Revealing the Relationship Between Macrostructures and Inclusions Across the Thickness Direction of Q235B Slabs
<p>Production process of Q235B.</p> "> Figure 2
<p>Sampling scheme and research method.</p> "> Figure 3
<p>Variation in the macrostructure in the thickness direction of the slab.</p> "> Figure 4
<p>Variation in SADS in the thickness direction of the slab.</p> "> Figure 5
<p>Relationship between inclusions and temperature at the equilibrium.</p> "> Figure 6
<p>Variation in the content of manganese and sulfur in the thickness direction of the slab.</p> "> Figure 7
<p>Variation in the total area of MnS inclusions in the thickness direction of the slab.</p> "> Figure 8
<p>Number of different sizes (<b>a</b>) and proportion (<b>b</b>) of MnS inclusions in the thickness direction of the slab.</p> "> Figure 9
<p>Average size (<b>a</b>) and size distribution (<b>b</b>) of MnS inclusions in the thickness direction of the slab.</p> "> Figure 10
<p>Size (<b>a</b>) and area fraction (<b>b</b>) distribution of MnS inclusions in the thickness direction of the slab.</p> "> Figure 11
<p>Content distribution of manganese and sulfur of 1–2 μm (<b>a</b>), 2–3 μm (<b>b</b>), and 3–5 μm (<b>c</b>) inclusions.</p> "> Figure 12
<p>Variation in morphology at different macrostructures: CZ (<b>a</b>), CET (<b>b</b>), and CZ (<b>c</b>).</p> "> Figure 13
<p>Tendency of different elemental segregation.</p> "> Figure 14
<p>Precipitation curves of MnS in CZ (<b>a</b>), CET (<b>b</b>), and EZ (<b>c</b>) and maximum precipitation of MnS in different macrostructures (<b>d</b>).</p> "> Figure 15
<p>Precipitation curves in CZ (<b>a</b>), CET (<b>b</b>), and EZ (<b>c</b>) and solidification coefficient <span class="html-italic">f</span> in different macrostructures.</p> "> Figure 16
<p>Precipitation radius of MnS inclusions in different macrostructures.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Variation in the Macrostructure in the Thickness Direction of Slab
3.2. The Relationship Between Inclusion Precipitation and Macrostructure in the Thickness Direction of Slab
3.3. Thermodynamic Calculation
3.4. Kinetic Calculation
4. Conclusions
- (1)
- The transformation in the macrostructure from the inner and outer arc to the center was symmetry: columnar crystal region (CZ)→columnar crystal to equiaxed crystal transition region (CET)→equiaxed crystal region (EZ). The difference in SADS values in the thickness direction of the slab was small, and the SADS of EZ was larger than CZ.
- (2)
- The content of Mn and S was first increased and then decreased from the inner arc to the outer arc in the thickness of the slab.
- (3)
- Thermodynamics calculation results showed that the maximum precipitation of MnS inclusions at different macrostructures was CZ > EZ > CET. The initial precipitation temperature of MnS inclusions in CZ was the largest (1450 °C), CET was the second (1445 °C), and EZ was the smallest (1430 °C).
- (4)
- In different macrostructures, the area fraction of MnS inclusions was CZ (6.198) > CET (3.52) > EZ (3.43), and the sizes of MnS inclusions were CZ (1.924) > EZ (1.7) > CET (1.495). Kinetic calculation showed that the theoretical precipitation radius of MnS inclusions with different macrostructures was CZ > CET > EZ. The morphology of MnS inclusions was elliptical and rod-like in CZ, irregular dendrite in CET, and multilateral in EZ.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Li, B.; Liu, Z.; Niu, R.; Liu, Q.; Huang, X.; Xu, G.; Ruan, X. Detection and Numerical Simulation of Non-Metallic Inclusions in Continuous Casting Slab. Steel Res. Int. 2019, 90, 1800423. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, L.; Wang, Y.; Ren, Y.; Ren, Q.; Yang, W. Prediction on the three-dimensional spatial distribution of the number density of inclusions on the entire cross section of a steel continuous casting slab. Int. J. Heat Mass Transf. 2022, 190, 122789. [Google Scholar] [CrossRef]
- Deng, X.; Wang, Q.; Ji, C.; Li, H.; Shao, X.; Liu, B.; Zhu, G. Three-dimensional distributions of large-sized inclusions in the surface layer of IF steel slabs. Metall. Mater. Trans. B 2020, 51, 318–326. [Google Scholar] [CrossRef]
- Zhong, H.G.; Chen, X.R.; Liu, Y.J.; Wei, Z.Q.; Yu, H.F.; Zhai, Q.J. Influences of superheat and cooling intensity on macrostructure and macrosegregation of duplex stainless steel studied by thermal simulation. J. Iron Steel Res. Int. 2021, 28, 1125–1132. [Google Scholar] [CrossRef]
- Zhang, P.; Xu, L.; Shi, P.; Yang, F.; Wang, M. Numerical and experimental investigation of solidification structure and macrosegregation in continuously cast 2311 die steel slab. JOM 2023, 75, 2853–2864. [Google Scholar] [CrossRef]
- Koskenniska, S.; Kaijalainen, A.; Pikkarainen, T.; Mehtonen, S.; Porter, D.; Kömi, J. Effect of as-cast structure and macrosegregation on mechanical properties in direct-quenched low-alloy ultrahigh-strength steel. Metall. Mater. Trans. B 2021, 52, 95–106. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Z.; Li, B.; Dou, Z.; Rong, W. Effect of Alternate Electromagnetic Stirring on Macrostructure Evolution in Thin-Slab Continuous Casting. Metall. Mater. Trans. B 2024, 55, 2124–2137. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, L.; Xu, C.; Li, D.; Zhang, L. Effect of Slow Solidification of Ultra-thick Continuous Casting Slab on Solidification Structure and Macrosegregation. Teh. Vjesn. 2022, 29, 1171–1176. [Google Scholar]
- Wu, Z.-H.; Mao, Q.-J.; Hua, F.-A.; Jia, G.-L.; Li, J.-P.; Li, C.-G.; Yuan, G.; Wang, G.-D. Researches on the Macro-and Micro-Structures and Properties of the Vertical Bending Continuous Casted AA6063 Thin Slabs and Their As-Rolled Sheets. Metals 2022, 12, 1937. [Google Scholar] [CrossRef]
- Shabalov, I.; Matrosov, Y.; Kholodnyi, A.; Matrosov, M.; Velikodnev, V. Central Chemical and Structural Segregation Heterogeneity in Continuously Cast Slabs. Pipeline Steels Sour Serv. 2019, 43, 65–95. [Google Scholar]
- Liang, J.; Song, C.; Wang, L.; Li, Z.; Zhai, Q. Study on macrostructure refinement of 12 wt-% Cr ferritic stainless steel slabs by TiN nucleation. Mater. Technol. 2012, 27, 333–336. [Google Scholar] [CrossRef]
- Lekakh, S.N.; O’malley, R.; Emmendorfer, M.; Hrebec, B. Control of columnar to equiaxed transition in solidification macrostructure of austenitic stainless steel castings. ISIJ Int. 2017, 57, 824–832. [Google Scholar] [CrossRef]
- Gao, X.; Yang, S.; Li, J. Effects of micro-alloying elements and continuous casting parameters on reducing segregation in continuously cast slab. Mater. Des. 2016, 110, 284–295. [Google Scholar] [CrossRef]
- Choudhary, S.; Ganguly, S.; Sengupta, A.; Sharma, V. Solidification morphology and segregation in continuously cast steel slab. J. Mater. Process. Technol. 2017, 243, 312–321. [Google Scholar] [CrossRef]
- Ganguly, S.; Choudhary, S. Quantification of the solidification microstructure in continuously-cast high-carbon steel billets. Metall. Mater. Trans. B 2009, 40, 397–404. [Google Scholar] [CrossRef]
- Liu, D.M.; Xue, Z.L.; Song, S.Q. Effect of Manganese on the Formation Mechanism of Nonmetallic Inclusions in Fe-xMn-7Al-0.7C Lightweight Steel. Steel Res. Int. 2023, 94, 2200551. [Google Scholar] [CrossRef]
- Que, G.R.; Song, S.Q.; Nyembwe, A.; Xue, Z.L.; Qi, J.H.; Deng, Z.X. TiN inclusions distribution in the composite cross section of Titanium Micro-alloyed Steel slab: Thermo-chemical modeling and automatic statistic analysis. J. Mater. Res. Technol. 2023, 26, 5383–5392. [Google Scholar] [CrossRef]
- Li, X.A.; Wang, N.; Chen, M.; Du, Z.Q. Effect of Molten Steel Composition on Inclusion Modification by Calcium Treatment in Al-Killed Tinplate Steel. ISIJ Int. 2023, 63, 303–312. [Google Scholar] [CrossRef]
- Zhao, S.; Li, Z.S.; Xu, R.Z.; Khasraw, D.; Song, G.Y.; Xu, D. Dissolution Behavior of Different Inclusions in High Al Steel Reacted with Refining Slags. Metals 2021, 11, 1801. [Google Scholar] [CrossRef]
- Ren, Q.; Zhang, Y.; Ren, Y.; Zhang, L.; Wang, J.; Wang, Y. Prediction of spatial distribution of the composition of inclusions on the entire cross section of a linepipe steel continuous casting slab. J. Mater. Sci. Technol. 2021, 61, 147–158. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, J.; Li, T.; Gong, J.; Huang, F.; Zhu, K.; Liu, F.; Liu, Z. Characteristics of Inclusions and Microstructures Around Solidification Hook of Low-Carbon Steel Continuous Casting Slab. Metall. Mater. Trans. B 2023, 54, 2439–2453. [Google Scholar] [CrossRef]
- Chen, X.; Cheng, G.; Guo, J.; Pan, J. Transformation of inclusions in S32101 duplex stainless steel during continuous casting. Metall. Res. Technol. 2024, 121, 202. [Google Scholar] [CrossRef]
- Wu, L.P.; Zhi, J.G.; Zhang, J.S.; Zhao, B.; Liu, Q. Effect of Cerium on the Microstructure and Inclusion Evolution of C-Mn Cryogenic Vessel Steels. Materials 2021, 14, 5262. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Ji, C.; Dong, W.; Li, L.; Yin, X.; Yang, Y.; McLean, A. Distribution of macro-inclusions in low carbon aluminium-killed steel slabs. Ironmak. Steelmak. 2018, 45, 592–602. [Google Scholar] [CrossRef]
- Yu, Q.; Yang, X.; Lai, C.; Tong, Z. Study on mns inclusion aggregation along continuous casting slab thickness of medium carbon structural steel. Metals 2021, 12, 56. [Google Scholar] [CrossRef]
- Ghosh, A.; Modak, P.; Dutta, R.; Chakrabarti, D. Effect of MnS inclusion and crystallographic texture on anisotropy in Charpy impact toughness of low carbon ferritic steel. Mater. Sci. Eng. A 2016, 654, 298–308. [Google Scholar] [CrossRef]
- Wang, C.; Liu, X.-G.; Gui, J.-T.; Du, Z.-L.; Xu, Z.-F.; Guo, B.-F. Effect of MnS inclusions on plastic deformation and fracture behavior of the steel matrix at high temperature. Vacuum 2020, 174, 109209. [Google Scholar] [CrossRef]
- Wu, M.; Fang, W.; Chen, R.-M.; Jiang, B.; Wang, H.-B.; Liu, Y.-Z.; Liang, H.-L. Mechanical anisotropy and local ductility in transverse tensile deformation in hot rolled steels: The role of MnS inclusions. Mater. Sci. Eng. A 2019, 744, 324–334. [Google Scholar] [CrossRef]
- Yamamoto, K.-I.; Yamamura, H.; Suwa, Y. Behavior of non-metallic inclusions in steel during hot deformation and the effects of deformed inclusions on local ductility. ISIJ Int. 2011, 51, 1987–1994. [Google Scholar] [CrossRef]
- Chu, J.; Nian, Y.; Zhang, L.; Bao, Y.; Ali, N.; Zhang, C.; Zhou, H. Formation, evolution and remove behavior of manganese-containing inclusions in medium/high manganese steels. J. Mater. Res. Technol. 2023, 22, 1505–1521. [Google Scholar] [CrossRef]
- Kong, H.; Li, J.; Zhang, Z. Failure analysis of Q235B steel welded pipe. Heat Treat. Met. 2012, 37, 126–128. [Google Scholar]
- Fan, W.; Sun, W.; Wang, H.; Ge, J.; Sun, B. Fracturing failure analysis of Q235B steel tube. Heat Treat. Met. 2010, 35, 75–77. [Google Scholar]
- Zhao, G.; Huang, Q.; Zhang, Z.; Zhou, C.; Ma, L. Research on Microstructure and Mechanical Properties of Rolling Cladding Q235B Extra Thick Steel Plate. Hot Work. Technol. 2016, 45, 1–4. [Google Scholar]
- Yao, C.; Wang, M.; Ni, Y.; Gong, J.; Gong, T.; Xing, L.; Bao, Y. Revealing the evolution mechanism from spot segregation to banded defect above the austenitization temperature. J. Mater. Res. Technol. 2023, 26, 6984–6993. [Google Scholar] [CrossRef]
- Won, Y.-M.; Thomas, B.G. Simple model of microsegregation during solidification of steels. Metall. Mater. Trans. A 2001, 32, 1755–1767. [Google Scholar] [CrossRef]
- Gu, C.; Bao, Y.P.; Lin, L. Cleanliness distribution of high-carbon chromium bearing steel billets and growth behavior of inclusions during solidification. Rev. Metal. 2017, 53, e089. [Google Scholar]
- Xuechong, R.E.N.; Wuyang, C.H.U.; Jinxue, L.I.; Lijie, Q.; Yanjing, S.U. Effect of MnS inclusions on hydrogen diffusion in steel. J. Univ. Sci. Technol. Beijing 2007, 29, 232–236. [Google Scholar]
- Wang, B.; Xing, L.; Li, X.; Bao, Y.; Wang, M. Study on Inclusions Distribution Across the Thickness of Enameled Steel Slabs. Metall. Mater. Trans. B 2024, 55, 4432–4445. [Google Scholar] [CrossRef]
- Wang, Y.N.; Yang, J.; Wang, R.Z.; Xin, X.L.; Xu, L.Y. Effects of non-metallic inclusions on hot ductility of high manganese TWIP steels containing different aluminum contents. Metall. Mater. Trans. B 2016, 47, 1697–1712. [Google Scholar] [CrossRef]
Element | C | Si | Mn | P | S | Alt | Fe |
---|---|---|---|---|---|---|---|
Content | 0.075 | 0.18 | 0.38 | ≤0.020 | 0.015 | 0.010 | Bal. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Jin, J.; Gu, C.; Wei, Z.; Lyu, Z.; Xing, L.; Bao, Y. Revealing the Relationship Between Macrostructures and Inclusions Across the Thickness Direction of Q235B Slabs. Crystals 2024, 14, 1010. https://doi.org/10.3390/cryst14121010
Wang B, Jin J, Gu C, Wei Z, Lyu Z, Xing L, Bao Y. Revealing the Relationship Between Macrostructures and Inclusions Across the Thickness Direction of Q235B Slabs. Crystals. 2024; 14(12):1010. https://doi.org/10.3390/cryst14121010
Chicago/Turabian StyleWang, Bo, Jinwen Jin, Chao Gu, Ze Wei, Ziyu Lyu, Lidong Xing, and Yanping Bao. 2024. "Revealing the Relationship Between Macrostructures and Inclusions Across the Thickness Direction of Q235B Slabs" Crystals 14, no. 12: 1010. https://doi.org/10.3390/cryst14121010
APA StyleWang, B., Jin, J., Gu, C., Wei, Z., Lyu, Z., Xing, L., & Bao, Y. (2024). Revealing the Relationship Between Macrostructures and Inclusions Across the Thickness Direction of Q235B Slabs. Crystals, 14(12), 1010. https://doi.org/10.3390/cryst14121010