Sepulchre, R. Low-rank optimization on the cone of positive semidefinite matrices. SIAM J. Optim. 2010, 20, 2327–2351. [Google Scholar] [CrossRef]
- Massart, E.; Absil, P. Quotient geometry with simple geodesics for the manifold of fixed-rank positive-semidefinite matrices. SIAM J. Matrix Anal. Appl. 2020, 41, 171–198. [Google Scholar] [CrossRef]
- Pompili, F.; Gillis, N.; Absil, P.; Glineur, F. Two algorithms for orthogonal nonnegative matrix factorization with application to clustering. Neurocomputing 2014, 141, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Theis, F.; Cason, T.; Absil, P. Soft dimension reduction for ICA by joint diagonalization on the Stiefel manifold. In International Conference on Independent Component Analysis And Signal Separation, Proceedings of the 8th International Conference, ICA 2009; Springer: Berlin/Heidelberg, Germany, 2009; pp. 354–361. [Google Scholar]
- Vandereycken, B.; Absil, P.; Vandewalle, S. Embedded geometry of the set of symmetric positive semidefinite matrices of fixed rank. In Proceedings of the 2009 IEEE/SP 15th Workshop on Statistical Signal Processing, Cardiff, UK, 31 August–3 September 2009; pp. 389–392. [Google Scholar]
- Vandereycken, B.; Absil, P.; Vandewalle, S. A Riemannian geometry with complete geodesics for the set of positive semidefinite matrices of fixed rank. IMA J. Numer. Anal. 2013, 33, 481–514. [Google Scholar] [CrossRef] [Green Version]
- Ring, W.; Wirth, B. Optimization Methods on Riemannian Manifolds and Their Application to Shape Space. SIAM J. Optim. 2012, 22, 596–627. [Google Scholar] [CrossRef]
- Smith, S. Optimization Techniques on Riemannian Manifolds. arXiv 2014, arXiv:1407.5965. [Google Scholar]
- Absil, P.; Mahony, R.; Sepulchre, R. Optimization on manifolds: Methods and applications. In Recent Advances in Optimization and its Applications in Engineering, Proceedings of the 14th Belgian-French-German Conference on Optimization; Springer: Berlin/Heidelberg, Germany, 2010; pp. 125–144. [Google Scholar]
- Absil, P.; Baker, C.; Gallivan, K. Trust-Region Methods on Riemannian Manifolds. Found. Comput. Math. 2007, 7, 303–330. [Google Scholar] [CrossRef]
- Baker, C.; Absil, P.; Gallivan, K. An implicit trust-region method on Riemannian manifolds. IMA J. Numer. Anal. 2008, 28, 665–689. [Google Scholar] [CrossRef]
- Boumal, N.; Absil, P. RTRMC: A Riemannian trust-region method for low-rank matrix completion. Adv. Neural Inf. Process. Syst.. 2011, 24, 1–9. [Google Scholar]
- Ishteva, M.; Absil, P.; Van Huffel, S.; De Lathauwer, L. Best low multilinear rank approximation of higher-order tensors, based on the Riemannian trust-region scheme. SIAM J. Matrix Anal. Appl. 2011, 32, 115–135. [Google Scholar] [CrossRef]
- Absil, P.; Mahony, R.; Andrews, B. Convergence of the iterates of descent methods for analytic cost functions. SIAM J. Optim. 2005, 16, 531–547. [Google Scholar] [CrossRef]
- Boumal, N.; Absil, P.; Cartis, C. Global rates of convergence for nonconvex optimization on manifolds. IMA J. Numer. Anal. 2019, 39, 1–33. [Google Scholar] [CrossRef]
- Lin, L.; Saparbayeva, B.; Zhang, M.; Dunson, D. Accelerated Algorithms for Convex and Non-Convex Optimization on Manifolds. arXiv 2020, arXiv:2010.08908. [Google Scholar]
- Qi, C.; Gallivan, K.; Absil, P. Riemannian BFGS algorithm with applications. In Recent Advances in Optimization and its Applications in Engineering, Proceedings of the 14th Belgian-French-German Conference on Optimization; Springer: Berlin/Heidelberg, Germany, 2010; pp. 183–192. [Google Scholar]
- Samir, C.; Absil, P.; Srivastava, A.; Klassen, E. A gradient-descent method for curve fitting on Riemannian manifolds. Found. Comput. Math. 2012, 12, 49–73. [Google Scholar] [CrossRef]
- Snoek, J.; Larochelle, H.; Adams, R. Practical bayesian optimization of machine learning algorithms. Adv. Neural Inf. Process. Syst. 2012, 25, 1–9. [Google Scholar]
- Jones, D. A Taxonomy of Global Optimization Methods Based on Response Surfaces. J. Glob. Optim. 2001, 21, 345–383. [Google Scholar] [CrossRef]
- Kushner, H. A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise. J. Fluids Eng. 1964, 86, 97–106. [Google Scholar] [CrossRef]
- Močkus, J. On Bayesian methods for seeking the extremum. In Optimization Techniques IFIP Technical Conference; Springer: Berlin/Heidelberg, Germany, 1975; pp. 400–404. [Google Scholar]
- Jones, D.; Schonlau, M.; Welch, W. Efficient global optimization of expensive black-box functions. J. Glob. Optim. 1998, 13, 455–492. [Google Scholar] [CrossRef]
- Huang, D.; Allen, T.; Notz, W.; Miller, R. Sequential kriging optimization using multiple-fidelity evaluations. Struct. Multidiscip. Optim. 2006, 32, 369–382. [Google Scholar] [CrossRef]
- Keane, A. Statistical improvement criteria for use in multiobjective design optimization. AIAA J. 2006, 44, 879–891. [Google Scholar] [CrossRef]
- Calvin, J. Average performance of a class of adaptive algorithms for global optimization. Ann. Appl. Probab. 1997, 7, 711–730. [Google Scholar] [CrossRef]
- Packwood, D. Bayesian Optimization for Materials Science; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Shoemaker, C.; Regis, R.; Fleming, R. Watershed calibration using multistart local optimization and evolutionary optimization with radial basis function approximation. Hydrol. Sci. J. 2007, 52, 450–465. [Google Scholar] [CrossRef]
- Brochu, E.; Cora, V.; De Freitas, N. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv 2010, arXiv:1012.2599. [Google Scholar]
- Lin, L.; Mu, N.; Cheung, P.; Dunson, D. Extrinsic Gaussian processes for regression and classification on manifolds. Bayesian Anal. 2019, 14, 887–906. [Google Scholar] [CrossRef]
- Jaquier, N.; Rozo, L. High-dimensional Bayesian optimization via nested Riemannian manifolds. Adv. Neural Inf. Process. Syst. 2020, 33, 20939–20951. [Google Scholar]
- Borovitskiy, V.; Terenin, A.; Mostowsky, P. Matérn Gaussian processes on Riemannian manifolds. Adv. Neural Inf. Process. Syst. 2020, 33, 12426–12437. [Google Scholar]
- Jaquier, N.; Borovitskiy, V.; Smolensky, A.; Terenin, A.; Asfour, T.; Rozo, L. Geometry-aware Bayesian Optimization in Robotics using Riemannian Matérn Kernels. In Proceedings of the Conference on Robot Learning, Auckland, NZ, USA, 14–18 December 2022; pp. 794–805. [Google Scholar]
- Frazier, P. A tutorial on Bayesian optimization. arXiv 2018, arXiv:1807.02811. [Google Scholar]
- Niu, M.; Cheung, P.; Lin, L.; Dai, Z.; Lawrence, N.; Dunson, D. Intrinsic Gaussian processes on complex constrained domains. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2019, 81, 603–627. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Y.; Niu, M.; Cheung, P.; Lin, L. Extrinsic Bayesian Optimization on Manifolds. Algorithms 2023, 16, 117. https://doi.org/10.3390/a16020117
Fang Y, Niu M, Cheung P, Lin L. Extrinsic Bayesian Optimization on Manifolds. Algorithms. 2023; 16(2):117. https://doi.org/10.3390/a16020117
Chicago/Turabian StyleFang, Yihao, Mu Niu, Pokman Cheung, and Lizhen Lin. 2023. "Extrinsic Bayesian Optimization on Manifolds" Algorithms 16, no. 2: 117. https://doi.org/10.3390/a16020117
APA StyleFang, Y., Niu, M., Cheung, P., & Lin, L. (2023). Extrinsic Bayesian Optimization on Manifolds. Algorithms, 16(2), 117. https://doi.org/10.3390/a16020117