Evolutionary Statistical System Based on Novelty Search: A Parallel Metaheuristic for Uncertainty Reduction Applied to Wildfire Spread Prediction
<p>Taxonomy of wildfire spread prediction methods. <math display="inline"><semantics> <mrow> <msup> <mi mathvariant="bold">S</mi> <mn mathvariant="bold">2</mn> </msup> <msup> <mi mathvariant="bold">F</mi> <mn mathvariant="bold">2</mn> </msup> <mi mathvariant="bold">M</mi> </mrow> </semantics></math>: Statistical System for Forest Fire Management; <b>ESS</b>: Evolutionary Statistical System; <b>ESSIM</b>: ESS with Island Model; <b>ESSIM-EA</b>: ESSIM based on evolutionary algorithms; <b>ESSIM-DE</b>: ESSIM based on Differential Evolution; <b>ESS-NS</b>: ESS based on Novelty Search; <b>M/W</b>: Master/Worker parallelism; <b>PEA</b>: Parallel Evolutionary Algorithm; <b>IM</b>: Island Model; <b>NS</b>: Novelty Search.</p> "> Figure 2
<p>Evolutionary Statistical System. <math display="inline"><semantics> <msub> <mi mathvariant="bold">RFL</mi> <mi mathvariant="bold">i</mi> </msub> </semantics></math>: real fire line of instant <math display="inline"><semantics> <msub> <mi>t</mi> <mi>i</mi> </msub> </semantics></math>; <b>OS-Master</b>: Optimization Stage in Master; <b>OS-</b><math display="inline"><semantics> <msub> <mi mathvariant="bold">Worker</mi> <mrow> <mo>{</mo> <mn mathvariant="bold">1</mn> <mo>…</mo> <mi mathvariant="bold">n</mi> <mo>}</mo> </mrow> </msub> </semantics></math>: Optimization Stage in Workers 1 to <span class="html-italic">n</span>; <b>FS</b>: fire simulator; <b>PEA</b>: Parallel Evolutionary Algorithms; <math display="inline"><semantics> <msub> <mi mathvariant="bold">PEA</mi> <mi mathvariant="bold">F</mi> </msub> </semantics></math>: Parallel Evolutionary Algorithm (fitness evaluation); <math display="inline"><semantics> <msub> <mi mathvariant="bold">PV</mi> <mrow> <mo>{</mo> <mn mathvariant="bold">1</mn> <mo>…</mo> <mi mathvariant="bold">n</mi> <mo>}</mo> </mrow> </msub> </semantics></math>: parameter vectors (scenarios); <b>CS</b>: Calibration Stage; <b>SS</b>: Statistical Stage; <math display="inline"><semantics> <msub> <mi mathvariant="bold">SK</mi> <mi mathvariant="bold">ign</mi> </msub> </semantics></math>: Key Ignition Value search; <b>FF</b>: fitness function; <math display="inline"><semantics> <msub> <mi mathvariant="bold">K</mi> <msub> <mi mathvariant="bold">ign</mi> <mi mathvariant="bold">i</mi> </msub> </msub> </semantics></math>: Key Ignition Value for <math display="inline"><semantics> <msub> <mi>t</mi> <mi>i</mi> </msub> </semantics></math>; <b>PS</b>: Prediction Stage; <math display="inline"><semantics> <msub> <mi mathvariant="bold">PFL</mi> <mrow> <mi mathvariant="bold">i</mi> <mo>+</mo> <mn mathvariant="bold">1</mn> </mrow> </msub> </semantics></math>: predicted fire line of instant <math display="inline"><semantics> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </semantics></math>.</p> "> Figure 3
<p>Generation of the prediction. <b>sc.</b>: scenario; <b>FS</b>: fire simulator,; <b>SS</b>: Statistical Stage; <math display="inline"><semantics> <msub> <mi mathvariant="bold">K</mi> <msub> <mi mathvariant="bold">ign</mi> <mi mathvariant="bold">n</mi> </msub> </msub> </semantics></math>: <span class="html-italic">Key Ignition Value</span> computed for instant <math display="inline"><semantics> <msub> <mi>t</mi> <mi>n</mi> </msub> </semantics></math>; <b>PS</b>: Prediction Stage; <math display="inline"><semantics> <msub> <mi mathvariant="bold">PFL</mi> <mrow> <mi mathvariant="bold">n</mi> <mo>+</mo> <mn mathvariant="bold">1</mn> </mrow> </msub> </semantics></math>: predicted fire line for <math display="inline"><semantics> <msub> <mi>t</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </semantics></math>.</p> "> Figure 4
<p>Evolutionary Statistical System with Island Model. <math display="inline"><semantics> <msub> <mi mathvariant="bold">RFL</mi> <mi mathvariant="bold">i</mi> </msub> </semantics></math>: Real Fire Line at time <math display="inline"><semantics> <msub> <mi>t</mi> <mi>i</mi> </msub> </semantics></math>; <math display="inline"><semantics> <msub> <mi mathvariant="bold">PV</mi> <mrow> <mo>{</mo> <mn mathvariant="bold">1</mn> <mo>…</mo> <mi mathvariant="bold">n</mi> <mo>}</mo> </mrow> </msub> </semantics></math>: parameter vectors (scenarios); <b>FS</b>: fire simulator; <math display="inline"><semantics> <msub> <mi mathvariant="bold">PEA</mi> <mi mathvariant="bold">F</mi> </msub> </semantics></math>: Parallel Evolutionary Algorithm (fitness evaluation); <b>OS-</b><math display="inline"><semantics> <msub> <mi mathvariant="bold">Master</mi> <mrow> <mo>{</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mo>…</mo> <mo>}</mo> </mrow> </msub> </semantics></math>: Optimization Stage in Masters <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> </mrow> </semantics></math> etc.; <b>OS-</b><math display="inline"><semantics> <msubsup> <mi mathvariant="bold">Worker</mi> <mrow> <mo>{</mo> <mn>1</mn> <mo>…</mo> <mi>n</mi> <mo>}</mo> </mrow> <mrow> <mo>{</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mo>…</mo> <mo>}</mo> </mrow> </msubsup> </semantics></math>: Optimization Stage in Workers 1 to <span class="html-italic">n</span> belonging to one Master in <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mo>…</mo> <mo>}</mo> </mrow> </semantics></math>; <math display="inline"><semantics> <mi mathvariant="bold">PEA</mi> </semantics></math>: Parallel Evolutionary Algorithm; <b>SS</b>: Statistical Stage in Master; <b>SK</b>: Search for <math display="inline"><semantics> <msub> <mi>K</mi> <mrow> <mi>i</mi> <mi>g</mi> <mi>n</mi> </mrow> </msub> </semantics></math>; <math display="inline"><semantics> <msub> <mi mathvariant="bold">K</mi> <mi mathvariant="bold">ign</mi> </msub> </semantics></math>: <span class="html-italic">Key Ignition Value</span>; <b>FF</b>: Fitness Function; <b>CS-Master</b>: Calibration Stage in Master; <b>CS-Monitor</b>: Calibration Stage in Monitor; <b>PS</b>: Prediction Stage; <math display="inline"><semantics> <msub> <mi mathvariant="bold">PFL</mi> <mrow> <mi mathvariant="bold">i</mi> <mo>+</mo> <mn mathvariant="bold">1</mn> </mrow> </msub> </semantics></math>: Predicted Fire Line for instant <math display="inline"><semantics> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </semantics></math>; <math display="inline"><semantics> <msub> <mi mathvariant="bold">SS</mi> <mi mathvariant="bold">M</mi> </msub> </semantics></math>: Statistical Stage in Monitor; <math display="inline"><semantics> <msub> <mi mathvariant="bold">pm</mi> <mi mathvariant="bold">a</mi> </msub> </semantics></math>: probability map sent from <math display="inline"><semantics> <mrow> <mi>M</mi> <mi>a</mi> <mi>s</mi> <mi>t</mi> <mi>e</mi> <msub> <mi>r</mi> <mi>a</mi> </msub> </mrow> </semantics></math> to Monitor; <math display="inline"><semantics> <mrow> <mo>{</mo> <mi mathvariant="bold">pm</mi> <mo>,</mo> <mi mathvariant="bold">K</mi> <mo>}</mo> </mrow> </semantics></math>: best probability map and associated <math display="inline"><semantics> <msub> <mi>K</mi> <mrow> <mi>i</mi> <mi>g</mi> <mi>n</mi> </mrow> </msub> </semantics></math>.</p> "> Figure 5
<p>Evolutionary Statistical System based on Novelty Search. <math display="inline"><semantics> <msub> <mi mathvariant="bold">RFL</mi> <mi mathvariant="bold">i</mi> </msub> </semantics></math>: real fire line of instant <math display="inline"><semantics> <msub> <mi>t</mi> <mi>i</mi> </msub> </semantics></math>; <b>OS-Master</b>: Optimization Stage in Master; <b>OS-</b><math display="inline"><semantics> <msub> <mi mathvariant="bold">Worker</mi> <mrow> <mo>{</mo> <mn mathvariant="bold">1</mn> <mo>…</mo> <mi mathvariant="bold">n</mi> <mo>}</mo> </mrow> </msub> </semantics></math>: Optimization Stage in Workers 1 to <span class="html-italic">n</span>; <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>E</mi> <mi>A</mi> </mrow> </semantics></math>: Parallel Evolutionary Algorithm; <b>NS-based GA</b>: Novelty Search-based Genetic Algorithm; <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif-bold-italic">ρ</mi> <mo>(</mo> <mi mathvariant="bold">x</mi> <mo>)</mo> </mrow> </semantics></math>: novelty score function from Equation (<a href="#FD1-algorithms-15-00478" class="html-disp-formula">1</a>); <math display="inline"><semantics> <msub> <mi mathvariant="bold">PV</mi> <mrow> <mo>{</mo> <mn mathvariant="bold">1</mn> <mo>…</mo> <mi mathvariant="bold">n</mi> <mo>}</mo> </mrow> </msub> </semantics></math>: parameter vectors (scenarios); <b>FS</b>: fire simulator; <math display="inline"><semantics> <msub> <mi mathvariant="bold">PEA</mi> <mi mathvariant="bold">F</mi> </msub> </semantics></math>: Parallel Evolutionary Algorithm (fitness evaluation); <b>CS</b>: Calibration Stage; <b>SS</b>: Statistical Stage; <b>FF</b>: fitness function; <math display="inline"><semantics> <msub> <mi mathvariant="bold">PFL</mi> <mi mathvariant="bold">i</mi> </msub> </semantics></math>: predicted fire line of instant <math display="inline"><semantics> <msub> <mi>t</mi> <mi>i</mi> </msub> </semantics></math>; <math display="inline"><semantics> <msub> <mi mathvariant="bold">K</mi> <msub> <mi mathvariant="bold">ign</mi> <mi mathvariant="bold">i</mi> </msub> </msub> </semantics></math>: <span class="html-italic">Key Ignition Value</span> for <math display="inline"><semantics> <msub> <mi>t</mi> <mi>i</mi> </msub> </semantics></math>; <math display="inline"><semantics> <msub> <mi mathvariant="bold">SK</mi> <mi mathvariant="bold">ign</mi> </msub> </semantics></math>: <span class="html-italic">Key Ignition Value</span> search; <b>PS</b>: Prediction Stage.</p> "> Figure 6
<p>Example of the fitness computation with Equation (<a href="#FD3-algorithms-15-00478" class="html-disp-formula">3</a>). We have that <math display="inline"><semantics> <mrow> <mo>|</mo> <mi>A</mi> <mo>∪</mo> <mi>B</mi> <mo>|</mo> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mo>|</mo> <mi>A</mi> <mo>∩</mo> <mi>B</mi> <mo>|</mo> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>; then <math display="inline"><semantics> <mrow> <mi>f</mi> <mi>i</mi> <mi>t</mi> <mi>n</mi> <mi>e</mi> <mi>s</mi> <mi>s</mi> <mo>(</mo> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo>)</mo> <mo>=</mo> <mn>4</mn> <mo>/</mo> <mn>8</mn> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>.</p> "> Figure 7
<p>Case 520: (<b>a</b>) map of the real fire spread; (<b>b</b>) fitness averages; and (<b>c</b>) fitness distributions.</p> "> Figure 8
<p>Case 533: (<b>a</b>) map of the real fire spread; (<b>b</b>) fitness averages; and (<b>c</b>) fitness distributions.</p> "> Figure 9
<p>Case 751: (<b>a</b>) map of the real fire spread; (<b>b</b>) fitness averages; and (<b>c</b>) fitness distributions.</p> "> Figure 10
<p>Case 519: (<b>a</b>) map of the real fire spread; (<b>b</b>) fitness averages; and (<b>c</b>) fitness distributions.</p> "> Figure 11
<p>Case 534: (<b>a</b>) map of the real fire spread; (<b>b</b>) fitness averages; and (<b>c</b>) fitness distributions.</p> ">
Abstract
:1. Introduction
2. Related Works
2.1. ESS Framework
2.2. ESSIM-EA and ESSIM-DE Frameworks
2.3. Novelty Search: Paradigm and Applications
3. Novelty-Based Approach for the Optimization Stage in a Wildfire Prediction System
3.1. New Framework: ESS-NS
3.2. Novelty-Based Genetic Algorithm with Multiple Solutions
Algorithm 1 Novelty-based Genetic Algorithm with Multiple Solutions. |
Input: population size N, number of offspring m, tournament probability , mutation rate , crossover rate , maximum number of generations , fitness threshold , number of neighbors for novelty score k Output: the set of individuals of highest fitness found during the search
|
4. Experimentation and Results
4.1. Experimental Setup
4.2. Results
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DDM | Data-Driven Methods |
DDM-MOS | Data-Driven methods with Multiple Overlapping Solutions |
ESS | Evolutionary Statistical System |
ESS-NS | Evolutionary Statistical System based on Novelty Search |
ESSIM | Evolutionary Statistical System with Island Model |
ESSIM-EA | ESSIM based on evolutionary algorithms |
ESSIM-DE | ESSIM based on Differential Evolution |
GA | Genetic Algorithm |
NS | Novelty Search |
PEA | Parallel Evolutionary Algorithm |
OS | Optimization Stage |
SS | Statistical Stage |
CS | Calibration Stage |
PS | Prediction Stage |
RFL | Real Fire Line |
PFL | Predicted Fire Line |
Appendix A. Calibration Experiment
Appendix A.1. Results
Tour | Mut | 1 | 2 | 3 | 4 | 5 | t (s) | |
---|---|---|---|---|---|---|---|---|
0.75 | 0.1 | 0.879 | 0.720 | 0.864 | 0.817 | 0.883 | 0.833 | 2813.000 |
0.2 | 0.882 | 0.769 | 0.861 | 0.837 | 0.884 | 0.847 | 3091.330 | |
0.3 | 0.882 | 0.777 | 0.855 | 0.807 | 0.881 | 0.840 | 3202.670 | |
0.4 | 0.883 | 0.769 | 0.862 | 0.823 | 0.882 | 0.844 | 3176.670 | |
0.8 | 0.1 | 0.888 | 0.713 | 0.866 | 0.765 | 0.882 | 0.823 | 3358.330 |
0.2 | 0.888 | 0.785 | 0.862 | 0.763 | 0.883 | 0.836 | 3087.670 | |
0.3 | 0.884 | 0.777 | 0.863 | 0.786 | 0.883 | 0.838 | 3058.000 | |
0.4 | 0.882 | 0.755 | 0.861 | 0.790 | 0.881 | 0.834 | 3232.000 | |
0.85 | 0.1 | 0.882 | 0.760 | 0.862 | 0.801 | 0.885 | 0.838 | 2760.670 |
0.2 | 0.888 | 0.781 | 0.860 | 0.815 | 0.879 | 0.845 | 2977.000 | |
0.3 | 0.883 | 0.781 | 0.855 | 0.741 | 0.884 | 0.829 | 3067.330 | |
0.4 | 0.879 | 0.759 | 0.857 | 0.816 | 0.880 | 0.838 | 3162.670 | |
0.9 | 0.1 | 0.880 | 0.711 | 0.860 | 0.734 | 0.884 | 0.814 | 2800.330 |
0.2 | 0.882 | 0.710 | 0.862 | 0.786 | 0.881 | 0.824 | 2821.000 | |
0.3 | 0.882 | 0.775 | 0.866 | 0.824 | 0.880 | 0.845 | 3055.000 | |
0.4 | 0.885 | 0.779 | 0.864 | 0.810 | 0.882 | 0.844 | 3131.000 |
Tour | Mut | 1 | 2 | 3 | 4 | t (s) | |
---|---|---|---|---|---|---|---|
0.75 | 0.1 | 0.672 | 0.675 | 0.731 | 0.696 | 0.694 | 2122.970 |
0.2 | 0.754 | 0.773 | 0.743 | 0.751 | 0.755 | 2239.330 | |
0.3 | 0.709 | 0.784 | 0.722 | 0.755 | 0.742 | 2148.000 | |
0.4 | 0.737 | 0.790 | 0.769 | 0.784 | 0.770 | 2284.330 | |
0.8 | 0.1 | 0.706 | 0.722 | 0.745 | 0.736 | 0.727 | 2003.330 |
0.2 | 0.737 | 0.707 | 0.703 | 0.765 | 0.728 | 2192.670 | |
0.3 | 0.743 | 0.737 | 0.731 | 0.762 | 0.743 | 2165.670 | |
0.4 | 0.737 | 0.741 | 0.745 | 0.769 | 0.748 | 2247.000 | |
0.85 | 0.1 | 0.739 | 0.801 | 0.770 | 0.781 | 0.773 | 2176.670 |
0.2 | 0.719 | 0.806 | 0.784 | 0.766 | 0.769 | 2392.000 | |
0.3 | 0.707 | 0.762 | 0.738 | 0.740 | 0.737 | 2262.000 | |
0.4 | 0.703 | 0.781 | 0.723 | 0.769 | 0.744 | 2296.000 | |
0.9 | 0.1 | 0.785 | 0.801 | 0.766 | 0.751 | 0.776 | 2128.330 |
0.2 | 0.717 | 0.817 | 0.728 | 0.758 | 0.755 | 2271.670 | |
0.3 | 0.717 | 0.743 | 0.700 | 0.757 | 0.730 | 2317.330 | |
0.4 | 0.782 | 0.784 | 0.721 | 0.780 | 0.767 | 2304.000 |
Tour | Mut | 1 | 2 | 3 | t (s) | |
---|---|---|---|---|---|---|
0.75 | 0.1 | 0.893 | 0.888 | 0.805 | 0.862 | 992.433 |
0.2 | 0.942 | 0.864 | 0.854 | 0.886 | 1064.730 | |
0.3 | 0.938 | 0.888 | 0.848 | 0.891 | 1042.970 | |
0.4 | 0.950 | 0.897 | 0.843 | 0.897 | 1048.870 | |
0.8 | 0.1 | 0.954 | 0.896 | 0.821 | 0.890 | 1011.500 |
0.2 | 0.899 | 0.875 | 0.803 | 0.859 | 1056.670 | |
0.3 | 0.948 | 0.884 | 0.836 | 0.889 | 1034.700 | |
0.4 | 0.924 | 0.875 | 0.832 | 0.877 | 1064.630 | |
0.85 | 0.1 | 0.933 | 0.861 | 0.803 | 0.866 | 963.733 |
0.2 | 0.941 | 0.888 | 0.841 | 0.890 | 1002.300 | |
0.3 | 0.937 | 0.900 | 0.855 | 0.897 | 1017.730 | |
0.4 | 0.932 | 0.876 | 0.822 | 0.877 | 1088.230 | |
0.9 | 0.1 | 0.898 | 0.888 | 0.794 | 0.860 | 1043.030 |
0.2 | 0.932 | 0.892 | 0.841 | 0.889 | 1021.170 | |
0.3 | 0.947 | 0.887 | 0.843 | 0.892 | 1039.770 | |
0.4 | 0.947 | 0.883 | 0.834 | 0.888 | 1055.770 |
Tour | Mut | 1 | 2 | 3 | t (s) | |
---|---|---|---|---|---|---|
0.75 | 0.1 | 0.886 | 0.931 | 0.783 | 0.867 | 1738.670 |
0.2 | 0.881 | 0.926 | 0.834 | 0.880 | 1835.000 | |
0.3 | 0.897 | 0.910 | 0.771 | 0.859 | 1879.330 | |
0.4 | 0.897 | 0.882 | 0.812 | 0.863 | 1949.000 | |
0.8 | 0.1 | 0.893 | 0.912 | 0.728 | 0.845 | 1770.000 |
0.2 | 0.890 | 0.924 | 0.800 | 0.871 | 1844.000 | |
0.3 | 0.901 | 0.926 | 0.779 | 0.869 | 1902.330 | |
0.4 | 0.875 | 0.923 | 0.811 | 0.870 | 1912.000 | |
0.85 | 0.1 | 0.865 | 0.834 | 0.782 | 0.827 | 1787.670 |
0.2 | 0.872 | 0.925 | 0.741 | 0.846 | 1810.330 | |
0.3 | 0.896 | 0.901 | 0.772 | 0.856 | 1874.670 | |
0.4 | 0.904 | 0.907 | 0.765 | 0.859 | 1965.000 | |
0.9 | 0.1 | 0.864 | 0.914 | 0.751 | 0.843 | 1804.000 |
0.2 | 0.897 | 0.906 | 0.805 | 0.869 | 1822.670 | |
0.3 | 0.863 | 0.923 | 0.755 | 0.847 | 1892.000 | |
0.4 | 0.898 | 0.917 | 0.724 | 0.846 | 1888.000 |
Tour | Mut | 1 | 2 | 3 | 4 | 5 | t (s) | |
---|---|---|---|---|---|---|---|---|
0.75 | 0.1 | 0.738 | 0.573 | 0.588 | 0.804 | 0.768 | 0.694 | 1593.330 |
0.2 | 0.697 | 0.590 | 0.700 | 0.796 | 0.751 | 0.707 | 1665.000 | |
0.3 | 0.762 | 0.575 | 0.692 | 0.839 | 0.757 | 0.725 | 1655.330 | |
0.4 | 0.762 | 0.575 | 0.699 | 0.822 | 0.742 | 0.720 | 1698.670 | |
0.8 | 0.1 | 0.696 | 0.566 | 0.662 | 0.809 | 0.756 | 0.698 | 1643.330 |
0.2 | 0.778 | 0.590 | 0.687 | 0.822 | 0.765 | 0.728 | 1644.000 | |
0.3 | 0.738 | 0.582 | 0.679 | 0.829 | 0.723 | 0.710 | 1654.670 | |
0.4 | 0.793 | 0.547 | 0.692 | 0.811 | 0.734 | 0.716 | 1628.330 | |
0.85 | 0.1 | 0.754 | 0.590 | 0.708 | 0.825 | 0.753 | 0.726 | 1599.000 |
0.2 | 0.770 | 0.547 | 0.667 | 0.786 | 0.780 | 0.710 | 1642.000 | |
0.3 | 0.692 | 0.563 | 0.676 | 0.839 | 0.759 | 0.706 | 1672.330 | |
0.4 | 0.744 | 0.590 | 0.668 | 0.841 | 0.759 | 0.720 | 1702.000 | |
0.9 | 0.1 | 0.667 | 0.547 | 0.669 | 0.808 | 0.756 | 0.689 | 1578.500 |
0.2 | 0.778 | 0.590 | 0.700 | 0.811 | 0.770 | 0.730 | 1652.000 | |
0.3 | 0.771 | 0.582 | 0.708 | 0.795 | 0.731 | 0.717 | 1686.000 | |
0.4 | 0.762 | 0.582 | 0.700 | 0.825 | 0.755 | 0.725 | 1673.330 |
References
- Facts Plus Statistics: Wildfires—III. Available online: https://www.iii.org/fact-statistic/facts-statistics-wildfires#Wildland%20fires (accessed on 13 October 2022).
- Burgan, R.E.; Rothermel, R.C. BEHAVE: Fire Behavior Prediction and Fuel Modeling System—FUEL Subsystem; U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1984. [Google Scholar] [CrossRef]
- Finney, M.A. FARSITE: Fire Area Simulator-Model Development and Evaluation; Res. Pap. RMRS-RP-4, Revised 2004; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 1998; Volume 4, 47p. [Google Scholar] [CrossRef]
- Smith, J.E. vFireLib: A Forest Fire Simulation Library Implemented on the GPU. Master’s Thesis, University of Nevada, Reno, NV, USA, 2016. [Google Scholar]
- Heinsch, F.A.; Andrews, P.L. BehavePlus Fire Modeling System, Version 5.0: Design and Features; Gen. Tech. Rep. RMRS-GTR-249; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2010; Volume 249, 111p. [Google Scholar] [CrossRef] [Green Version]
- Lopes, A.; Cruz, M.; Viegas, D. FireStation—An Integrated Software System for the Numerical Simulation of Fire Spread on Complex Topography. Environ. Model. Softw. 2002, 17, 269–285. [Google Scholar] [CrossRef]
- Abdalhaq, B.; Cortés, A.; Margalef, T.; Bianchini, G.; Luque, E. Between Classical and Ideal: Enhancing Wildland Fire Prediction Using Cluster Computing. Clust. Comput. 2006, 9, 329–343. [Google Scholar] [CrossRef]
- Piñol, J.; Salvador, R.; Beven, K.; Viegas, D.X. Model Calibration and Uncertainty Prediction of Fire Spread. In Forest Fire Research and Wildland Fire Safety: Proceedings of IV International Conference on Forest Fire Research 2002 Wildland Fire Safety Summit, Coimbra, Portugal, 18–23 November 2002; Millpress Science Publishers: Rotterdam, The Netherlands, 2002. [Google Scholar]
- Bianchini, G.; Denham, M.; Cortés, A.; Margalef, T.; Luque, E. Wildland Fire Growth Prediction Method Based on Multiple Overlapping Solution. J. Comput. Sci. 2010, 1, 229–237. [Google Scholar] [CrossRef]
- Bianchini, G.; Caymes-Scutari, P.; Méndez Garabetti, M. Evolutionary-Statistical System: A Parallel Method for Improving Forest Fire Spread Prediction. J. Comput. Sci. 2015, 6, 58–66. [Google Scholar] [CrossRef]
- Méndez Garabetti, M.; Bianchini, G.; Tardivo, M.L.; Caymes Scutari, P. Comparative Analysis of Performance and Quality of Prediction Between ESS and ESS-IM. Electron. Notes Theor. Comput. Sci. 2015, 314, 45–60. [Google Scholar] [CrossRef] [Green Version]
- Méndez Garabetti, M.; Bianchini, G.; Caymes Scutari, P.; Tardivo, M.L.; Gil Costa, V. ESSIM-EA Applied to Wildfire Prediction Using Heterogeneous Configuration for Evolutionary Parameters. In Proceedings of the XXIII Congreso Argentino de Ciencias de la Computación, La Plata, Argentina, 9–13 October 2017; p. 10. [Google Scholar]
- Tardivo, M.L.; Caymes Scutari, P.; Méndez Garabetti, M.; Bianchini, G. Optimization for an Uncertainty Reduction Method Applied to Forest Fires Spread Prediction. In Computer Science—CACIC 2017; De Giusti, A.E., Ed.; Springer International Publishing: Cham, Switzerland, 2018; Volume 790, pp. 13–23. [Google Scholar] [CrossRef]
- Mitchell, M. An Introduction to Genetic Algorithms; The MIT Press: Cambridge, MA, USA, 1998. [Google Scholar] [CrossRef]
- Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning; Addison-Wesley: Reading, MA, USA, 1988. [Google Scholar]
- Bilal; Pant, M.; Zaheer, H.; Garcia-Hernandez, L.; Abraham, A. Differential Evolution: A Review of More than Two Decades of Research. Eng. Appl. Artif. Intell. 2020, 90, 103479. [Google Scholar] [CrossRef]
- Malan, K.M.; Engelbrecht, A.P. A Survey of Techniques for Characterising Fitness Landscapes and Some Possible Ways Forward. Inf. Sci. 2013, 241, 148–163. [Google Scholar] [CrossRef] [Green Version]
- Lehman, J.; Stanley, K.O. Abandoning Objectives: Evolution Through the Search for Novelty Alone. Evol. Comput. 2011, 19, 189–223. [Google Scholar] [CrossRef] [Green Version]
- Lehman, J.; Stanley, K.O. Exploiting Open-Endedness to Solve Problems Through the Search for Novelty. In Artificial Life; 2008; p. 329. ISBN 978-0-262-75017-2. Available online: http://eprints.soton.ac.uk/id/eprint/266740 (accessed on 13 October 2022).
- Lehman, J.; Stanley, K.O. Evolvability Is Inevitable: Increasing Evolvability without the Pressure to Adapt. PLoS ONE 2013, 8, 2–10. [Google Scholar] [CrossRef]
- Strappa, J.; Caymes-Scutari, P.; Bianchini, G. A Parallel Novelty Search Metaheuristic Applied to a Wildfire Prediction System. In Proceedings of the 2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Lyon, France, 30 May–3 June 2022; pp. 798–806. [Google Scholar] [CrossRef]
- Tardivo, M.L. Paralelización Y Sintonización De Evolución Diferencial Aplicada a Un Método De Reducción De Incertidumbre Para La Predicción De Incendios Forestales. Ph.D. Thesis, Universidad Nacional de San Luis, San Luis, Argentina.
- Naono, K.; Teranishi, K.; Cavazos, J.; Suda, R. (Eds.) Software Automatic Tuning; Springer: New York, NY, USA, 2010. [Google Scholar] [CrossRef]
- Caymes Scutari, P.; Bianchini, G.; Sikora, A.; Margalef, T. Environment for Automatic Development and Tuning of Parallel Applications. In Proceedings of the 2016 International Conference on High Performance Computing & Simulation (HPCS), Innsbruck, Austria, 18–22 July 2016; IEEE: Innsbruck, Austria, 2016; pp. 743–750. [Google Scholar] [CrossRef]
- Caymes Scutari, P.; Tardivo, M.L.; Bianchini, G.; Méndez Garabetti, M. Dynamic Tuning of a Forest Fire Prediction Parallel Method. In Computer Science—CACIC 2019; Pesado, P., Arroyo, M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; Volume 1184, pp. 19–34. [Google Scholar] [CrossRef]
- Zou, F.; Chen, D.; Liu, H.; Cao, S.; Ji, X.; Zhang, Y. A Survey of Fitness Landscape Analysis for Optimization. Neurocomputing 2022, 503, 129–139. [Google Scholar] [CrossRef]
- Pugh, J.K.; Soros, L.B.; Stanley, K.O. Quality Diversity: A New Frontier for Evolutionary Computation. Front. Robot. AI 2016, 3, 40. [Google Scholar] [CrossRef]
- Gomes, J.; Urbano, P.; Christensen, A.L. Evolution of Swarm Robotics Systems with Novelty Search. Swarm Intell. 2013, 7, 115–144. [Google Scholar] [CrossRef] [Green Version]
- Krčah, P. Solving Deceptive Tasks in Robot Body-Brain Co-evolution by Searching for Behavioral Novelty. In Advances in Robotics and Virtual Reality; Kacprzyk, J., Jain, L.C., Gulrez, T., Hassanien, A.E., Eds.; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2012; Volume 26, pp. 167–186. [Google Scholar] [CrossRef]
- Lehman, J.; Stanley, K.O. Evolving a Diversity of Virtual Creatures through Novelty Search and Local Competition. In Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation—GECCO ’11, Dublin, Ireland, 12–16 July 2011; ACM Press: Dublin, Ireland, 2011; p. 211. [Google Scholar] [CrossRef]
- Ollion, C.; Doncieux, S. Why and How to Measure Exploration in Behavioral Space. In Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation—GECCO ’11, Dublin, Ireland, 12–16 July 2011; ACM Press: Dublin, Ireland, 2011; p. 267. [Google Scholar] [CrossRef]
- Gomes, J.; Mariano, P.; Christensen, A.L. Devising Effective Novelty Search Algorithms: A Comprehensive Empirical Study. In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, Madrid, Spain, 11–15 July 2015; ACM: Madrid, Spain, 2015; pp. 943–950. [Google Scholar] [CrossRef]
- Doncieux, S.; Paolo, G.; Laflaquière, A.; Coninx, A. Novelty Search Makes Evolvability Inevitable. arXiv 2020, arXiv:2005.06224. [Google Scholar]
- Galvao, D.F.; Lehman, J.; Urbano, P. Novelty-Driven Particle Swarm Optimization; Bonnevay, S., Legrand, P., Monmarché, N., Lutton, E., Schoenauer, M., Eds.; Artificial Evolution. EA 2015. Lecture Notes in Computer Science; Springer: Cham, Swizerland, 2015; Volume 9554, pp. 177–190. [Google Scholar] [CrossRef] [Green Version]
- Cuccu, G.; Gomez, F. When Novelty Is Not Enough. In Applications of Evolutionary Computation; Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-Alcázar, A.I., Merelo, J.J., Neri, F., Preuss, M., Richter, H., et al., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6624, pp. 234–243. [Google Scholar] [CrossRef]
- Mouret, J.B.; Doncieux, S. Encouraging Behavioral Diversity in Evolutionary Robotics: An Empirical Study. Evol. Comput. 2012, 20, 91–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pugh, J.K.; Soros, L.B.; Szerlip, P.A.; Stanley, K.O. Confronting the Challenge of Quality Diversity. In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, Madrid, Spain, 11–15 July 2015; ACM: Madrid, Spain, 2015; pp. 967–974. [Google Scholar] [CrossRef]
- Cully, A.; Clune, J.; Tarapore, D.; Mouret, J.B. Robots That Can Adapt like Animals. Nature 2015, 521, 503–507. [Google Scholar] [CrossRef] [PubMed]
- Mouret, J.B.; Clune, J. Illuminating Search Spaces by Mapping Elites. arXiv 2015, arXiv:1504.04909. [Google Scholar]
- Hodjat, B.; Shahrzad, H.; Miikkulainen, R. Distributed Age-Layered Novelty Search. In Proceedings of the Artificial Life Conference 2016, Cancun, Mexico, 4–6 July 2016; MIT Press: Cancun, Mexico, 2016; pp. 131–138. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Wang, Y.; Liu, X. PNS: Population-Guided Novelty Search for Reinforcement Learning in Hard Exploration Environments. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021. [Google Scholar] [CrossRef]
- Andrews, P.L. BehavePlus Fire Modeling System, Version 5.0: Variables; Gen. Tech. Rep. RMRS-GTR-213 Revised; Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2009; Volume 213, 111p. [Google Scholar] [CrossRef]
- Real, R.; Vargas, J.M. The Probabilistic Basis of Jaccard’s Index of Similarity. Syst. Biol. 1996, 45, 380–385. [Google Scholar] [CrossRef]
- Forest Fire Spread Prevention and Mitigation, SPREAD Project, Fact Sheet, FP5, CORDIS, European Commission. Available online: https://cordis.europa.eu/project/id/EVG1-CT-2001-00043 (accessed on 13 October 2022).
- Tardivo, M.L.; Caymes Scutari, P.; Bianchini, G.; Méndez Garabetti, M.; Cencerrado, A.; Cortés, A. A Comparative Study of Evolutionary Statistical Methods for Uncertainty Reduction in Forest Fire Propagation Prediction. Procedia Comput. Sci. 2017, 108, 2018–2027. [Google Scholar] [CrossRef]
- Méndez Garabetti, M.; Bianchini, G.; Gil Costa, V.; Caymes Scutari, P. Método de Reducción de Incertidumbre Basado en Algoritmos Evolutivos y Paralelismo Orientado a la Predicción y Prevención de Desastres Naturales. AJEA 2020, 5. [Google Scholar] [CrossRef]
- MPICH—High-Performance Portable MPI. Available online: https://www.mpich.org/ (accessed on 13 October 2022).
- Bianchini, G.; Cortés, A.; Margalef, T.; Luque, E. Improved Prediction Methods for Wildfires Using High Performance Computing: A Comparison; Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J., Eds.; Computational Science—ICCS 2006. ICCS 2006. Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2006; Volume 3991. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning: With Applications in R; Springer Texts in Statistics; Springer: New York, NY, USA, 2021. [Google Scholar] [CrossRef]
Parameter | Description | Range | Unit of Measurement |
---|---|---|---|
Model | Rothermel fuel model | 1–13 | fuel model |
WindSpd | Wind speed | 0–80 | miles/hour |
WindDir | Wind direction | 0–360 | degrees clockwise from North |
M1 | Dead fuel moisture in 1 h since start of fire | 1-60 | percent |
M10 | Dead fuel moisture in 10 h | 1–60 | percent |
M100 | Dead fuel moisture in 100 h | 1–60 | percent |
Mherb | Live herbaceous fuel moisture | 30–300 | percent |
Slope | Surface slope | 0–81 | degrees |
Aspect | Direction of the surface faces | 0–360 | degrees clockwise from north |
Fire | Width (m) | Length (m) | Slope (deg) | Initial Time (min) | End Time (min) | Increment (min) | Ignition Type |
---|---|---|---|---|---|---|---|
520 | 89 | 109 | 21 | 2.0 | 14.0 | 2.0 | linear |
533 | 95 | 123 | 21 | 2.0 | 12.0 | 2.0 | centroid |
751 | 60 | 90 | 6 | 2.0 | 10.0 | 2.0 | linear |
519 | 89 | 91 | 21 | 2.5 | 12.5 | 2.5 | linear |
534 | 75 | 126 | 19 | 3.0 | 9.0 | 1.0 | centroid |
Parameter | ESS-NS | ESS | ESSIM-EA | ESSIM-DE |
---|---|---|---|---|
Population size | 200 | 200 | 200 | 200 |
Fitness threshold | 0.7 | 0.7 | 0.7 | 0.7 |
Mutation rate | 0.4 | 0.5 | 0.5 | - |
Tournament probability | 0.8 | - | - | - |
Number of neighbors | 199 | - | - | - |
Number of islands | - | - | 5 | 5 |
Number of workers | 40 | 40 | 7 per island | 7 per island |
Cr (crossover probability) | 1 | 0.2–0.6 | 0.2–0.6 | 0.3 |
F (scale factor) | - | - | - | 0.9 |
Migration frequency | - | - | every iteration | every iteration |
Immigrants | - | - | best individual | 20% of population |
Immigr. replacement type | - | - | elitist | semi-elitist |
Communication topology | - | - | ring | ring |
Map | ESS-NS | ESS | ESSIM-EA | ESSIM-DE |
---|---|---|---|---|
520 | 00:52:56 | 00:50:15 | 00:57:20 | 00:37:48 |
533 | 00:38:04 | 00:55:28 | 01:01:15 | 00:49:05 |
751 | 00:17:28 | 00:48:19 | 00:50:10 | 00:27:49 |
519 | 00:32:29 | 00:58:35 | 01:18:08 | 00:43:42 |
534 | 00:28:18 | 01:18:06 | 02:11:38 | 00:41:20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strappa, J.; Caymes-Scutari, P.; Bianchini, G. Evolutionary Statistical System Based on Novelty Search: A Parallel Metaheuristic for Uncertainty Reduction Applied to Wildfire Spread Prediction. Algorithms 2022, 15, 478. https://doi.org/10.3390/a15120478
Strappa J, Caymes-Scutari P, Bianchini G. Evolutionary Statistical System Based on Novelty Search: A Parallel Metaheuristic for Uncertainty Reduction Applied to Wildfire Spread Prediction. Algorithms. 2022; 15(12):478. https://doi.org/10.3390/a15120478
Chicago/Turabian StyleStrappa, Jan, Paola Caymes-Scutari, and Germán Bianchini. 2022. "Evolutionary Statistical System Based on Novelty Search: A Parallel Metaheuristic for Uncertainty Reduction Applied to Wildfire Spread Prediction" Algorithms 15, no. 12: 478. https://doi.org/10.3390/a15120478
APA StyleStrappa, J., Caymes-Scutari, P., & Bianchini, G. (2022). Evolutionary Statistical System Based on Novelty Search: A Parallel Metaheuristic for Uncertainty Reduction Applied to Wildfire Spread Prediction. Algorithms, 15(12), 478. https://doi.org/10.3390/a15120478