UAV Formation Shape Control via Decentralized Markov Decision Processes
<p>UAV formation shape control architecture.</p> "> Figure 2
<p>UAV swarm converging to the spherical formation shapes in 3D.</p> "> Figure 3
<p>UAV swarm converging to the spherical formation shapes avoiding obstacle.</p> "> Figure 4
<p>Distance between each pair of UAVs.</p> "> Figure 5
<p>Computation time (<math display="inline"><semantics> <msub> <mi>T</mi> <mi>c</mi> </msub> </semantics></math>): centralized vs. decentralized method.</p> "> Figure 6
<p>Average computation time with respect to neighborhood threshold.</p> "> Figure 7
<p>Average pairwise distance with respect to neighborhood threshold.</p> ">
Abstract
:1. Introduction
Key Contributions
- We formulate the UAV swarm formation control problem as a decentralized Markov decision process (Dec-MDP).
- We extend an approximate dynamic programming method called nominal belief-state optimization (NBO) to solve the formation control problem.
- We perform numerical studies in MATLAB to validate the swarm formation control algorithms developed here.
- One of the key contributions of this paper is to induce cooperative behavior among the UAVs in the swarm via the following novel decentralized control optimization strategy:
- –
- Each UAV i optimizes the control vector at time k, where is the control vector for UAV i, and is the control vector for its nearest neighbor.
- –
- Next, UAV i discards the optimized controls for its neighbor and implements just its own controls .
- –
- Each UAV in the system implements the above approach.
2. Problem Formulation
Dec-MDP Ingredients
3. NBO Approach to Solve Dec-MDP
4. UAV Motion Model
UAV Motion Control
- We linearize the trigonometric functions assuming roll angle and pitch angle small enough, i.e., , , ,
- The angular velocity of the UAV is also considered small enough
5. Simulation Results
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Waharte, S.; Trigoni, N.; Julier, S. Coordinated Search with a Swarm of UAVs. In Proceedings of the 2009 6th IEEE Annual Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks Workshops, Rome, Italy, 22–26 June 2009; Volume 1109. [Google Scholar]
- Walle, D.V.D.; Fidan, B.; Sutton, A.; Yu, C.; Anderson, B.D.O. Non-hierarchical UAV Formation Control for Surveillance Tasks. In Proceedings of the American Control Conference, Seattle, WA, USA, 11–13 June 2008; pp. 777–782. [Google Scholar]
- Carthel, C.; Coraluppi, S.; Grignan, P. Multisensor tracking and fusion for maritime surveillance. In Proceedings of the 10th International Conference on Information Fusion, Quebec City, QC, Canada, 9–12 July 2007; pp. 1–6. [Google Scholar]
- Shames, I.; Fidan, B.; Anderson, B.D.O. Close Target Reconnaissance using Autonomous UAV Formations. In Proceedings of the 47th IEEE Conference Decision and Control, Cancun, Mexico, 9–11 December 2008; pp. 1729–1734. [Google Scholar]
- Vu, Q.; Raković, M.; Delic, V.; Ronzhin, A. Trends in development of UAV-UGV cooperation approaches in precision agriculture. In International Conference on Interactive Collaborative Robotics; Springer: Berlin/Heidelberg, Germany, 2018; pp. 213–221. [Google Scholar]
- Ragi, S.; Chong, E.K.P. Dynamic UAV Path Planning for Multitargte Tracking. In Proceedings of the American Control Conference, Montreal, QC, Canada, 27–29 June 2012; pp. 3845–3850. [Google Scholar]
- Zhan, P.; Casbeer, D.; Swindlehurst, A. A centralized control algorithm for target tracking with UAVs. In Proceedings of the Conference Record of the Thirty-Ninth Asilomar Conference onSignals, Systems and Computers, Monterey, CA, USA, 30 October–2 November 2005; pp. 1148–1152. [Google Scholar]
- Qiu, H.; Huang, G.; Gao, J. Centralized multi-sensor multi-target tracking with labeled random finite set. J. Aerosp. Eng. 2005, 231, 669–676. [Google Scholar] [CrossRef]
- Zhao, L.; Ma, D. Circle Formation Control for Multi-agent Systems with a Leader. Control Theory Technol. 2015, 13, 82–88. [Google Scholar] [CrossRef]
- Ragi, S.; Chong, E.K.P. UAV Path Planning in a Dynamic Environment via Partially Observable Markov Decision Process. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 2397–2412. [Google Scholar] [CrossRef]
- Chong, E.K.P.; Kreucher, C.; Hero, A.O. Partially observable Markov decision process approximations for adaptive sensing. Disc. Event Dyn. Sys. 2009, 19, 377–422. [Google Scholar] [CrossRef]
- Bar-Shalom, Y.; Willett, P.K.; Tian, X. Tracking and Data Fusion; YBS Publishing: Storrs, CT, USA, 2011; Volume 11. [Google Scholar]
- Shen, D.; Chen, G.; Cruz, J.B.; Blasch, E. A game theoretic data fusion aided path planning approach for cooperative UAV ISR. In Proceedings of the 2008 IEEE Aerospace Conference, Big Sky, MT, USA, 1–8 March 2008; pp. 1–9. [Google Scholar]
- Azam, M.A.; Ragi, S. Decentralized formation shape control of UAV swarm using dynamic programming. In Proceedings of the Signal Processing, Sensor/Information Fusion, and Target Recognition XXIX. International Society for Optics and Photonics, Bellingham, WA, USA, 27 April–8 May 2020; Volume 11423, p. 114230I. [Google Scholar]
- Das, A.K.; Fierro, R.; Kumar, V.; Ostrowsky, J.P.; Spletzer, J.; Taylor, C. A vision-based formation control framework. IEEE Trans. Robot. Autom. 2002, 18, 813–825. [Google Scholar] [CrossRef] [Green Version]
- Fax, J.A.; Murray, R.M. Information flow and cooperative control of vehicle formations. IEEE Trans. Autom. Control 2004, 49, 1465–1476. [Google Scholar] [CrossRef] [Green Version]
- Ghabcheloo, R.; Pascoal, A.; Silvestre, C.; Kaminer, I. Coordinated path following control of multiple wheeled robots using linearization techniques. Int. J. Syst. Sci. 2006, 37, 399–414. [Google Scholar] [CrossRef]
- Singh, S.N.; Chandler, P.; Schumacher, C.; Banda, S.; Pachter, M. Adaptive feedback linearizing nonlinear close formation control of UAVs. Am. Control Conf. 2000, 2, 854–858. [Google Scholar]
- Koo, T.J.; Shahruz, S.M. Formation of a group of unmanned aerial vehicles (UAVs). Am. Control Conf. 2001, 1, 69–74. [Google Scholar]
- Edwards, D.B.; Bean, T.A.; Odell, D.L.; Anderson, M.J. A leader–follower algorithm for multiple AUV formations. IEEE/OES Auton. Underw. Veh. 2004, 2, 40–46. [Google Scholar]
- Skjetne, R.; Moi, S.; Fossen, T.I. Nonlinear formation control of marine craft. IEEE Int. Conf. Decis. Control 2002, 2. [Google Scholar]
- Balch, T.; Arkin, R.C. Behavior-based formation control for multirobot teams. IEEE Trans. Robot. Autom. 1998, 14, 926–939. [Google Scholar] [CrossRef] [Green Version]
- Lawton, J.R.; Beard, R.W.; Young, B.J. A decentralized approach to formation maneuvers. IEEE Trans. Robot. Autom. 2003, 19, 933–941. [Google Scholar] [CrossRef] [Green Version]
- Do, K.D.; Pan, J. Nonlinear formation control of unicycle-type mobile robots. Robot. Auton. Syst. 2007, 55, 191–204. [Google Scholar] [CrossRef]
- Lewis, M.A.; Tan, K.H. High precision formation control of mobile robots using virtual structures. Auton. Robot. 1997, 4, 387–403. [Google Scholar] [CrossRef]
- Ragi, S.; Chong, E.K.P. Decentralized Guidance Control of UAVs with Explicit Optimization of Communication. J. Intell. Robot. Syst. 2014, 73, 811–822. [Google Scholar] [CrossRef]
- Kim, Y.; Bang, H. Decentralized control of multiple unmanned aircraft for target tracking and obstacle avoidance. In Proceedings of the 2016 International Conference on Unmanned Aircraft Systems (ICUAS), Arlington, VA, USA, 7–10 June 2016; pp. 327–331. [Google Scholar]
- Meng, W.; He, Z.; Su, R.; Shehabinia, A.R.; Lin, L.; Teo, R.; Xie, L. Decentralized control of multi-UAVs for target search, tasking and tracking. IFAC Proc. Vol. 2014, 47, 10048–10053. [Google Scholar] [CrossRef] [Green Version]
- Bakule, L. Decentralized control: An overview. Elsevier Annu. Rev. Control 2008, 32, 87–98. [Google Scholar] [CrossRef]
- Viana, I.B.; Santos, D.A.D.; Goes, L.C.S. Formation Control of Multirotor Aerial Vehicles using Decentralized MPC. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 1–12. [Google Scholar] [CrossRef]
- Pham, H.X.; La, H.M.; Feil-Seifer, D.; Deans, M. A distributed control framework for a team of unmanned aerial vehicles for dynamic wildfire tracking. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 6648–6653. [Google Scholar]
- Zhang, Q.; Lapierre, L.; Xiang, X. Distributed Control of Coordinated Path Tracking for Networked Nonholonomic Mobile Vehicles. IEEE Trans. Ind. Inform. 2013, 9, 472–484. [Google Scholar] [CrossRef]
- Miller, S.A.; Harris, Z.A.; Chong, E.K.P. A POMDP framework for coordinated guidance of autonomous UAVs for multitarget tracking. EURASIP J. Adv. Signal Process. 2009, 2009, 724597. [Google Scholar] [CrossRef]
- Schmidt, D. Modern Flight Dynamics; McGraw-Hill Higher Education: New York, NY, USA, 2011. [Google Scholar]
- Stengel, R.F. Flight Dynamics; Princeton University Press: Princeton, NJ, USA, 2015. [Google Scholar]
- Kumar, V.; Michael, N. Opportunities and challenges with autonomous micro aerial vehicles. Int. J. Robot. Res. 2012, 31, 1279–1291. [Google Scholar] [CrossRef]
- Michael, N.; Mellinger, D.; Lindsey, Q.; Kumar, V. The grasp multiple micro-uav testbed. IEEE Robot. Autom. Mag. 2010, 17, 56–65. [Google Scholar] [CrossRef]
- Lee, T.; Leok, M.; McClamroch, N.H. Geometric tracking control of a quadrotor UAV on SE (3). In Proceedings of the 49th IEEE Conference on Decision and Control (CDC), Atlanta, GA, USA, 15–17 December 2010; pp. 5420–5425. [Google Scholar]
Dec-MDP | Centralized | |
---|---|---|
16.7 | 25.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azam, M.A.; Mittelmann, H.D.; Ragi, S. UAV Formation Shape Control via Decentralized Markov Decision Processes. Algorithms 2021, 14, 91. https://doi.org/10.3390/a14030091
Azam MA, Mittelmann HD, Ragi S. UAV Formation Shape Control via Decentralized Markov Decision Processes. Algorithms. 2021; 14(3):91. https://doi.org/10.3390/a14030091
Chicago/Turabian StyleAzam, Md Ali, Hans D. Mittelmann, and Shankarachary Ragi. 2021. "UAV Formation Shape Control via Decentralized Markov Decision Processes" Algorithms 14, no. 3: 91. https://doi.org/10.3390/a14030091
APA StyleAzam, M. A., Mittelmann, H. D., & Ragi, S. (2021). UAV Formation Shape Control via Decentralized Markov Decision Processes. Algorithms, 14(3), 91. https://doi.org/10.3390/a14030091